ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析

李玲, 陈宁生, 杨溢, 钟政, 黄娜

李玲,陈宁生,杨溢,等. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析[J]. 中国地质灾害与防治学报,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
引用本文: 李玲,陈宁生,杨溢,等. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析[J]. 中国地质灾害与防治学报,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
LI Ling,CHEN Ningsheng,YANG Yi,et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
Citation: LI Ling,CHEN Ningsheng,YANG Yi,et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029

四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析

基金项目: 国家自然科学基金-国际(地区)合作与交流项目(42361144880);青海省科技厅基础研究计划项目(2024-ZJ-904);中国博士后科学基金资助项目(GZC20232571;2024M753153)
详细信息
    作者简介:

    李 玲(1998—),女,四川内江人,安全工程专业,硕士研究生,研究方向为山地灾害评价与预测。E-mail:1694598637@qq.com

    通讯作者:

    杨 溢(1965—),男,云南大理人,地质工程专业,博士、教授,研究方向为灾害启动机理与水土保持。E-mail:2919847230@qq.com

  • 中图分类号: P642.23

Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province

  • 摘要:

    九绵高速公路LJ9段沟谷型泥石流灾害频发,时常对附近村落和基础设施造成威胁。为了避免灾害对区域高速公路和G247国道的二次冲击,对九绵高速LJ9段沿线存在泥石流暴发痕迹的6条泥石流沟的物源特征与规模进行研究,认为该地区泥石流属于低频沟谷暴雨型。泥石流容重值在1.647~1.843 g/cm3,流速为3.45~6.54 m/s,流量为29.47~253.45 m3/s,一次过流总量为0.99×104~8.28×104 m3。文章通过对比九绵高速“8•16”泥石流规模特征差异,分析物源量与泥石流的容重、规模的关系,建立了相关性公式。研究结果发现:(1)研究区泥石流属于低频沟谷暴雨型,流体性质与沟道物源量紧密相关,单位面积物源量与泥石流容重呈线性关系;单位面积物源量大于1.65×105 m3/km2和小于1.13×105 m3/km2时,泥石流分别表现为黏性和稀性。(2)在相同地质条件下,泥石流物源量与规模之间呈线性相关,泥石流一次总量随流域单位面积物源量减小而减小。(3)泥石流致灾能力受物源量控制,物源总量超过80×104 m3的沟道易形成黏性泥石流,沟口的堆积扇更大,对应破坏力更强;物源总量小于80×104 m3的沟道更易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。该研究结果可为九绵高速公路的规划设计与建设提供一定参考,也为山区基础设施的安全运营、灾害防御工程建设工作提供科学依据。

    Abstract:

    The LJ9 segment of Jiumian Expressway frequently experiences gully-type debris flow disasters, posing threats to nearby villages and infrastructure. Considering the unique characteristics and importance of the highway and G247 national road, this study investigates the material source characteristics and scale of six debris flow gullies with debris flow outbreak traces along the LJ9 section of Jiumian Expressway. The debris flows in this area are classified as low-frequency gully flash flood types. The bulk density of the debris flows ranges from 1.647 to 1.843 g/cm3, with velocities between 3.45 and 6.54 m/s, and flow rate ranging from 29.47 to 253.45 m3/s. The total volume of the debris flow ranges from 0.99×104 to 8.28×104 m3. This paper compares the differences in the scale characteristics of the “8•16” debris flow on the Jiumian Expressway, and analyze the relationship between the volume of material source and the bulk density and scale of debris flow, establishing relevant calculation formulas. The results show that: (1) The fluid properties of debris flow in the study area are classified as low-frequency gully flash flood types, closely related to the volume of material source, with a positive correlation between unit area material source volume and debris flow bulk density. When unit area material source volume exceeds 1.65×105 m3/km2 or falls below 1.13×105 m3/km2, debris flow exhibit viscous or diluted characteristics, respectively. (2) Under similar geological conditions, there is a linear correlation between material source volume and debris flow scale, with total debris flow volume decreasing as unit area material source volume decreases. (3) Debris flow damage potential is controlled by material source volume. Gullies with material source volumes exceeding 800 000 m3 are more likely to produce viscous debris flows, which has greater destructive power and form larger debris flow fans at their mouths. These findings provide insights for the design and construction of the Jiumian Expressway and serve as a scientific basis for the safe operation of infrastructure in mountainous regions and the construction work of geological hazard prevention projects.

  • 泥石流是中国常见山地灾害之一,在短时间内将大量松散物质沿流域冲刷而下,严重破坏山区城镇基础设施,威胁人民生命财产安全[12]。我国西南地区由于人地矛盾突出,许多城镇和基础设施被迫建立在峡谷阶地、泥石流沟口或周边区域,长期面临泥石流灾害的潜在威胁[3]。不断深入研究泥石流灾害是我国山地灾害防治工作的重要组成部分,防灾减灾抗灾救灾是人类生存发展的永恒课题。

    厘清泥石流性质及规模是评价与防治泥石流灾害的关键依据[47]。目前泥石流容重及规模的研究方法颇多。泥石流容重的确定方法分为宏观分析、微观分析[7]以及现场试验法。现场试验法是取泥石流原状堆积物加水配置,这种方法仅适用于已经发生的泥石流容重测试,且要有相应的泥石流见证者反复确认,该方法得到的容重精确度较低,误差较大。计算方法主要分为宏观经验分析法、微观经验分析法,宏观经验分析法包括建立基于沟床比降、流域面积等与容重之间的关系[811]。李炳志等[12]分析了泥石流容重随流量、沟床纵坡的变化情况;黄海等[1314]建立基于水源条件的容重预测方法,后又厘定了最大容重、峰值容重和平均容重对其他泥石流运动参数的影响;韩征等[15]通过对四川山区泥石流沟道调查,建立了流域形态完整系数与容重的统计关系,形成基于流域形态完整系数泥石流容重的指数式计算公式;谢娜等[16]分析甘肃陇南一带典型泥石流特征,认为泥石流容重与其流域形态指数成正相关。微观经验分析法通过微观堆积物粒径百分比,提出基于黏土颗粒比例来估算浆体容重值的计算公式[1718]。总结以上这些常用方法发现,宏观经验分析法仅依靠单因素公式建立关系,其结果具有一定的局限性和单一性;微观经验分析法开展条件较复杂,且需要大量现场试验,成本较高。

    规模研究上,泥石流的单次最大冲出量即为泥石流固体物质冲出量[19],可依此数据判断泥石流最大活动规模[20]。计算泥石流规模的方法主要有数值模拟、理论分析和试验结果观测。数值模拟多用于不同设定条件下泥石流规模大小与范围研究,从宏观角度分析沟道特征、降水和物源对规模的影响。徐粒等[21]基于HEC-HMS和FLD-2D模型模拟不同降雨情况下泥石流堆积面积与泥沙冲出量关系;唐泽等[22]运用R.Avaflow模型对红椿沟“8•14”泥石流灾害事件进行模拟并得到与实际结果十分接近的泥石流冲出规模;Zhang等[23]利用Herschel-Bulkley-Papanastasiou模型导入Open FOAM成功应用于爱华流域泥石流规模预测;罗超鹏等[24]运用FLOW-3D对泥石流运动规模进行模拟并分区。数值模拟方法虽能直观的展示结果但通常为宏观上的单一冲出量模拟,设定的边界条件较多,不同软件的模拟结果可能不同,对后续误差分析影响较大。理论分析为结合前人研究成果、以历史泥石流灾害事件为参考分析泥石流规模异同。李俊等[25]运用经验公式估算出西藏水电区滑坡泥石流规模,分析万年尺度下泥石流溃坝与渡河危险性;Zhong等[26]分析桐梓林沟泥石流认为泥石流规模与区域干旱时间有关;Tian等[27]等研究EKZG泥石流事件认为高频小雨与地质构造差异是造成大规模泥石流灾害的主要原因;杨华铨等[28]分析凉山州泥石流灾害认为坡岸滑坡与堵溃效应是导致灾害规模扩大的原因。理论分析方法多用于泥石流形成机制研究,适用于从多次灾害事件中推测出泥石流规模的变化。试验、观测结果方法通常作为泥石流规模研究的验证手段。袁路等[29]基于试验提出振幅高低与泥石流容重呈正相关趋势,结果可用于估算泥石流峰值流量及规模;詹美强等[30]设计水槽试验分析泥石流坡岸物源失稳过程与土体破坏过程差异;Liu等[31]结合现场试验分析矮子河谷松散物源在不同降雨工况下泥石流的规模差异。在误差精度满足要求的情况下,试验手段能重现泥石流运动过程与灾后规模。综上所述,对于泥石流规模研究多为根据经验总结的物理模型或理论分析,有的需结合大量历史数据资料,或是单一的冲出模拟,其计算结果差异很大,并不适用于所有区域。

    物源是影响泥石流暴发的重要因素[3233],本文基于对九绵高速“8•16”泥石流灾害事件的实地调查、无人机拍摄以及遥感解译等工作,通过物源量变化来反映泥石流性质及其规模的变化趋势,揭示物源量与泥石流流体性质及规模的关系,能够在对泥石流灾害流体性质与规模的现场勘查中提供判断方法,为该地区泥石流灾害治理提供参考,也为其他地区泥石流性质及规模的研究提供一种新思路。

    九绵高速LJ9段位于四川省绵阳市平武县白马乡部落,区域泥石流灾害发育趋势明显。区域内地形起伏大,中部低两周高。中部有涪江支流夺补河(又名火溪河)经过,周边属山地地貌,地形复杂。麻石扎3号沟、阿祖沟、夺补河5号沟、杂排沟依次沿夺补河两侧分布,黄土梁隧道左沟、右沟位于G247国道平绵高速段黄土梁隧道连接处,研究区流域分布如图1所示。区域内地貌属于构造侵蚀中高山地貌,两侧坡面陡峭,沟谷断面多呈“V”型,两岸坡度均大于60°,部分沟道支、冲沟发育,具有形成泥石流的条件。

    图  1  研究区地理位置
    Figure  1.  Geographical location of the study area

    2020年8月16—17日,四川省绵阳市平武县九绵高速LJ9在建路段发生大型泥石流,造成多人死亡,直接经济损失超过1500万元。16日下午6点,九绵高速建设工程项目驻地后方阿祖沟暴发泥石流,灾害造成2人死亡,沟口多座工程设施被破坏。8月17日下午1时,该沟再次发生泥石流导致沟口下方的夺补河堵塞,正在修建的高架桥路段受损严重。同一天内,邻近的麻石扎3号沟、夺补河5号沟、杂排沟、黄土梁左沟、黄土梁右沟相继暴发中、大规模泥石流。

    研究区位于上古生界中泥盆统三河口组(D2S1-2)地层,主要分布于斜坡地带及沟谷地带。区域地层多为碳质板岩,浅表层岩体强风化,裂隙发育,岩层产状320°∠64°。研究区周边地区断裂、褶皱较发育,受活动断裂带的影响较大,地质构造较复杂(图2)。

    图  2  研究区地质图
    Figure  2.  Geological map of the study area

    平武县地处亚热带季风气候区,多年平均气温14.7 °C,气温值范围为13.9~15.1 °C。最高温37 °C,最低温−7 °C。多年平均日照时间1376 h,多年平均无霜期为252 d。全年降水时间分配不均、空间分布不均,多年平均降水量达到806.0 mm,区内6—9月降水量占全年降水量的80%。 2020年平武县区域暴雨集中在7—8月(图3)。根据平武县气象局提供资料,2020年8月10日20时—8月17日14时,平武县白马藏族乡累计降雨量为250.2 mm,同比去年8月份增加219.95%。结合历史降雨资料对比,此次强降雨强度超过50 a一遇。这是典型的历时短、强度高、集中性强降雨,易导致沟谷型泥石流灾害发生。

    图  3  2020年平武县月平均气温、降雨量
    Figure  3.  Monthly average temperature and rainfall in Pingwu County, 2020

    本研究数据包括:2020年绵阳市平武县白马藏族乡亚者造祖村至黄土梁隧道口段泥石流灾后遥感影像;松潘幅1∶100 000地质图;中国气象数据网(http://data.cma.cn/)2020年绵阳市平武县气象观测站月平均降雨量、气温数据;泥石流岩土工程调控措施相关数据来自于中国科学院、水利部成都山地灾害与环境研究所2020年5月编制的《九绵高速LJ9合同段地质灾害危险性评估报告》;研究区6条泥石流沟道基础数据与泥石流颗分土样等为2022年5月作者实地测量采样所得。

    物源量的确定是开展泥石流运动特征和规模的重要前提,目前物源量计算方法已有线性、非线性等多种经验公式[3438],流域物源类型不同,物源储量的计算方法也不相同。通过多次计算结果与实测数据对比,最终确定研究区坡面侵蚀型物源计算模型参照胡旭东等[39]提到的幂函数经验公式,该方法先确定区域的侵蚀坡面面积-体积的经验指数来得到物源体积;凹槽土体物源计算方法则选用乔建平等[40]提出沟谷下切及两侧失稳的动储量计算方法,相关计算公式见表1、研究区具体物源数据见表2

    表  1  泥石流动储量计算公式
    Table  1.  Calculation formula for debris flow dynamic reserves
    物源类型 计算公式 说明
    坡面侵蚀物源 V=αAγ V为坡面侵蚀物源体积/104 m3A为坡面侵蚀物源面积/m2
    α为面积-体积修正系数;γ为面积-体积经验指数,不同地区的修正系数与经验指数一般不同
    凹槽土体物源 松散土体面积:
    Δ1cod=12cocd=12hhtanα=
    12h2tan(βθ)
    动储量体积:V01=Δ1codL1
    β为斜坡自然休止角/(°);α为物源土体与自然休止角夹角/(°);co=h为原沟床深度/m;
    V01为下切侵蚀型动储量/m3L1为沟床堆积体长度/m,具体参数位置见图4
    下载: 导出CSV 
    | 显示表格
    图  4  凹槽土体物源量计算模型
    Figure  4.  Calculation model of the source quantity of groove material sourc
    表  2  泥石流运动参数式
    Table  2.  Calculation formulas table for debris flow motion parameters
    序号 参数 公式 说明
    1 泥石流流速 Vc=(Mc/a)R2/3Ic1/2
    a=(1+φcγs)12
    φc=γcγwγsγc
    Vc为流速/(m·s−1);Mc为泥石流沟床粗糙系数,沟槽情况越复杂取值越大,取值为4.5~7.9(表3);R为泥石流水力半径/m ;Ic为泥石流水力坡度;γs为固体颗粒的容重,取2.65~2.7 g/cm3γc为泥石流容重/(g·cm−3);γw为水的容重,取1.0 g/cm3
    2 峰值流量 QC=(1+φ)QPDC
    QP=0.278ψsτnF
    φ=(γcγw)/(γsγc)
    QC为泥石流峰值流量/(m3·s−1);QP为频率为P的暴雨洪水设计流量/(m3·s−1);φ为泥石流泥沙修正系数,取值在0.8~1.2,见表3DC为堵塞系数,根据实际调查情况,取值见表3ψ为洪峰径流系数;τ为流域汇流时间;n为暴雨指数;s为暴雨雨力;τns依据《四川省中小流域暴雨洪水计算手册》取值,F为流域面积
    3 泥石流一次
    冲出总量
    Wc=0.264TQc T为泥石流历时/s;QC为泥石流峰值流量/(m3·s−1
    4 泥石流冲出
    固体物质总量
    Ws=(γcγw)Wc/(γsγw) Wc为泥石流一次冲出总量/(m3·s−1
    下载: 导出CSV 
    | 显示表格

    由于现场勘察距灾害发生已有一段年限,容重实测难度大,故对泥石流容重的确定采用泥石流沟易发程度数量化评分 [40]和基于黏粒含量的泥石流容重计算法[12]综合确定,计算方法见式(1):

    γc=1.32×103x75.13×102x6+8.91×102x555x4+34.6x367x2+12.5x+1.55 (1)

    式中:γc——泥石流容重/(g·cm−3);

    x——泥石流堆积物中黏粒占粒径小于60 mm部分的含量。

    将现场泥石流原状堆积物筛分后使用马尔文激光粒度仪得到细颗粒中黏粒含量(图5),结合泥石流沟易发程度数量化评分[40]结果确定研究区泥石流容重,结果见表3

    图  5  颗粒分析粒度曲线
    Figure  5.  Particle size curve from particle analysis
    表  3  泥石流运动特征参数
    Table  3.  Characteristic parameters of debris flow
    沟名 泥石流流速
    /(m·s−1
    泥石流容重
    /(g·cm−3
    泥石流峰值流量
    /(m3·s−1
    泥石流一次冲出总量
    /(104 m3
    固体物质总量
    /(104 m3
    堵塞系数 沟床糙率
    系数
    泥沙修正
    系数
    阿祖沟 4.21 1.843 174.14 8.28 3.73 2.7 4.9 1.15
    麻石扎3号桥沟 6.54 1.647 29.47 0.99 0.34 2.2 7.3 0.83
    夺补河5号桥沟 3.79 1.717 21.67 1.80 0.54 2.4 6.2 0.97
    杂排沟 3.45 1.811 253.45 6.12 3.20 2.6 5.2 0.91
    黄土梁左沟 4.50 1.677 81.38 1.612 0.49 1.9 6.9 0.85
    黄土梁右沟 4.36 1.697 88.79 2.18 0.54 2.1 6.7 0.83
      注:表格中的沟床糙率系数(Mc),泥沙修正系数(φ)与堵塞系数(DC)均为结合研究区先前研究、地形条件与实地勘察数据等因素综合考虑后赋值
    下载: 导出CSV 
    | 显示表格

    计算得出各流域泥石流的流速、峰值流量、一次冲出总量计算公式见表4

    表  4  研究区泥石流沟基础资料统计表
    Table  4.  Statistical table of basic data of debris flow gullies in the study area
    沟名 流域面积
    /km2
    容重
    /(g·cm−3
    坡面、凹槽物源
    面积S1S2
    /(10−4 km2
    凹槽土体物源量
    /(104 m3
    物源总量
    /(×104m3)
    单位面积物源/
    (104 m3·km−2
    阿祖沟 4.54 1.843 5.80、2.19 26.29 102.89 22.62
    麻石扎3号沟 2.34 1.647 2.25、0 0 2.32 0.99
    夺补河5号沟 1.78 1.717 2.36、0 3.37 18.20 10.11
    杂排沟 5.68 1.811 3.96、2.17 28.16 97.69 17.20
    黄土梁左沟 5.14 1.677 1.01、0 0 10.18 1.98
    黄土梁右沟 5.74 1.697 3.84、0 0 38.73 6.74
    下载: 导出CSV 
    | 显示表格

    根据当地气象站降雨数据可知(图3),平武县2020年7月雨量明显增加,8月突发暴雨,前期充足的降雨与灾害当月高强度暴雨是造成此次灾害的重要因素。计算得出在100 a重现期下,泥石流容重均在1.60~1.85 g/cm3,阿祖沟与杂排沟峰值流量分别达到174.14 m3/s、253.45 m3/s。结合现场勘察和居民调访得知研究区近50年内未发生大规模泥石流事件,根据《泥石流勘查技术》[7]中对泥石流规模分类的描述,判定此次九绵高速LJ9段“8•16”泥石流整体为低频暴雨型泥石流。阿祖沟、杂排沟容重值为1.843 g/cm3、1.811 g/cm3,泥石流峰值流量超过100 m3/s,故为大型-黏性泥石流,夺补河5号沟为中型-稀性泥石流,麻石扎3号沟、黄土梁左沟、黄土梁右沟暴发小型-稀性泥石流,各沟道泥石流运动参数结果见表3

    结合区域地质图可知,6条沟道地质构造与岩性基本相同,主要为砂岩、板岩,零星有花岗岩分布。结合颗粒分析粒度曲线(图5)可知,阿祖沟与麻石扎3号沟堆积物中黏粒含量占总量的2.75%与0.81%,其余沟道的黏粒含量均在0.81% ~2.75%,且粒径小于1 mm的颗粒含量均不超过50%,黏粒含量与经验公式计算出的泥石流数量关系一致。现场对比发现沟道内块石大部分呈次棱角状,部分呈磨圆状(图6),故认为研究区6条泥石流沟携带的颗粒物源具有相似的颗粒组成。

    图  6  研究区泥石流原状物颗粒组成
    Figure  6.  Composition of original debris flow particles in the study area

    泥石流流体性质差异与沟道物源量密切相关,物源量多、分布广泛的沟道形成泥石流容重更大。结合现场无人机图片与遥感影像显示6条泥石流沟道的物源种类与规模明显不同。阿祖沟与杂排沟泥石流呈黏性,流域内松散堆积体多且分布广泛,麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟流域物源较少,主要分布在冲沟内和临近沟道的坡岸(图7)。

    图  7  研究区物源分布
    Figure  7.  Material source distribution in the study area

    研究区侵蚀方式主要为暴雨侵蚀,侵蚀强度受当地降雨量、土体结构、植被以及地震等因素影响,结合沟道物源统计(表4)认为物源量与对应流域松散堆积体类型有关,主要物源类型有坡面侵蚀物源与凹槽松散堆积物。其中,阿祖沟种类为#1、#4支沟凹槽土体失稳和#3、#4支沟的大面积滑坡堵溃(图8);杂排沟物源由流域顶端凹槽土体和冲沟两侧坡面崩滑物源组成(图7)。其余4条泥石流沟以坡面侵蚀物源为主,零星分布在流域及沟道中游位置。麻石扎3号沟、黄土梁左沟、黄土梁右沟为小规模侵蚀(图6);夺补河5号沟侵蚀区域沿沟道坡岸较大面积分布(图9),物源分布相对集中,这种状况在极端条件下更容易发生大规模的泥石流灾害。

    图  8  阿祖沟凹槽物源分布示意图
    Figure  8.  Schematic diagram of groove material source distribution map of the Azu debris flow gully
    图  9  夺补河5号沟坡面侵蚀物源
    Figure  9.  Material source of slope erosion in No. 5 debris flow gully of Duobo River

    有研究认为凹槽土体在降雨和后端地貌径流放大的作用下发生滑坡并转化成泥石流[41]。故容重更大的阿祖沟和杂排沟坡岸顶端形成多处小范围汇水区,汇水逐渐侵蚀土体,在遭遇强降水、地震后汇入沟道,极大增加泥石流物源启动量。

    根据流域松散物源总量(表4)可知,阿祖沟、杂排沟单位面积物源量达到了22.62×104 m3/km2、17.20×104 m3/km2,容重分别为1.843 g/cm3、1.811 g/cm3,暴发的泥石流均表现为黏性。结果拟合了各泥石流单位面积物源量与容重(P=1%)之间的关系(图10),两者基本符合正相关关系,关系式为y=1.64725+0.00915x,拟合优度达到0.91以上。由于判定容重达到1.8 g/cm3时,阿祖沟、杂排沟泥石流流体性质呈黏性 [7],对应单位面积物源量约为1.65×105 m3/km2,麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟容重均小于1.75 g/cm3,对应单位面积物源量小于1.13×105 m3/km2。故认为研究区泥石流流体性质的差异与物源量紧密相关,当流域单位面积物源量大于1.65×105 m3/km2时,泥石流流体性质为黏性;当单位面积物源量小于1.13×105 m3/km2时,泥石流流体性质为稀性。

    图  10  泥石流沟单位面积物源量与容重的关系
    Figure  10.  The Relationship between material source quantity and bulk density per unit area of debris flow gully

    泥石流规模大小的判定与流域内松散固体物质量紧密相关。根据泥石流运动参数公式(表2),6条沟的泥石流暴发规模由其一次泥石流总量确定,而一次泥石流总量与物源量有关。研究区特殊的气温条件与短时强降雨,再加上长期人类活动影响,使得流域内累积了大量的凹槽松散物源与坡面侵蚀物源。其中,规模更大的阿祖沟、杂排沟暴发规模为大型,流域松散物源量分别达到102.89×104 m3、97.69×104 m3表4);麻石扎3号沟、夺补河5号沟、黄土梁左沟、右沟泥石流规模为中型,松散物源量均未超过40×104 m3,这也为后续形成不同量级的破坏力奠定了基础。因此,考虑流域内松散物源作为确定泥石流爆发规模的关键因素是合理的。

    拟合各沟道单位面积物源量与一次泥石流总量(P=1%)之间的关系(图11),得到关系式为y=0.34501+0.34741x。由于一次泥石流总量>5×104 m3且≤50×104 m3时,泥石流规模定义为大型[7],此时可得单位面积物源量范围约为1.4×105~1.4×106 m3/km2;当一次泥石流总量>1×104 m3且≤5×104 m3时或峰值流量在50~200 m3/s时,定义为中型[7],单位面积物源量范围约为2×104~1.4×105 m3/km2;当一次泥石流总量<1×104 m3或峰值流量<500 m3/s时,定义为小型[7],单位面积物源量小于2×104 m3/km2

    图  11  单位面积物源量与一次泥石流总量的关系
    Figure  11.  The relationship between the volume of material source per unit area and the total volume of the debris flow

    结果表明,在无降水、地震差异且相似地质条件情况下,泥石流物源量与其规模之间呈线性相关,单位面积内流域物源量在1.4×105~1.4×106 m3/km2,泥石流暴发规模为大型;单位面积内流域物源量在2×104~1.4×10 5m3/km2,泥石流暴发规模呈中型;单位面积内流域物源量小于2×104 m3/km2,则为小型泥石流。

    泥石流灾害的研究最终都是为了避免灾害对人类生存活动的影响。泥石流堆积扇冲出距离、堆积宽度等堆积特征是泥石流危害程度的主要特征[42]。本研究通过现场测量和村民调访,收集了6条沟泥石流堆积扇的覆盖面积、坡度、厚度等数据(表5)。黄土梁左沟、黄土梁右沟灾害暴发时泥石流沿沟口排导槽流动,故这两条沟的泥石流堆积扇位于沟口下方约3 km处,见图12(e),其余泥石流沟的堆积扇均在夺补河沿岸形成(图12)。

    表  5  泥石流堆积扇数据
    Table  5.  Data of debris flow fans
    沟名 堆积坡度
    /(°)
    堆积厚度
    /m
    面积
    /(104 m2
    堆积体积
    /(104 m3
    阿祖沟 10.0 2.5 6.31 3.98
    麻石扎3号沟 10.1 1.2 0.51 0.34
    夺补河5号沟 8.0 1.2 1.45 1.07
    杂排沟 7.0 2.4 4.12 2.94
    黄土梁左沟、右沟 7.6 1.5 1.68 1.12
    下载: 导出CSV 
    | 显示表格
    图  12  泥石流堆积扇示意图
    Figure  12.  Schematic diagram of debris flow fans

    据调查,本次“8•16”泥石流事故对正在建设中的九绵高速LJ9段工程危害严重,灾害分别对区域造成不同程度的破坏。通过拟合各沟道物源总量与堆积扇体积之间的关系(图13)发现,规模最大的阿祖沟和杂排沟泥石流破坏力明显超过其余泥石流(图1415),分别导致2人、1人死亡,直接经济损失达到700万元、500万元。通过3.1节可知,单位面积物源量超过1.7×105 m3/km2时,阿祖沟与杂排沟呈黏性且物源总量均超过80×104 m3。故认为研究区泥石流物质致灾能力受物源量控制,当物源总量超过80×104 m3的沟道往往容易形成黏性泥石流,沟口形成的堆积扇更大,破坏力更强;物源总量小于80×104 m3的沟道易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。

    图  13  物源总量与泥石流堆积扇体积的关系
    Figure  13.  The relationship between the total volume of material source and the volume of debris flow fan
    图  14  阿祖沟泥石流沟口航拍图(受灾后)
    Figure  14.  Aerial photography of the Azu debris flow gully exit (post- disaster)
    图  15  杂排沟泥石流沟口堆积扇概况图
    Figure  15.  Overview of the debris flow fan at the Zapai debris flow gully exit

    (1)“8•16”九绵高速LJ9段泥石流为低频暴雨型泥石流。阿祖沟、杂排沟暴发黏性大规模泥石流,夺补河5号沟为中型-稀性泥石流,麻石扎3号沟、黄土梁左沟、黄土梁右沟暴发小型-稀性泥石流,泥石流容重值在1.647~1.843 g/cm3之间,流速为3.45~6.54 m/s,流量为29.47~253.45 m3/s,一次过流总量为0.99×104~8.28×104 m3

    (2)泥石流性质差异与沟道物源量紧密相关。当单位面积物源量大于1.65×105 m3/km2时,泥石流流体性质为黏性;当单位面积物源量小于1.13×105 m3/km2时,泥石流流体性质为稀性。

    (3)在无降水、地震差异且相似地质条件下,泥石流物源量与规模两者呈线性相关,泥石流一次过流总量越大,暴发泥石流规模越大。单位面积物源量在2×104~1.4×105 m3/km2之间,泥石流暴发规模为大型;单位面积内流域物源量在2×104~1.4×105 m3/km2,暴发规模呈中型;单位面积内流域物源量小于2×104 m3/km2,则为小型泥石流。

    (4)泥石流物质致灾能力受物源量控制,物源总量超过80×104 m3的沟道更易形成黏性泥石流,沟口形成堆积扇更大,破坏力更强;物源总量小于80×104 m3的沟道更易形成稀性泥石流,冲出沟口的破坏性明显小于黏性泥石流,对沟口的人员与工程建设的威胁更小。

  • 图  1   研究区地理位置

    Figure  1.   Geographical location of the study area

    图  2   研究区地质图

    Figure  2.   Geological map of the study area

    图  3   2020年平武县月平均气温、降雨量

    Figure  3.   Monthly average temperature and rainfall in Pingwu County, 2020

    图  4   凹槽土体物源量计算模型

    Figure  4.   Calculation model of the source quantity of groove material sourc

    图  5   颗粒分析粒度曲线

    Figure  5.   Particle size curve from particle analysis

    图  6   研究区泥石流原状物颗粒组成

    Figure  6.   Composition of original debris flow particles in the study area

    图  7   研究区物源分布

    Figure  7.   Material source distribution in the study area

    图  8   阿祖沟凹槽物源分布示意图

    Figure  8.   Schematic diagram of groove material source distribution map of the Azu debris flow gully

    图  9   夺补河5号沟坡面侵蚀物源

    Figure  9.   Material source of slope erosion in No. 5 debris flow gully of Duobo River

    图  10   泥石流沟单位面积物源量与容重的关系

    Figure  10.   The Relationship between material source quantity and bulk density per unit area of debris flow gully

    图  11   单位面积物源量与一次泥石流总量的关系

    Figure  11.   The relationship between the volume of material source per unit area and the total volume of the debris flow

    图  12   泥石流堆积扇示意图

    Figure  12.   Schematic diagram of debris flow fans

    图  13   物源总量与泥石流堆积扇体积的关系

    Figure  13.   The relationship between the total volume of material source and the volume of debris flow fan

    图  14   阿祖沟泥石流沟口航拍图(受灾后)

    Figure  14.   Aerial photography of the Azu debris flow gully exit (post- disaster)

    图  15   杂排沟泥石流沟口堆积扇概况图

    Figure  15.   Overview of the debris flow fan at the Zapai debris flow gully exit

    表  1   泥石流动储量计算公式

    Table  1   Calculation formula for debris flow dynamic reserves

    物源类型 计算公式 说明
    坡面侵蚀物源 V=αAγ V为坡面侵蚀物源体积/104 m3A为坡面侵蚀物源面积/m2
    α为面积-体积修正系数;γ为面积-体积经验指数,不同地区的修正系数与经验指数一般不同
    凹槽土体物源 松散土体面积:
    Δ1cod=12cocd=12hhtanα=
    12h2tan(βθ)
    动储量体积:V01=Δ1codL1
    β为斜坡自然休止角/(°);α为物源土体与自然休止角夹角/(°);co=h为原沟床深度/m;
    V01为下切侵蚀型动储量/m3L1为沟床堆积体长度/m,具体参数位置见图4
    下载: 导出CSV

    表  2   泥石流运动参数式

    Table  2   Calculation formulas table for debris flow motion parameters

    序号 参数 公式 说明
    1 泥石流流速 Vc=(Mc/a)R2/3Ic1/2
    a=(1+φcγs)12
    φc=γcγwγsγc
    Vc为流速/(m·s−1);Mc为泥石流沟床粗糙系数,沟槽情况越复杂取值越大,取值为4.5~7.9(表3);R为泥石流水力半径/m ;Ic为泥石流水力坡度;γs为固体颗粒的容重,取2.65~2.7 g/cm3γc为泥石流容重/(g·cm−3);γw为水的容重,取1.0 g/cm3
    2 峰值流量 QC=(1+φ)QPDC
    QP=0.278ψsτnF
    φ=(γcγw)/(γsγc)
    QC为泥石流峰值流量/(m3·s−1);QP为频率为P的暴雨洪水设计流量/(m3·s−1);φ为泥石流泥沙修正系数,取值在0.8~1.2,见表3DC为堵塞系数,根据实际调查情况,取值见表3ψ为洪峰径流系数;τ为流域汇流时间;n为暴雨指数;s为暴雨雨力;τns依据《四川省中小流域暴雨洪水计算手册》取值,F为流域面积
    3 泥石流一次
    冲出总量
    Wc=0.264TQc T为泥石流历时/s;QC为泥石流峰值流量/(m3·s−1
    4 泥石流冲出
    固体物质总量
    Ws=(γcγw)Wc/(γsγw) Wc为泥石流一次冲出总量/(m3·s−1
    下载: 导出CSV

    表  3   泥石流运动特征参数

    Table  3   Characteristic parameters of debris flow

    沟名 泥石流流速
    /(m·s−1
    泥石流容重
    /(g·cm−3
    泥石流峰值流量
    /(m3·s−1
    泥石流一次冲出总量
    /(104 m3
    固体物质总量
    /(104 m3
    堵塞系数 沟床糙率
    系数
    泥沙修正
    系数
    阿祖沟 4.21 1.843 174.14 8.28 3.73 2.7 4.9 1.15
    麻石扎3号桥沟 6.54 1.647 29.47 0.99 0.34 2.2 7.3 0.83
    夺补河5号桥沟 3.79 1.717 21.67 1.80 0.54 2.4 6.2 0.97
    杂排沟 3.45 1.811 253.45 6.12 3.20 2.6 5.2 0.91
    黄土梁左沟 4.50 1.677 81.38 1.612 0.49 1.9 6.9 0.85
    黄土梁右沟 4.36 1.697 88.79 2.18 0.54 2.1 6.7 0.83
      注:表格中的沟床糙率系数(Mc),泥沙修正系数(φ)与堵塞系数(DC)均为结合研究区先前研究、地形条件与实地勘察数据等因素综合考虑后赋值
    下载: 导出CSV

    表  4   研究区泥石流沟基础资料统计表

    Table  4   Statistical table of basic data of debris flow gullies in the study area

    沟名 流域面积
    /km2
    容重
    /(g·cm−3
    坡面、凹槽物源
    面积S1S2
    /(10−4 km2
    凹槽土体物源量
    /(104 m3
    物源总量
    /(×104m3)
    单位面积物源/
    (104 m3·km−2
    阿祖沟 4.54 1.843 5.80、2.19 26.29 102.89 22.62
    麻石扎3号沟 2.34 1.647 2.25、0 0 2.32 0.99
    夺补河5号沟 1.78 1.717 2.36、0 3.37 18.20 10.11
    杂排沟 5.68 1.811 3.96、2.17 28.16 97.69 17.20
    黄土梁左沟 5.14 1.677 1.01、0 0 10.18 1.98
    黄土梁右沟 5.74 1.697 3.84、0 0 38.73 6.74
    下载: 导出CSV

    表  5   泥石流堆积扇数据

    Table  5   Data of debris flow fans

    沟名 堆积坡度
    /(°)
    堆积厚度
    /m
    面积
    /(104 m2
    堆积体积
    /(104 m3
    阿祖沟 10.0 2.5 6.31 3.98
    麻石扎3号沟 10.1 1.2 0.51 0.34
    夺补河5号沟 8.0 1.2 1.45 1.07
    杂排沟 7.0 2.4 4.12 2.94
    黄土梁左沟、右沟 7.6 1.5 1.68 1.12
    下载: 导出CSV
  • [1] 刘希林,莫多闻. 论泥石流及其学科性质[J]. 自然灾害学报,2001,10(3):1 − 6. [LIU Xilin,MO Duowen. Debris flow and its subject attribute[J]. Journal of Natural Disasters,2001,10(3):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-4574.2001.03.001

    LIU Xilin, MO Duowen. Debris flow and its subject attribute[J]. Journal of Natural Disasters, 2001, 10(3): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2001.03.001

    [2]

    ALEXANDER D. Urban landslides[J]. Progress in Physical Geography:Earth and Environment,1989,13(2):157 − 189. DOI: 10.1177/030913338901300201

    [3] 王高峰,杨强,陈宗良,等. 白龙江流域甘家沟泥石流风险评估研究[J]. 泥沙研究,2020,45(4):66 − 73. [WANG Gaofeng,YANG Qiang,CHEN Zongliang,et al. Risk assessment of debris flow in the Ganjia gully of the Bailongjiang Basin[J]. Journal of Sediment Research,2020,45(4):66 − 73. (in Chinese with English abstract)]

    WANG Gaofeng, YANG Qiang, CHEN Zongliang, et al. Risk assessment of debris flow in the Ganjia gully of the Bailongjiang Basin[J]. Journal of Sediment Research, 2020, 45(4): 66 − 73. (in Chinese with English abstract)

    [4] 康志成. 我国泥石流流速研究与计算方法[J]. 山地研究,1987,5(4):247 − 259. [KANG Zhicheng. A velocity research of debris flow and it is calating method in China[J]. Journal of Mountain Research,1987,5(4):247 − 259. (in Chinese with English abstract)]

    KANG Zhicheng. A velocity research of debris flow and it is calating method in China[J]. Journal of Mountain Research, 1987, 5(4): 247 − 259. (in Chinese with English abstract)

    [5] 唐邦兴,章书成. 泥石流研究[J]. 中国科学院院刊,1992,7(2):119 − 123. [TANG Bangxing,ZHANG Shucheng. Debris flow study[J]. Bulletin of the Chinese Academy of Sciences,1992,7(2):119 − 123. (in Chinese)]

    TANG Bangxing, ZHANG Shucheng. Debris flow study[J]. Bulletin of the Chinese Academy of Sciences, 1992, 7(2): 119 − 123. (in Chinese)

    [6] 杨成林,陈宁生,李战鲁. 汶川地震次生泥石流形成模式与机理[J]. 自然灾害学报,2011,20(3):31 − 37. [YANG Chenglin,CHEN Ningsheng,LI Zhanlu. Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J]. Journal of Natural Disasters,2011,20(3):31 − 37. (in Chinese with English abstract)]

    YANG Chenglin, CHEN Ningsheng, LI Zhanlu. Formation mode and mechanism fordebris flow induced by Wenchuan earthquake[J]. Journal of Natural Disasters, 2011, 20(3): 31 − 37. (in Chinese with English abstract)

    [7] 陈宁生,杨成林,周伟,等. 泥石流勘查技术[M]. 北京:科学出版社,2011. [CHEN Ningsheng,YANG Chenglin,ZHOU Wei,et al. Investigation technolog for debris flows[M]. Beijing:Science Press,2011. (in Chinese)]

    CHEN Ningsheng, YANG Chenglin, ZHOU Wei, et al. Investigation technolog for debris flows[M]. Beijing: Science Press, 2011. (in Chinese)

    [8] 李培基,梁大兰. 泥石流容重及其计算[J]. 泥沙研究,1982(3):75 − 83. [LI Peiji,LIANG Dalan. Debris flow bulk density and its calculation[J]. Journal of Sediment Research,1982(3):75 − 83. (in Chinese)]

    LI Peiji, LIANG Dalan. Debris flow bulk density and its calculation[J]. Journal of Sediment Research, 1982(3): 75 − 83. (in Chinese)

    [9] 周必凡,李德基,罗德富,等. 泥石流防治指南[M]. 北京:科学出版社,1991. [ZHOU Bifan,LI Deji,LUO Defu,et al. Guidelines for debris flow control [M]. Beijing:Science Press,1991. (in Chinese)]

    ZHOU Bifan, LI Deji, LUO Defu, et al. Guidelines for debris flow control [M]. Beijing: Science Press, 1991. (in Chinese)

    [10] 杜榕恒,康志成,陈循谦,等. 云南小江泥石流综合考察与防治规划研究[M]. 重庆:科学技术文献出版社,1987. [DU Ronghuan,KANG Zhicheng,CHEN Xunqian,etal. A comprehensive investigation and control planning for debris flow in the Xiaojiang River Basin of Yunnan Province[M]. Chongqing:Branch of Science and Technology Literature Publishing House,1987. (in Chinese)]

    DU Ronghuan, KANG Zhicheng, CHEN Xunqian, etal. A comprehensive investigation and control planning for debris flow in the Xiaojiang River Basin of Yunnan Province[M]. Chongqing: Branch of Science and Technology Literature Publishing House, 1987. (in Chinese)

    [11] 程尊兰. 泥石流设计流量中容重的计算方法[J]. 泥石流,1995(4):95 − 97. [CHENG Zunlan. Calculation method of bulk density in design flow of debris flow[J]. Debris Flow,1995(4):95 − 97. (in Chinese)]

    CHENG Zunlan. Calculation method of bulk density in design flow of debris flow[J]. Debris Flow, 1995(4): 95 − 97. (in Chinese)

    [12] 李炳志,潘华利,邓其娟,等. 动床条件下泥石流运动参数变化特征实验研究[J]. 防灾减灾工程学报,2022,42(4):850 − 858. [LI Bingzhi,PAN Huali,DENG Qijuan,et al. Experimental study on variation characteristics of debris flow movement parameters under movable bed conditions[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(4):850 − 858. (in Chinese with English abstract)]

    LI Bingzhi, PAN Huali, DENG Qijuan, et al. Experimental study on variation characteristics of debris flow movement parameters under movable bed conditions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 850 − 858. (in Chinese with English abstract)

    [13] 黄海,刘建康,杨东旭. 泥石流容重的时空变化特征及影响因素研究[J]. 水文地质工程地质,2020,47(2):161 − 168. [HUANG Hai,LIU Jiankang,YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology,2020,47(2):161 − 168. (in Chinese with English abstract)]

    HUANG Hai, LIU Jiankang, YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 161 − 168. (in Chinese with English abstract)

    [14] 黄海,马东涛. 泥石流容重的内涵诠释及其对灾害防治的启示[J]. 地质论评,2022,68(1):205 − 216. [HUANG Hai,MA Dongtao. The physical connotation of debris flow density and the enlightenment to geohazards mitigation[J]. Geological Review,2022,68(1):205 − 216. (in Chinese with English abstract)]

    HUANG Hai, MA Dongtao. The physical connotation of debris flow density and the enlightenment to geohazards mitigation[J]. Geological Review, 2022, 68(1): 205 − 216. (in Chinese with English abstract)

    [15] 韩征,徐林荣,苏志满,等. 基于流域形态完整系数的泥石流容重计算方法[J]. 水文地质工程地质,2012,39(2):100 − 105. [HAN Zheng,XU Linrong,SU Zhiman,et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology & Engineering Geology,2012,39(2):100 − 105. (in Chinese with English abstract)]

    HAN Zheng, XU Linrong, SU Zhiman, et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 100 − 105. (in Chinese with English abstract)

    [16] 谢娜,丁宏伟. 基于各类单因素组合的泥石流容重计算方法[J]. 兰州大学学报(自然科学版),2021,57(3):389 − 394. [XIE Na,DING Hongwei. A modified method used to estimate the bulk density of debris flow based on the combination of various single factors[J]. Journal of Lanzhou University (Natural Sciences),2021,57(3):389 − 394. (in Chinese with English abstract)]

    XIE Na, DING Hongwei. A modified method used to estimate the bulk density of debris flow based on the combination of various single factors[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3): 389 − 394. (in Chinese with English abstract)

    [17] 陈宁生,崔鹏,刘中港,等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑:技术科学,2003,33(增刊1):164 − 174. [CHEN Ningsheng,CUI Peng,LIU Zhonggang,et al. Debris flow bulk density calculation based on clay particle content [J]. Scientia Sinica (Technologica),2003,33(Sup 1):164 − 174. (in Chinese)]

    CHEN Ningsheng, CUI Peng, LIU Zhonggang, et al. Debris flow bulk density calculation based on clay particle content [J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 164 − 174. (in Chinese)

    [18] 陈宁生,杨成林,李欢. 基于浆体的泥石流容重计算[J]. 成都理工大学学报(自然科学版),2010,37(2):168 − 173. [CHEN Ningsheng,YANG Chenglin,LI Huan. Calculation of the debris flow concentration based on debris flow slurry[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2010,37(2):168 − 173. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2010.02.009

    CHEN Ningsheng, YANG Chenglin, LI Huan. Calculation of the debris flow concentration based on debris flow slurry[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(2): 168 − 173. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2010.02.009

    [19] 潘华利,安笑,邓其娟,等. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程,2020,20(24):9733 − 9741. [PAN Huali,AN Xiao,DENG Qijuan,et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering,2020,20(24):9733 − 9741. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2020.24.007

    PAN Huali, AN Xiao, DENG Qijuan, et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering, 2020, 20(24): 9733 − 9741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.24.007

    [20] 丁军. 强震区泥石流活动规模与最大堆积长度预测研究[D]. 成都:成都理工大学,2011:51 − 52. [DING Jun. Research on magnitude and runout distance of of debris-flows in strong earthquake area[D]. Chengdu:Chengdu University of Technology,2011:51 − 52. (in Chinese with English abstract)]

    DING Jun. Research on magnitude and runout distance of of debris-flows in strong earthquake area[D]. Chengdu: Chengdu University of Technology, 2011: 51 − 52. (in Chinese with English abstract)

    [21] 徐粒,李倩,王瑛,等. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展,2020,16(4):415 − 423. [XU Li,LI Qian,WANG Ying,et al. Analysis of the changes in debris flow hazard in the context of climate change[J]. Climate Change Research,2020,16(4):415 − 423. (in Chinese with English abstract)]

    XU Li, LI Qian, WANG Ying, et al. Analysis of the changes in debris flow hazard in the context of climate change[J]. Climate Change Research, 2020, 16(4): 415 − 423. (in Chinese with English abstract)

    [22] 唐泽,李婧. 基于数值模拟的沟谷型暴雨泥石流冲出规模研究[J]. 甘肃水利水电技术,2022,58(1):42 − 47. [TANG Ze,LI Jing. Research on the scale of gully-type rainstorm debris flow based on numerical simulation[J]. Gansu Water Resources and Hydropower Technology,2022,58(1):42 − 47. (in Chinese)]

    TANG Ze, LI Jing. Research on the scale of gully-type rainstorm debris flow based on numerical simulation[J]. Gansu Water Resources and Hydropower Technology, 2022, 58(1): 42 − 47. (in Chinese)

    [23]

    ZHANG Yan,LYU Liqun,LI Peng. An optimized volume of fluid method for modelling three-dimensional debris flows. Implementation in Open FOAM,validation,and application in the Aiwa Watershed,Beijing[J]. Computers and Geotechnics 144.

    [24] 罗超鹏,常鸣,武彬彬,等. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报,2022,33(6):53 − 62. [LUO Chaopeng,CHANG Ming,WU Binbin,et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):53 − 62. (in Chinese with English abstract)]

    LUO Chaopeng, CHANG Ming, WU Binbin, et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53 − 62. (in Chinese with English abstract)

    [25] 李俊,陈宁生,欧阳朝军,等. 扎木弄沟滑坡型泥石流物源及堵河溃坝可能性分析[J]. 灾害学,2017,32(1):80 − 84. [LI Jun,CHEN Ningsheng,OUYANG Chaojun,et al. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou[J]. Journal of Catastrophology,2017,32(1):80 − 84. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2017.01.014

    LI Jun, CHEN Ningsheng, OUYANG Chaojun, et al. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou[J]. Journal of Catastrophology, 2017, 32(1): 80 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.01.014

    [26]

    ZHONG Zheng,CHEN Ningsheng,HU Guisheng,et al. Aggravation of debris flow disaster by extreme climate and engineering:A case study of the Tongzilin gully,Southwestern Sichuan Province,China[J]. Natural Hazards 109(1):237-253.

    [27]

    TIAN Shufeng,HU Guisheng,CHEN Ningsheng,et al. Extreme climate and tectonic controls on the generation of a large-scale,low-frequency debris flow. [J] Catena, 2022, 212.

    [28] 杨华铨,柳金峰,孙昊,等. 四川木里县项脚沟“7•5” 特大型泥石流特征及发展趋势分析[J]. 中国地质灾害与防治学报,2024,35(1):100 − 107. [YANG Huaquan,LIU Jinfeng,SUN Hao,et al. Analysis of the characteristics and development trends of the “7•5” catastrophic debris flow in Xiangjiao gully,Muli County,Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):100 − 107. (in Chinese with English abstract)]

    YANG Huaquan, LIU Jinfeng, SUN Hao, et al. Analysis of the characteristics and development trends of the “7•5” catastrophic debris flow in Xiangjiao gully, Muli County, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 100 − 107. (in Chinese with English abstract)

    [29] 袁路,胡雨豪,马东涛,等. 泥石流性质和规模对声波特性影响的实验研究[J]. 山地学报,2018,36(6):889 − 897. [YUAN Lu,HU Yuhao,MA Dongtao,et al. Experimental study on the influence of debris flow properties and scale on acoustic characteristics[J]. Mountain Research,2018,36(6):889 − 897. (in Chinese with English abstract)]

    YUAN Lu, HU Yuhao, MA Dongtao, et al. Experimental study on the influence of debris flow properties and scale on acoustic characteristics[J]. Mountain Research, 2018, 36(6): 889 − 897. (in Chinese with English abstract)

    [30] 詹美强,葛永刚,郭晓军,等. 不同密实度条件下泥石流沟侧岸堆积体破坏过程研究[J]. 自然灾害学报,2019,28(5):143 − 151. [ZHAN Meiqiang,GE Yonggang,GUO Xiaojun,et al. Experimental study on failure process of lateral bank deposition debris flow gully with different conditions of compactness[J]. Journal of Natural Disasters,2019,28(5):143 − 151. (in Chinese with English abstract)]

    ZHAN Meiqiang, GE Yonggang, GUO Xiaojun, et al. Experimental study on failure process of lateral bank deposition debris flow gully with different conditions of compactness[J]. Journal of Natural Disasters, 2019, 28(5): 143 − 151. (in Chinese with English abstract)

    [31]

    LIU Mei,ZHANG Yong,TIAN Shufeng,et al. Effects of loose deposits on debris flow processes in the Aizi Valley,southwest China[J]. Journal of Mountain Science,2020,17(1):156 − 172. DOI: 10.1007/s11629-019-5388-9

    [32]

    HÜRLIMANN M,COPONS R,ALTIMIR J. Detailed debris flow hazard assessment in Andorra:A multidisciplinary approach[J]. Geomorphology,2006,78(3/4):359 − 372.

    [33] 张宪政,铁永波,宁志杰,等. 四川汶川县板子沟“6•26”特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Study on the Causes, Characteristics and Activity of the “6•26” Large-scale Mud-rock Flow in Banzi Gou, Wenchuan County,Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

    ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Study on the Causes, Characteristics and Activity of the “6•26” Large-scale Mud-rock Flow in Banzi Gou, Wenchuan County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)

    [34] 王高峰,高幼龙,姚亚辉,等. 甘肃省白龙江流域降雨型潜在泥石流危险性预报模型[J]. 中国地质,2022,49(3):732 − 748. [WANG Gaofeng,GAO Yilong,YAO Yahui,et al. Potential landslide hazard forecast model of rainfall type in the Bailongjiang River basin, Gansu Province[J]. Geology in China,2022,49(3):732 − 748. (in Chinese with English abstract)]

    WANG Gaofeng, GAO Yilong, YAO Yahui, et al. Potential landslide hazard forecast model of rainfall type in the Bailongjiang River basin, Gansu Province[J]. Geology in China, 2022, 49(3): 732 − 748. (in Chinese with English abstract)

    [35] 文海家,胡吉威,张辉,等. 泥石流危险范围Laharz修正模型及其应用[J]. 吉林大学学报(地球科学版),2024,54(3):905 − 918. [WEN Haijia,HU Jiwei,ZHANG Hui,et al. Laharz modified model of debris flow danger range and its application[J]. Journal of Jilin University (Earth Science Edition),2024,54(3):905 − 918. (in Chinese with English abstract)]

    WEN Haijia, HU Jiwei, ZHANG Hui, et al. Laharz modified model of debris flow danger range and its application[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(3): 905 − 918. (in Chinese with English abstract)

    [36] 李彦稷,胡凯衡. 基于扇形地形态特征的泥石流危险评估[J]. 山地学报,2017,35(1):32 − 38. [LI Yanji,HU Kaiheng. Risk assessment based on morphological characteristics of debris flow alluvial fan[J]. Mountain Research,2017,35(1):32 − 38. (in Chinese with English abstract)]

    LI Yanji, HU Kaiheng. Risk assessment based on morphological characteristics of debris flow alluvial fan[J]. Mountain Research, 2017, 35(1): 32 − 38. (in Chinese with English abstract)

    [37] 崔鹏,邓宏艳,王成华,等. 山地灾害[M]. 北京:高等教育出版社,2018. [CUI Peng,DENG Hongyan,WANG Chenghua,et al. Mountain hazards[M]. Beijing:Higher Education Press,2018. (in Chinese with English abstract)]

    CUI Peng, DENG Hongyan, WANG Chenghua, et al. Mountain hazards[M]. Beijing: Higher Education Press, 2018. (in Chinese with English abstract)

    [38]

    TANG Chuan,ZHU Jing,DING Jun,et al. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides,2011,8(4):485 − 497. DOI: 10.1007/s10346-011-0269-5

    [39] 胡旭东,沈已桐,胡凯衡,等. 震区泥石流物源与冲出量的关系——以四川汶川县簇头沟为例[J]. 山地学报,2022,40(3):369 − 383. [HU Xudong,SHEN Yitong,HU Kaiheng,et al. Relationship between debris flow sediments and amount of debris flow discharges in earthquake affected region:A case study of the cutougou valley in Wenchuan County,Sichuan Province,China[J]. Mountain Research,2022,40(3):369 − 383. (in Chinese with English abstract)]

    HU Xudong, SHEN Yitong, HU Kaiheng, et al. Relationship between debris flow sediments and amount of debris flow discharges in earthquake affected region: A case study of the cutougou valley in Wenchuan County, Sichuan Province, China[J]. Mountain Research, 2022, 40(3): 369 − 383. (in Chinese with English abstract)

    [40] 乔建平,黄栋,杨宗佶,等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报,2012,23(2):1 − 6. [QIAO Jianping,HUANG Dong,YANG Zongji,et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2012,23(2):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2012.02.001

    QIAO Jianping, HUANG Dong, YANG Zongji, et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 23(2): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2012.02.001

    [41] 张勇. 凹槽土体失稳起动泥石流的力学机制与规模放大过程[D]. 成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2020. [ZHANG Yong. Mechanical mechanism and scale amplification process of debris flow originating from colluviums deposits in hollow regions[D]. University of Chinese Academy of Sciences (Chengdu Institute of Mountain Disaster and Environment,Ministry of Water Resources,Chinese Academy of Sciences),2020. (in Chinese with English abstract)]

    ZHANG Yong. Mechanical mechanism and scale amplification process of debris flow originating from colluviums deposits in hollow regions[D]. University of Chinese Academy of Sciences (Chengdu Institute of Mountain Disaster and Environment, Ministry of Water Resources, Chinese Academy of Sciences), 2020. (in Chinese with English abstract)

    [42] 屈永平,唐川,刘洋,等. 四川省都江堰市龙池地区“8•13” 泥石流堆积扇调查和分析[J]. 水利学报,2015,46(2):197 − 207. [QU Yongping,TANG Chuan,LIU Yang,et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City,Sichuan Province[J]. Journal of Hydraulic Engineering,2015,46(2):197 − 207. (in Chinese with English abstract)]

    QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City, Sichuan Province[J]. Journal of Hydraulic Engineering, 2015, 46(2): 197 − 207. (in Chinese with English abstract)

图(15)  /  表(5)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  12
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-05-06
  • 录用日期:  2024-07-03
  • 网络出版日期:  2024-07-10
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回