ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

G4218高速公路折多塘段泥石流发育特征及危险性评价

冯霄, 胡卸文, 白金钊, 席传杰, 何坤, 周瑞宸, 周永豪

冯霄,胡卸文,白金钊,等. G4218高速公路折多塘段泥石流发育特征及危险性评价[J]. 中国地质灾害与防治学报,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202312020
引用本文: 冯霄,胡卸文,白金钊,等. G4218高速公路折多塘段泥石流发育特征及危险性评价[J]. 中国地质灾害与防治学报,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202312020
FENG Xiao,HU Xiewen,BAI Jinzhao,et al. Characteristics and Risk assessment of debris flows in the Zheduotang Section of the G4218 Highway[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202312020
Citation: FENG Xiao,HU Xiewen,BAI Jinzhao,et al. Characteristics and Risk assessment of debris flows in the Zheduotang Section of the G4218 Highway[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202312020

G4218高速公路折多塘段泥石流发育特征及危险性评价

基金项目: 国家重点研发计划(2018YFC1505401)
详细信息
    作者简介:

    冯 霄(1999—),男,广西柳州人,硕士研究生,主要从事工程地质、地质灾害方面的研究。E-mail:f1292463908@163.com

    通讯作者:

    胡卸文(1963—),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com

  • 中图分类号: P642.23

Characteristics and Risk assessment of debris flows in the Zheduotang Section of the G4218 Highway

  • 摘要:

    拟建G4218康定至新都桥高速公路途经折多塘段,该区地质条件复杂,泥石流沟发育,共分布有23条泥石流沟,拟建线路在此段有K线和N线两个方案。本文通过野外地质调查、现场试验分析23条泥石流沟发育特征,选取主沟平均纵坡降、流域切割密度、断层线密度、汛期月均降水量等8个影响因子,采用层次分析法-熵值法构建评价模型,对研究区各泥石流沟进行危险性划分,根据评价结果提出选线建议。结果表明:研究区内泥石流高危险、极危险区主要集中分布在折多河下游右岸以及榆林河上游两侧流域,根据线路通过各级危险区间的路程占比以及综合体选址等情况综合考量,K线相比N线明线段经过高危险、极危险区的路程更短,且综合体部位危险性更低,因此K线方案优于N线。研究结果为西部山区交通工程地质选线提供了科学依据与技术支撑。

    Abstract:

    The planned G4218 Kangding-Xinduqiao Highway traverses the Zheduotang Section characterized by complex geological conditions and prevalent debris flow activity. This section includes 23 debris flow gullies. 2 routing options, K-line and N-line, have been proposed. Through extensive field investigations and analysis of these gullies, eight influencing factors were selected, including the average longitudinal gradient of the main channel, the incising density of watershed, the density of fault line, and the average monthly precipitation during the rainy season. An assessment model was constructed using the Analytic Hierarchy Process-Entropy method to classify the hazard levels of each gully and propose route selection recommendations based on the evaluation results. The results indicate that high and extreme risk areas for debris flows in the research area were mainly concentrated on the right bank of the lower Zheduo River and both sides of the upper reaches of the Yulin River. The K-line scheme is more advantageous than the N-line due to its shorter route through high-risk and extreme-risk areas, as well as a lower level of complexity at the site location, based on comprehensive proportional analysis. The research provides a scientific basis and technical support for traffic engineering geological route selection in western mountainous areas.

  • 地面沉降是世界范围内普遍发生的缓变地质灾害[1],中国已有超过50 个地区均发生过不同程度的地面沉降[2-4],其中京津冀平原是中国地面沉降影响面积最大的区域。天津作为京津冀地区的重要港口城市,地面沉降灾害具有松散层巨厚、含水层结构极其复杂、地下水开发历史久、沉降监测序列长等特点,是展现地面沉降灾害发生、发展、治理全过程的最具代表性的城市之一[5]

    天津市地下水开发利用历史悠久,1898年第一口供水井在中心城区建成,到1948年天津市年平均抽水量达到4.00×104 m3/a[6],1949年以来天津市经历了快速的经济发展和城市化建设,天津市地面沉降主要经历了6个阶段[7-8]

    ① 沉降发生(1923—1957年):中心城区地下水开采量为2.00×106~1.20×107 m3/a,平均沉降速率7~12 mm/a;

    ② 分散式发展(1958—1966年):中心城区地下水开采量增加至1.20×107~4.70×107 m3/a,平均沉降速率30~50 mm/a;

    ③ 急剧发展(1967—1985年):中心城区地下水开采量达到1.00×108~1.20×108 m3/a,平均沉降速率达到80~100 mm/a,沉降中心范围进一步扩大;

    ④ 初步治理(1986—1995年):天津市实施三期三年控沉计划,集中治理地面沉降,将中心城区的地下水开采量降至1.30×107 m3/a左右,平均沉降速率降至15 mm/a左右;

    ⑤ 综合治理(1996—2010年):寻找替代水源,沉降速率明显减缓,中心城区地下水开采量降至1.30×106 m3/a,平均沉降速率降至10~15 mm/a;

    ⑥ 沉降新形势(2010—):通过采取一系列积极有效的综合防治措施,天津市平均沉降量持续减小,全市平原区年平均沉降量控制在18 mm以内,中心城区地面沉降速率降低到10 mm/a以下。

    经过几十年的努力,天津市的控沉工作取得了一定的成果,但作为滨海城市,与上海等地年沉降速率控制在6 mm以下相比,天津市用水短缺问题仍然存在,地下水超采问题依然突出,地面沉降防控形势依然严峻。

    天津市的地面沉降问题得到了学者们的广泛关注[9-10],针对天津市地面沉降监测、地面沉降成因、地面沉降治理等方面也开展了诸多研究。张姣姣等[11]利用分层标监测数据和地下水位长期观测数据,结合地层固结特征以及黏性土物理力学性质,详细阐述了天津市西青区地面沉降特征;Cui等[12]建立了天津平原地下水与地面沉降耦合数值模型,研究1998—2008年的地下水资源及其变化,并预测未来地下水位和相关地面沉降的变化模式;郑玉萍等[13]研究了各类自然因素对天津市地面沉降的影响;朱庆川等[14]利用层次分析法等多种数学方法对天津市地面沉降影响因素进行定量分析。针对天津市全市域的地面沉降演化研究,多数仍集中于地面沉降综合治理阶段,且并未重点关注地面沉降严重区(年沉降量大于50 mm区域)的演化规律研究。目前,天津市大范围的地面沉降已得到基本控制,天津市地面沉降从大面积治理过渡到小区域精准防控,为实现地面沉降“削峰”的目标,有针对性地实施控沉措施,地面沉降年沉降量不再是衡量沉降严重性和沉降治理成效的唯一指标,地面沉降严重区面积也是一个十分重要的衡量标准。准确掌握新形势下地面沉降严重区分布特征及演化规律,对于预测未来地面沉降发展趋势、采取主动、有效的沉降控制对策以及天津市安全、绿色、健康发展均具有重要意义。

    天津市地处华北平原东北部,东南临渤海,北依燕山山脉,西北部为我国首都北京市和河北省,区内水运、铁路、航空、公路四通八达,交通十分便捷。天津市属暖温带半湿润大陆季风气候,四季分明,夏季炎热多雨,冬季寒冷干燥,年平均气温11~12 °C。全区多年平均降水量为582 mm/a。天津市基岩仅出露于北部低山丘陵及残丘地带,其余大部分平原地区被第四系覆盖,一般认为,第四系厚度可达550 m。天津市地面沉降多发于南部平原区松散地层地下水超采区域,北部山区主要开采基岩地下水,地面沉降现象轻微[15]

    天津市已形成一套完善的地面沉降监测网络体系,平面上以水准监测网为主,GPS和InSAR监测为辅,垂向上以分层标组监测为主要手段,并和均布全市的地下水位长期观测井结果相互验证。自1985年开始,天津市开展大范围地面沉降水准监测工作,监测频率为每年一次,截至2020年,已积累了35年的地面沉降水准监测资料,监测面积由最初的2400 km2扩展到现在的约1.1×104 km2,覆盖天津市全部地面沉降区域[16]。每年地面沉降水准监测工作集中于秋季开展,历时约2月,通过将水准测量数据与全市范围内23个GPS连续监测站的同期观测数据联合处理获取地面沉降监测结果。本文通过收集整理2010—2020年地面沉降水准监测、地下水位动态监测、地下水开采量数据,利用数理统计和ArcGIS软件空间分析的方法分析新形势下天津市地面沉降严重区的分布特征及演化规律。为减少因极端气候变化对地面沉降防控评估工作的影响,当年地面沉降值采用近3年平均值(以2019年为例:2019年现状值即为2017—2019年平均值)。

    自2010年起,天津市地面沉降严重区面积以2012年为分界线,整体呈现先增大后减小的趋势,由2012年的1722 km2减小至2020年的576 km2。全市年平均沉降量(区域年平均沉降量:区域范围内每年发生的地面沉降总体积与区域面积的比值)变化趋势与地面沉降严重区面积基本相似,由2012年的27 mm降至2020年的17 mm(图1)。

    图  1  天津市年平均沉降量及沉降严重区面积变化趋势图
    Figure  1.  Time-history curve of annual average subsidence and changes in severe subsidence zone area in Tianjin from 2010 to 2020

    图2图3可见,天津市地面沉降严重区集中分布于环城四区(东丽区、西青区、津南区、北辰区)、滨海新区、武清区和静海区等区域。2010—2012年,各区地面沉降严重区面积均呈现增大趋势;2012—2014年间,环城四区、滨海新区沉降严重区面积开始稳步减小,而武清区、静海区沉降严重区面积仍持续增大,因此,2010—2015年,天津市全市平均沉降量基本持平,环城四区等老地面沉降严重区沉降形势有所减缓,但武清区南部、滨海新区东北部等新地面沉降严重区也在逐步显现。2016年起,天津市各区地面沉降严重区面积减幅明显,特别是环城四区和滨海新区,地面沉降严重区面积基本控制在50 km2以下,全市平均沉降量也持续减小,地面沉降治理成效显著。至2020年,天津市基本形成了如图2(d)所示的5个沉降严重区,多数集中分布于天津市西南部。

    图  2  天津市平原区地面沉降情况对比图
    Figure  2.  Comparison of land subsidence distribution in the plain area of Tianjin
    图  3  天津市各区地面沉降严重区面积变化趋势图
    Figure  3.  Time-history curve of areas with severe land subsidence in Tianjin from 2010 to 2020

    天津市地面沉降与地下水开发利用存在密切联系。如图4图5所示,天津市平原区深部含水组地下水位降落漏斗(水位埋深等值线大于40 m的区域)分布范围与地面沉降严重区基本位置一致,覆盖了A-E 5个沉降区。

    图  4  天津市第Ⅱ含水组水位等值线图
    注:据2013、2016、2019年《天津市水资源公报》。
    Figure  4.  Groundwater level contour map of the second water-bearing group in Tianjin
    图  5  天津市第Ⅲ含水组水位等值线图
    注:据2013、2016、2019年《天津市水资源公报》。
    Figure  5.  Groundwater level contour map of the third water-bearing group in Tianjin

    结合图6可见,自2010—2012年起,天津市平原区深部第Ⅱ含水组地下水位降落漏斗面积呈现波动变化,先增大后减小;2012年以后地下水位降落漏斗面积整体呈现减小趋势,与地面沉降严重区面积和全市年平均沉降量变化趋势一致,而且沉降的峰值出现时间明显晚于水位的峰值出现时间,也体现了地面沉降对地下水开采的滞后效应。第Ⅲ含水组地下水位降落漏斗面积呈现先减小后增大趋势,这主要是由武清—宝坻—宁河一带埋深等值线大于40 m区域面积增大引起的;第Ⅲ含水组水位埋深等值线大于60 m的漏斗区域面积整体呈现先增大后减小趋势,2016年出现拐点,与前述分析的2016年之后天津市地面沉降严重区面积和年平均沉降量减小相对应。

    图  6  天津市深部含水组地下水位漏斗面积变化趋势图(2010—2020年)
    Figure  6.  Time-history curve of groundwater level drop funnel area in deep water-bearing group of Tianjin from 2010 to 2020

    同时,2013—2019年,第Ⅱ、Ⅲ含水组地下水位降落漏斗中心水位整体呈现减小趋势。2019年,第Ⅱ含水组已不存在埋深大于80 m区域,第Ⅲ含水组已不存在埋深大于90 m区域。

    深层地下水的主要排泄方式是人工开采,其水位变化主要取决于人工开采量,针对地下水超采是影响天津市地面沉降的主要因素这一现状,天津市实行一系列的有效控沉措施,包括地下水开采控沉预审、地下水压采、水源转换等。由图7图8可见,受地下水压采等多项措施的影响,自2010年起天津市深层地下水开采量呈现逐年递减的趋势,地下水位整体呈现波动式回升的趋势,与年平均沉降量减缓和地面沉降严重区面积减小的趋势相符,其中2017年以前,地下水位整体处于波动式回升,水位变化幅度较小,地面沉降减小趋势趋缓,2017年以后,地下水位开始大幅度回升,地面沉降也开始迅速下降。

    图  7  天津市深层地下水开采量变化趋势图(2010—2020年)
    Figure  7.  Time-history curve of deep groundwater exploitation quantity in Tianjin from 2010 to 2020
    图  8  沉降严重区内某观测井水位及沉降动态曲线图
    Figure  8.  Changes of ground water level and land subsidence of an observation well in severe land subsidence area in Tianjin

    自2010年起,在各项控制地面沉降措施和地下水压采取措施的影响下,天津市地面沉降开始呈现波动式发展;2014年,天津市正式颁布实施了《天津市控制地面沉降管理办法》,同年《天津市地下水压采方案》获批,南水北调中线工程正式通水,既缓解了用水紧张的现状,又大力压采地下水,实行地面沉降速率、地下水位、地下水开采量三元控制,天津市地面沉降形势稳中向好;2016年,天津市实施控制地面沉降分区管理,并逐步将控沉指标纳入到市政府对区政府的绩效考核评价体系中,地下水压采和控沉力度逐步加大,2017年开始,天津市地面沉降开始快速减缓,控制地面沉降工作取得了显著成效。2010—2020年,地面沉降严重区面积大幅减小,减小了67%,年平均沉降量下降了37%(沉降严重面积及年平均沉降量变化均由以下公式计算获得)。

    $$ C=\frac{B-A}{A}\times 100 $$

    式中:C—地面沉降严重区面积(年平均沉降量)变化 百分比/%;

    B—2020年地面沉降严重区面积(年平均沉降量)/km2(mm);

    A—2010年地面沉降严重区面积(年平均沉降量)/km2(mm)。

    总结地面沉降防治措施的历史经验,结合地面沉降现状,针对天津市地面沉降的特点,对地面沉降防治措施提出建议:①完善地面沉降监测体系,实现地面沉降多频次、多手段融合监测;②加强地下水资源管理与保护,加大以地面沉降防治为导向的地下水超采治理力度,开展向地面沉降严重区调配地表水的输水工程,切实减少地面沉降严重区地下水开采量,大力推进农业节水,寻找替代水源;③开展地下水人工回灌的相关技术研究,为在地面沉降严重区开展回灌工程做技术储备,并积累运行管理经验;④建立京津冀地面沉降联防联控机制,实现信息共享,同步治理[17-20]

    本文通过长序列的地面沉降监测数据整理及分析,对天津市新形势下地面沉降严重区分布特征及演化规律进行归纳总结,主要得到以下结论:

    (1)自2010年起,天津市地面沉降可划分为3个阶段:①2010—2012年:沉降波动期;②2013—2016年:稳中向好期;③2017—2020年:快速减缓期,且各阶段沉降变化规律与地下水开采量变化关系密切。

    (2)至2020年,天津市基本形成了集中分布于西南部的5个沉降严重区,且与深部含水组地下水漏斗分布范围基本一致,10 a间地面沉降严重区面积整体呈下降趋势,减小了67%。

    近年来,虽然天津市地面沉降年平均沉降量和严重区面积均完成了相关规划指标,天津市控制地面沉降工作取得了显著成效,但部分水资源严重匮乏地区的产业结构、产业布局与区域水资源条件不适应,压采难度大,周边省市地下水超采对天津市地面沉降影响明显等问题仍然存在,地面沉降问题仍然不容忽视。

  • 图  1   研究区概况图

    Figure  1.   Location map of the research area

    图  2   老泥石流沟沟口堆积扇

    Figure  2.   Characteristics of early debris flow fan of an old debris flow gully

    图  3   岸坡坡度分布特征

    Figure  3.   Distribution characteristics of bank slope gradients

    图  4   研究区降雨数据

    Figure  4.   Rainfall data of the study area

    图  5   泥石流沟物源特征

    Figure  5.   Material sources characteristics of the debris flow gully

    图  6   数据处理、提取和计算流程图

    Figure  6.   Data processing, extraction, and computation flowchart

    图  7   评价指标量化分级

    Figure  7.   Quantitative classification of evaluation indicators

    图  8   AHP-熵值法组合权重模型

    Figure  8.   AHP-Entropy method combined weight model

    图  9   泥石流危险性分区

    Figure  9.   Debris flow risk area zoning

    图  10   各区间线路长度

    Figure  10.   Length of routes in each section

    表  1   泥石流沟特征参数

    Table  1   Basic characteristic parameters of the debris flow gullies

    编号泥石流沟类型流体性质A/km2L/kmi/‰Hmax/mHmin/mΔH/m线路通过形式
    K线N线
    N1干沟沟谷型粘性6.63.6248443031771253\\
    N2坡面型稀性0.40.947836903115575\\
    N3坡面型稀性0.61.346639773109868\\
    N4解放沟沟谷型粘性5.53.6294437829591419隧道\
    N5四伏厂沟15.57.5204492230341888隧道、桥梁\
    N6海子沟0.40.835035553067488\\
    N7关沟6.35.4249483631101726隧道桥梁
    N8沟谷型稀性0.91.534839323149783\综合体
    N9李家沟沟谷型粘性4.13.4287457031751395隧道综合体
    N10干海子沟6.03.9349502231101912\\
    N11石灰窑沟11.76.5289540030702330\\
    N12龙头沟23.97.0248529730942203\\
    N133.12.7337422029901230\\
    N14沟谷型稀性2.92.0397395627201236\\
    N15道子坝沟沟谷型粘性5.94250403127101321\隧道、桥梁
    N165.53.9194416930911078\隧道
    N17板沧沟9.64.4199450031631337\\
    N18磨子沟21.05.0210471633901326隧道、桥梁隧道
    N194.12.828247213722999\\
    N202.01.634346603783877\\
    N214.83.7236473837121026\\
    N224.43.4251484437851059\\
    N236.94.116947873837950\\
      注:表中A为流域面积;L为主沟长度;i为主沟平均纵坡降;Hmax、Hmin为流域最大、最小高程;ΔH为流域最大高差;“—”表示沟道无名称;“\”表示线路未经过此流域。
    下载: 导出CSV

    表  2   基础数据来源

    Table  2   Basic data sources

    基础数据 数据来源
    12.5 m分辨率
    DEM栅格数据
    Earth Science Data Systems (ESDS) Program:
    https://search.asf.alaska.edu/
    1∶20万区域
    地质矢量数据
    全国地质资料馆:
    https://www.ngac.cn/
    1 km精度降水量
    nc数据
    国家地球系统科学数据中心:
    https://www.geodata.cn/
    Landsat8多波段
    GeoTIFF数据
    地理空间数据云:
    https://www.gscloud.cn/
    下载: 导出CSV

    表  3   权重计算结果

    Table  3   Result of weight calculations

    评价因子WxWyWz
    主沟平均纵坡降S10.18880.20500.1963
    流域切割密度S20.07500.20040.1328
    坡度S30.04220.13050.0828
    melton比率S40.11310.12540.1188
    主沟弯曲系数S50.03240.00850.0214
    断层线密度S60.16010.06270.1152
    汛期月均降水量S70.30380.03310.1792
    植被归一化指数S80.08470.23450.1537
    下载: 导出CSV

    表  4   泥石流危险性评价结果

    Table  4   Debris flow hazard assessment results

    危险程度分级面积占比A/%灾害数量/个灾害面积占比B/%B/A
    低危险23.5400.000.00
    中危险39.59537.650.95
    高危险25.55837.911.48
    极危险11.321024.432.16
    下载: 导出CSV
  • [1] 王玲,刘珍,杨林,等. 云南省梁河县章巴小沙河“8.5” 泥石流成灾机制分析[J]. 地质灾害与环境保护,2017,28(4):22 − 25. [WANG Ling,LIU Zhen,YANG Lin,et al. Analysis for the disaster menchanism of Zhangba river 8.5 mudslide in Lianghe county,Yunnan province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(4):22 − 25. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2017.04.005

    WANG Ling, LIU Zhen, YANG Lin, et al. Analysis for the disaster menchanism of Zhangba river 8.5 mudslide in Lianghe county, Yunnan province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(4): 22 − 25. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2017.04.005

    [2] 高会会,裴向军,崔圣华,等. 汶川震区震后地质灾害发育分布及演化特征统计分析[J]. 长江科学院院报,2019,36(8):73 − 80. [GAO Huihui,PEI Xiangjun,CUI Shenghua,et al. Geological hazards after earthquake in Wenchuan earthquake area:Distribution and evolvement features[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):73 − 80. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20180109

    GAO Huihui, PEI Xiangjun, CUI Shenghua, et al. Geological hazards after earthquake in Wenchuan earthquake area: Distribution and evolvement features[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 73 − 80. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20180109

    [3] 杨柳青,陈容,贺拿,等. 四川凉山州冕宁县彝海镇“6•26” 大型泥石流成因分析[J]. 中国地质灾害与防治学报,2023,34(1):94 − 101. [YANG Liuqing,CHEN Rong,HE Na,et al. Analysis of the cause of the “6•26” large debris flow in Yihai Town,Mianning County,Liangshan Prefecture,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):94 − 101. (in Chinese with English abstract)]

    YANG Liuqing, CHEN Rong, HE Na, et al. Analysis of the cause of the “6•26” large debris flow in Yihai Town, Mianning County, Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 94 − 101. (in Chinese with English abstract)

    [4] 杜翠. 高寒、强震山区沟谷灾害链判据与线路工程减灾对策[D]. 成都:西南交通大学,2015. [DU Cui. Criterion of valley disaster chain in alpine and strong earthquake mountainous areas and disaster reduction countermeasures of line engineering[D]. Chengdu:Southwest Jiaotong University,2015. (in Chinese with English abstract)]

    DU Cui. Criterion of valley disaster chain in alpine and strong earthquake mountainous areas and disaster reduction countermeasures of line engineering[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese with English abstract)

    [5] 宋章,魏永幸,王朋,等. 复杂艰险山区地质灾害特征及减灾选线研究[J]. 高速铁路技术,2020,11(5):8 − 12. [SONG Zhang,WEI Yongxing,WANG Peng,et al. Research on geological disaster characteristics and location for disaster reduction in complex and dangerous mountainous areas[J]. High Speed Railway Technology,2020,11(5):8 − 12. (in Chinese with English abstract)]

    SONG Zhang, WEI Yongxing, WANG Peng, et al. Research on geological disaster characteristics and location for disaster reduction in complex and dangerous mountainous areas[J]. High Speed Railway Technology, 2020, 11(5): 8 − 12. (in Chinese with English abstract)

    [6] 罗恒,沈军辉,李本松,等. 蝶子沟泥石流对九绵高速公路的危害分析[J]. 中国水利水电科学研究院学报,2018,16(4):307 − 313. [LUO Heng,SHEN Junhui,LI Bensong,et al. Analysis on the damage of diezi gully debris flow to Jiumian expressway[J]. Journal of China Institute of Water Resources and Hydropower Research,2018,16(4):307 − 313. (in Chinese with English abstract)]

    LUO Heng, SHEN Junhui, LI Bensong, et al. Analysis on the damage of diezi gully debris flow to Jiumian expressway[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 307 − 313. (in Chinese with English abstract)

    [7] 何坤,胡卸文,刘波,周瑞宸,席传杰,韩玫,张晓宇. 川藏铁路某车站泥石流群发育特征及对线路的影响[J]. 水文地质工程地质,2021(05);0137-13. [HE Kun,HU Xiewen,LIU Bo,ZHOU Ruichen,XI Chuanjie,HAN Mei,ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of thedebris flow group in one station of the Sichuan-Tibet Railway[J]. HYDROGEOLOGY & ENGINEERING GEOLOGY,2010,18(5):596-608. (in Chinese with English abstract)]

    HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of thedebris flow group in one station of the Sichuan-Tibet Railway[J]. HYDROGEOLOGY & ENGINEERING GEOLOGY, 2010, 18(5): 596-608. (in Chinese with English abstract)

    [8] 张明,王章琼,白俊龙,等. 基于ArcGIS的“三高” 地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming,WANG Zhangqiong,BAI Junlong,et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract)]

    ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 24 − 32. (in Chinese with English abstract)

    [9] 陈飞飞,姚磊华,赵宏亮,等. 泥石流危险性评价问题的探讨[J]. 科学技术与工程,2018,18(32):114 − 123. [CHEN Feifei,YAO Leihua,ZHAO Hongliang,et al. Discussion on the risk assessment of debris flow[J]. Science Technology and Engineering,2018,18(32):114 − 123. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2018.32.018

    CHEN Feifei, YAO Leihua, ZHAO Hongliang, et al. Discussion on the risk assessment of debris flow[J]. Science Technology and Engineering, 2018, 18(32): 114 − 123. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2018.32.018

    [10] 冯培华,向灵芝,罗亮,等. 基于灾害熵与层次分析法的泥石流危险性评价对比分析:以甘肃省迭部县为例[J]. 科学技术与工程,2023,23(29):12416 − 12426. [FENG Peihua,XIANG Lingzhi,LUO Liang,et al. Comparative analysis of debris flow risk assessment based on disaster entropy and analytic hierarchy process:A case study of Diebu County,Gansu Province[J]. Science Technology and Engineering,2023,23(29):12416 − 12426. (in Chinese with English abstract)] DOI: 10.12404/j.issn.1671-1815.2023.23.29.12416

    FENG Peihua, XIANG Lingzhi, LUO Liang, et al. Comparative analysis of debris flow risk assessment based on disaster entropy and analytic hierarchy process: A case study of Diebu County, Gansu Province[J]. Science Technology and Engineering, 2023, 23(29): 12416 − 12426. (in Chinese with English abstract) DOI: 10.12404/j.issn.1671-1815.2023.23.29.12416

    [11] 宇岩,欧国强,王钧,等. 信息熵在震后深溪沟流域泥石流危险度评价中的应用[J]. 防灾减灾工程学报,2017,37(2):264 − 272. [YU Yan,OU Guoqiang,WANG Jun,et al. Application to information entropy in post-earthquake Shenxi gully basin hazard assessment[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(2):264 − 272. (in Chinese with English abstract)]

    YU Yan, OU Guoqiang, WANG Jun, et al. Application to information entropy in post-earthquake Shenxi gully basin hazard assessment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(2): 264 − 272. (in Chinese with English abstract)

    [12] 王峰,杨帆,江忠荣,等. 基于沟域单元的康定市泥石流易发性评价[J]. 中国地质灾害与防治学报,2023,34(3):145 − 156. [WANG Feng,YANG Fan,JIANG Zhongrong,et al. Susceptibility assessment of debris flow based on watershed units in Kangding City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):145 − 156. (in Chinese with English abstract)]

    WANG Feng, YANG Fan, JIANG Zhongrong, et al. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 145 − 156. (in Chinese with English abstract)

    [13] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese)

    [14] 曹禄来,徐林荣,陈舒阳,等. 基于模糊神经网络的泥石流危险性评价[J]. 水文地质工程地质. 2014.41(2):143-147. [CAO Lu-lai,XU Lin-rong,CHEN Shu-yang et al. Assessment of debris flow hazard based on Fuzzy Neutral Network[J]. HYDROGEOLOGY& ENGINEERING GEOLOGY. 2014.41(2):143-147. (in Chinese with English abstract)]

    CAO Lu-lai, XU Lin-rong, CHEN Shu-yang et al. Assessment of debris flow hazard based on Fuzzy Neutral Network[J]. HYDROGEOLOGY& ENGINEERING GEOLOGY. 2014.41(2): 143-147. (in Chinese with English abstract)

    [15] 赵源,刘希林. 人工神经网络在泥石流风险评价中的应用[J]. 地质灾害与环境保护,2005,16(2):135 − 138. [ZHAO Yuan,LIU Xilin. Application of ann to risk assessment on debris flow[J]. Journal of Geological Hazards and Environment Preservation,2005,16(2):135 − 138. (in Chinese)] DOI: 10.3969/j.issn.1006-4362.2005.02.005

    ZHAO Yuan, LIU Xilin. Application of ann to risk assessment on debris flow[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(2): 135 − 138. (in Chinese) DOI: 10.3969/j.issn.1006-4362.2005.02.005

    [16] 刘府生,席传杰,胡卸文,等. 帕隆藏布流域冰川泥石流易发性研究[J]. 灾害学,2023,38(2):47 − 52. [LIU Fusheng,XI Chuanjie,HU Xiewen,et al. Glacial debris flow susceptibility assessment in palongzangbu basin[J]. Journal of Catastrophology,2023,38(2):47 − 52. (in Chinese)] DOI: 10.3969/j.issn.1000-811X.2023.02.008

    LIU Fusheng, XI Chuanjie, HU Xiewen, et al. Glacial debris flow susceptibility assessment in palongzangbu basin[J]. Journal of Catastrophology, 2023, 38(2): 47 − 52. (in Chinese) DOI: 10.3969/j.issn.1000-811X.2023.02.008

    [17] 张晨,王清,陈剑平,等. 金沙江流域泥石流的组合赋权法危险度评价[J]. 岩土力学,2011,32(3):831 − 836. [ZHANG Chen,WANG Qing,CHEN Jianping,et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics,2011,32(3):831 − 836. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2011.03.032

    ZHANG Chen, WANG Qing, CHEN Jianping, et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics, 2011, 32(3): 831 − 836. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.03.032

    [18] 潘家伟,李海兵,Marie-Luce CHEVALIER,等. 鲜水河断裂带色拉哈—康定段新发现的活动断层:木格措南断裂[J]. 地质学报,2020,94(11):3178 − 3188. [PAN Jiawei,LI Haibing,CHEVALIER M,et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault:The South Mugecuo fault[J]. Acta Geologica Sinica,2020,94(11):3178 − 3188. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5717.2020.11.002

    PAN Jiawei, LI Haibing, CHEVALIER M, et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: The South Mugecuo fault[J]. Acta Geologica Sinica, 2020, 94(11): 3178 − 3188. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2020.11.002

    [19] 四川省地震局地震地质队鲜水河活动断裂带填图组. 2013. 鲜水河活动断裂带地质图(1:50000)说明书. 北京:地震出版社.
    [20] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2023.05.007

    YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2023.05.007

    [21] 李波. 滇藏铁路波密至然乌段典型泥石流沟选线原则研究[C]//中国铁道学会工程分会第七届线路专业委员会. 复杂艰险山区铁路勘察设计创新与应用. 2020:7. [LI Bo. Research on Route Selecyion Principles of Typical Debris Flow Gully in Bomi-Ranwu Section of Yunnan-Tibet Railway [C] The fourth meeting of the 7th Line Professional Committee of the Engineering Branch of China Railway Society,2020:7. (in Chinese with English abstract)]

    LI Bo. Research on Route Selecyion Principles of Typical Debris Flow Gully in Bomi-Ranwu Section of Yunnan-Tibet Railway [C] The fourth meeting of the 7th Line Professional Committee of the Engineering Branch of China Railway Society, 2020: 7. (in Chinese with English abstract)

    [22] 苏玥,邓桃,韩笑. 基于GIS以及中巴公路线路廊道的冰川泥石流严重区段铁路减灾选线策略[J]. 四川建筑,2019,39(3):99 − 101. [SU Yue,DENG Tao,HAN Xiao. Route selection strategy for railway disaster reduction in severe glacier debris flow section based on GIS and China-Pakistan highway corridor[J]. Sichuan Architecture,2019,39(3):99 − 101. (in Chinese)] DOI: 10.3969/j.issn.1007-8983.2019.03.036

    SU Yue, DENG Tao, HAN Xiao. Route selection strategy for railway disaster reduction in severe glacier debris flow section based on GIS and China-Pakistan highway corridor[J]. Sichuan Architecture, 2019, 39(3): 99 − 101. (in Chinese) DOI: 10.3969/j.issn.1007-8983.2019.03.036

图(10)  /  表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-09
  • 录用日期:  2025-03-02
  • 网络出版日期:  2025-03-10

目录

/

返回文章
返回