Research on risk early warning for rainfall-induced shallow landslides in Guangdong Province based on a dynamic slope instability model
-
摘要:
针对县级地质灾害气象风险预警面临的精度及模型建设问题,根据广东省地质灾害主要发生在坡面残坡积浅表层的突出特点,通过对典型地质灾害进行物理模拟试验和数值模拟,研究广东省浅表层斜坡失稳发生机理。研究表明:边坡在暴雨条件下,斜坡岩土体容易在浅表层首先造成失稳,影响因素主要有降雨量、降雨历时、土体类别和坡体结构等因素。由此,对研究区划分斜坡单元,按各斜坡单元的坡长、坡度、岩土类型、分层及其关键物理力学参数开展斜坡单元概化分类,并将Green-Ampt降雨入渗模型和无限边坡稳定性评价方法相结合,优化构建了动力学斜坡稳定性评价模型。结合龙川县贝岭镇流域应用实例,初步探索了坡面单元尺度下地质灾害气象风险预警斜坡失稳动力学预警技术,可为广东省开展以斜坡单元预警为主要方式的县级地质灾害气象风险预警提供支撑。
Abstract:In light of the accuracy and model construction challenges in county-level meteorological risk early warning for geo-hazards, and considering the prominent characteristics that these geo-hazards mainly occur on the shallow surface of residual slopes, the mechanism of shallow surface slope instability in Guangdong Province was studied through physical simulation experiments and numerical simulations of typical geo-hazards. The results show that the slope is easy to lose stability in the shallow surface layer under the condition of rainstorm, and the main factors are rainfall, rainfall duration, soil type and slope structure. Subsequently, by dividing the study area into slope units, we developed a generalized classification and numerical modeling of these units based on parameters such as slope length, slope gradient, rock and soil type, stratification, and key physical and mechanical parameters of each slope unit, and by combining the Green-Ampt rainfall infiltration model with the infinite slope stability evaluation method, the slope instability dynamics warning model was then constructed. Through the application in the basin of Beiling Town in Longchuan County, and the application of dynamic early-warning technology for slope instability in meteorological risk early warning for geological hazards was preliminarily explored at the scale of slope units, which can provide support for county-level geo-hazards meteorological risk early-warning based on slope unit early-warning in Guangdong Province.
-
0. 引言
在全球范围内,滑坡由于其发生的广度和频度均高于地震,已经成为仅次于地震的第二大地质灾害,每年由于滑坡造成的经济损失更是难以估量,因此,开展滑坡预警与防治已成为学术界研究的热点课题[1-2]。
大量研究表明,90%以上的滑坡与降雨有着密切的关系,且降雨型滑坡预警预报的关键是确定诱发滑坡变形乃至失稳的降雨阈值。目前研究手段主要包括统计学、力学机制、室内试验以及数值分析等[3]。首先,基于统计学思想求取的降雨阈值为经验性降雨阈值,由CAINE[4]依据滑坡和泥石流案例建立的降雨强度-降雨历时关系曲线得到了学术界广泛认同,此后学者[5-6]在此基础上发展了前期日降雨量模型、前期土体含水状态等多种经验性阈值。由于经验性降雨阈值模型是基于统计学建立的,因此,模型本身忽略了滑坡岩土体的物理力学性质,由此导致其在滑坡预警预报方面的应用限制很大。针对经验性降雨阈值的缺陷,国内外学者从地下水与滑坡岩土体的相互作用机理入手分析,从力学机制方面解释滑坡的破坏机理[7]。目前,降雨入渗诱发斜坡失稳的物理力学模型主要包括Slip模型[8]、Iverson模型[9]、Shalstab模型[10]等。由于物理力学模型不仅可以分析降雨入渗的饱和、非饱和行为,也可以考虑降雨持续时间的动态因素,有利于结合降雨资料对滑坡发展演化状态做出定量评价,因此,降雨型滑坡的物理力学模型已成为学术界领域研究的热点。但由于每种物理力学模型均是在一定的假设条件下提出来的,导致其在工程应用中存在一定的适用条件。其次,大型室内模型试验为探讨降雨作用下的滑坡发展演化提供了一条新思路。沈佳等[11]通过室内相似物理模型探讨研究了不同降雨工况条件下岩土体含水率和边坡位移的发展规律,并结合数值分析技术进行验证,总结概括了台风暴雨型土质边坡的演化规律。虽然室内模型试验实现了滑坡由变形乃至破坏的全过程可视化模拟,但由于材料的相似比、实际边坡岩土体的非线性与不均匀性、以及实际地形地貌的复杂多变,使得室内模型试验很难还原现场的实际情况。近年来,随着计算机技术的飞速发展,大型岩土仿真软件为处理岩土体问题提供了新的方法。刘春等[12]基于高性能离散元软件MatDEM建立了大规模滑坡的三维离散元模型,模拟滑坡演化的全过程。由于数值模拟在处理岩土体的非线性特征上显示出强大的计算能力,有助于了解岩土体的发展演化的影响因素、机制以及可能造成的灾害等,因而得到了广泛的应用。
本文基于正态分布的岩土体物理力学参数,首先分析了9种不同降雨型式对边坡稳定性系数的影响。其次,通过将降雨过程划分为前期降雨+当期降雨模式,求取前期降雨对于当期降雨的有效作用时间。最后,将前期降雨引入降雨强度和降雨历时关系曲线,并结合可靠度理论,建立了一定失效概率条件下边坡的降雨阈值曲面,研究结果可以为降雨型边坡的预警预报提供一定的借鉴意义。
1. 可靠度分析的基本原理
蒙特卡罗方法又称为随机抽样技巧或统计实验方法,其基本原理如下[13]:由概率的定义可知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,该事件发生的频率即为概率。因此,对影响滑坡可靠度的随机变量进行大量抽样,并代入功能函数式,即可建立稳定性状态函数(1):
(1) 式中:x1, x2, ···, xm为控制滑坡稳定性的随机变量,即可由式(1)得到滑坡的稳定性系数Fi,如此重复N次,便可得到N个相对独立的稳定性系数样本值F1、F2、···、FN,若定义{F<1}为滑坡失效事件,且在N次抽样中出现M次。
则失效概率Pf可通过下式(2)求得:
(2) 式(2)即为基于蒙特卡罗随机抽样方法计算出的滑坡失效概率,其均值
和标准差 见式(3)和式(4):(3) (4) 假设滑坡的临界稳定系数为
,用 表示可靠度指标,则 可以表示为式(5):(5) 岩土工程中假定当稳定系数Fs=1时边坡处于临界状态,则称相对于Fs=1时可靠度指标称为绝对可靠度指标,则
可以表示为式(6):(6) 则失效概率
可通过式(7)求取:(7) 式中:
——失效概率分布函数。2. 边坡模型及材料参数
基岩型边坡坡高为15 m,坡度为1∶1,基岩面与边坡平行,坡面覆土厚为6.9 m。在地下水方面,假设前缘水头高程20 m,后缘水头高程35 m,地下水位线平行于坡面。为了减小模型边界的影响,在模型坡顶和坡底均进行了一定程度的延长(图1)。论文采用Geostudio软件SEEP/W和SLOPE/W两个模块,模型采用三角形单元,共计1075个节点,2009个单元,模型尺寸及网格剖分见图2。
地层中物理力学参数的变异性是客观存在的,其直接结果表现为岩土体力学性质、力学响应的空间变异性,而在实际工程应用中,往往根据室内试验取均值作为其岩土体参数的代表值,由此得到的定量结论往往并不可靠[14]。研究表明,自然界的许多数据集合都符合钟形分布,本文考虑岩土体参数的离散型,建立正态分布的岩土体物理力学参数模型,具体如表1所示。其中,C为黏聚力,
为内摩擦角, 为重度, 为饱和渗透系数(图3)。表 1 岩土体物理力学参数Table 1. Physical and mechanical parameters of rock and soil mass覆土参数 C/kPa / (°) / (kN·m−3) / (m·d−1)均值 20 22 18 0.65 最小值 15 17 13 最大值 25 27 23 3. I-D阈值曲线的改进
I-D阈值曲线是基于统计学基础建立的反应降雨强度和降雨历时的关系曲线。其中,曲线纵坐标表示平均降雨强度I,横坐标表示降雨历时D,由于采用了全局平均的概念,未考虑实际的降雨分布,因此,曲线本身不能反应不同降雨型式的差别[15]。此外,由于传统I-D阈值曲线具有很强的地域性特征,忽略了地质因素的控制性作用,导致其在预警预报领域的应用受到的限制很大。
针对以上缺陷或者不足,本文首先分析了不同降雨型式对滑坡稳定性的影响,由于实际降雨情况非常复杂,本文将实际降雨情况假设为直线型、正弦型、余弦型、圆弧型,并进一步划分为递增和递减两种情况,再加上平均型降雨,共9种工况。假设降雨持时为10 d,降雨总量为250 mm,计算结果见表2。由表2可知,余弦递增条件下稳定性系数最小,圆弧递减条件下稳定性系数最大。此外,递增型降雨对滑坡的稳定性尤为不利,均匀性降雨次之,递减型降雨影响最小,造成这种现象的原因为:岩土体材料渗透系数对其的影响,当雨型为递增型降雨时,即初始降雨强度较小,有利于雨水的缓慢下渗,因此边坡稳定性系数衰减较快,而当雨型为递减型降雨时,即初始降雨强度较大,不利于雨水的渗透,并多以地表径流的方式排泄,对滑坡的稳定性有利。以上分析表明,降雨型式对边坡稳定性影响较大,而采用平均降雨强度描述降雨特征时,其预警结果偏于保守,不足以反应实际降雨情况对其稳定性的影响,这也正是对传统I-D阈值曲线改进的基础。
表 2 不同降雨型式下边坡的稳定性系数变化Table 2. Variation of slope stability coefficient under different rainfall types降雨类型 初始稳定性系数 非均匀降雨稳定性系数 均匀降雨稳定性系数 直线递增 1.091 1.021 1.038 正弦递增 1.091 1.024 1.038 余弦递增 1.091 1.015 1.038 圆弧递增 1.091 1.020 1.038 直线递减 1.091 1.052 1.038 正弦递减 1.091 1.056 1.038 余弦递减 1.091 1.048 1.038 圆弧递减 1.091 1.059 1.038 其次,国内外学者从降雨过程进行研究,并引入前期降雨量这一参量对降雨特征进行全面描述,由此可以把降雨过程分为两个时段,即前期降雨量+1 d(或者数小时)强降雨,而无论是前期降雨量或者是1 d(或者数小时)强降雨信息极易提取,适应性更强,因而也获得了广泛的应用。
从理论上而言,前一个时段内的降雨构成第二个时段内的前期降雨。从作用机制分析,降雨影响边坡稳定性的原因主要是降雨入渗使得岩土体含水量增大,基质吸力减小,最终使滑动面附近的基质吸力完全丧失,导致边坡沿最危险滑动面发生整体破坏。因此,在降雨过程中的任意时刻,该时刻前的降雨入渗都会引起边坡基质吸力发生改变[16],由此前期降雨与边坡的稳定性具有明显的相关关系,可以定义前期降雨为:在给定初始条件下引起边坡最危险滑动面到坡面之间土体吸力分布发生变化的降雨[17-21]。前期降雨持时的定义式如式(8)所示:
(8) 式中:
——前期降雨历时; −经验系数,反应了降雨过程中最危险滑动面的上移; —降雨前最危险滑动面的最大深度,由于降雨过程中最危险滑移面会有上移趋势,需要用系数对其修正; —经验系数,反应前期降雨的平均入渗速度; ——饱和渗透系数。初始最危险滑动面与基岩面相切,最大深度即为覆土厚度,即6.9 m,经验系数
取0.5, 取1,代入式(8)可得:(9) 对计算结果取整,前期降雨时长为6 d。
最后,以前期降雨结束后的边坡应力状态作为当期降雨的边界条件,并给定不同的当期降雨强度使边坡直至失稳,而边坡失稳时所对应的当期降雨强度I和降雨历时D即为在前期降雨A影响下的阈值点,由此可以得到一簇不同的前期降雨条件下对应的I-D阈值曲线,将前期降雨A作为第三个坐标轴,即可将I-D阈值曲线扩展成为A-I-D阈值曲面。在失稳指标选择上,传统方法往往以边坡稳定性系数等于1作为边坡的临界状态,而岩土体的随机性与不确定性导致边坡在超出临界状态时仍有可能处于欠稳定状态而未发生破坏,有鉴于此,本文结合可靠度理论选取失效概率作为衡量边坡状态的阈值指标。具体做法如下:由于前期降雨时长较长,结合前文研究并考虑最不利工况,选取前期降雨时长条件下的雨型为余弦递增型,而由于当期降雨时长较短,因此,取均匀型降雨作为当期降雨雨型。对前期降雨A进行20 mm间隔取值,从A=0 mm到A=100 mm共6组,对当期降雨I进行5 mm/d间隔取值,从I=60 mm/d到I=80 mm/d共5组,以前期降雨结束后的应力状态作为当期降雨的边界条件,结合可靠度理论,求取边坡失效概率Pf=10%条件下所对应的A-I-D阈值曲面,具体如图4所示,其A-I-D等值线图如图5所示。此阈值曲面直接反应了降雨型边坡阈值点的空间分布特征,据此可在降雨条件下直观地获取边坡失效概率的分布范围,有利于指导边坡的预警预报。
4. 结论
本文基于可靠度理论分析了9种不同雨型对边坡稳定性的影响,通过划分降雨过程建立了一定失效概率条件下边坡的A-I-D阈值曲面,主要取得了以下结论:
(1)降雨型式对边坡的稳定性影响较大,不同降雨型式下递增型降雨对滑坡的稳定性尤为不利,均匀性降雨次之,递减型降雨影响最小;
(2)前期降雨对于当期降雨主要影响是改变了坡体内布的基质吸力,通过计算前期降雨对于当期降雨的有效时长为6 d;
(3)通过将前期降雨A引入I-D阈值曲线,并结合可靠度理论,求取失效概率Pf=10%条件下边坡的A-I-D阈值曲面,对于降雨型边坡的预警预报具有一定的指导意义。
-
表 1 天然及暴雨状态下斜坡岩土体计算参数
Table 1 Calculation parameters of rock and soil mass of the slope under natural and rainstorm conditions
名称 弹性模量
/MPa孔隙比 天然状态 饱水状态 γ/(kN·m−3) c/kPa ϕ/(°) γsat/(kN·m−3) c/kPa ϕ/(°) 砂质黏性土①-1 8.0 0.99 18.0 19.1 18.0 18.5 18.1 17.0 砂质黏性土①-2 8.5 0.88 18.1 20.2 19.2 18.7 19.3 18.3 砂质黏性土①-3 9.2 0.83 19.1 28.3 22.5 19.6 26.2 21.1 全风化花岗岩 50.0 0.71 21.0 38.0 35.0 21.5 − − 中风化花岗岩 100.0 0.65 22.0 50.0 45.0 22.5 − − 表 2 河源市龙川县地质灾害数值模拟(部分示例)
Table 2 Numerical simulation of geo-hazards in Longchuan County, Heyuan City (some examples)
灾害体特征 二/三维数值模拟 稳定系数 1.25
(自然状态)1.01
(饱和状态)1.22
(自然状态)0.80
(饱和状态) -
[1] 张君霞,黄武斌,李安泰,等. 甘肃省主要地质灾害精细化气象风险预警预报[J]. 干旱区地理,2023,46(9):1443 − 1452. [ZHANG Junxia,HUANG Wubin,LI Antai,et al. Fine meteorological risk early warning forecast of main geological disasters in Gansu Province[J]. Arid Land Geography,2023,46(9):1443 − 1452. (in Chinese with English abstract)] ZHANG Junxia, HUANG Wubin, LI Antai, et al. Fine meteorological risk early warning forecast of main geological disasters in Gansu Province[J]. Arid Land Geography, 2023, 46(9): 1443 − 1452. (in Chinese with English abstract)
[2] 刘艳辉,刘传正,连建发,等. 基于显式统计原理的地质灾害区域预警方法初步研究[J]. 中国地质,2008,35(2):344 − 350. [LIU Yanhui,LIU Chuanzheng,LIAN Jianfa,et al. Method of regional early warning of geohazards based on the explicit statistical theory[J]. Geology in China,2008,35(2):344 − 350. (in Chinese with English abstract)] LIU Yanhui, LIU Chuanzheng, LIAN Jianfa, et al. Method of regional early warning of geohazards based on the explicit statistical theory[J]. Geology in China, 2008, 35(2): 344 − 350. (in Chinese with English abstract)
[3] 魏平新,李秀娟. 广东省突发性地质灾害气象预警实践[J]. 中国地质灾害与防治学报,2015,26(1):138 − 144. [WEI Pingxin,LI Xiujuan. The meteorologic early warning research of sudden geo-hazard in Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):138 − 144. (in Chinese with English abstract)] WEI Pingxin, LI Xiujuan. The meteorologic early warning research of sudden geo-hazard in Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 138 − 144. (in Chinese with English abstract)
[4] 李朝奎,陈建辉,魏振伟,等. 显式统计预警模型下地质灾害预警方法及应用[J]. 武汉大学学报(信息科学版),2019,44(7):1020 − 1026. [LI Chaokui,CHEN Jianhui,WEI Zhenwei,et al. Method and application of geological hazard early warning based on explicit statistical principle[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1020 − 1026. (in Chinese with English abstract)] LI Chaokui, CHEN Jianhui, WEI Zhenwei, et al. Method and application of geological hazard early warning based on explicit statistical principle[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1020 − 1026. (in Chinese with English abstract)
[5] 李秀娟,魏平新. 广东省典型降雨型滑坡自动监测点变形分析[J]. 西部探矿工程,2019,31(2):5 − 10. [LI Xiujuan,WEI Pingxin. Deformation analysis of automatic monitoring points of typical rainfall landslides in Guangdong Province[J]. West-China Exploration Engineering,2019,31(2):5 − 10. (in Chinese with English abstract)] LI Xiujuan, WEI Pingxin. Deformation analysis of automatic monitoring points of typical rainfall landslides in Guangdong Province[J]. West-China Exploration Engineering, 2019, 31(2): 5 − 10. (in Chinese with English abstract)
[6] 童纪伟. 广东省“十三·五” 期间地质灾害发育特征及影响因素分析[J]. 现代矿业,2021,37(10):219 − 221. [TONG Jiwei. Analysis of development characteristics and influencing factors of geological hazards during the “thirteenth five-year plan” period in Guangdong Province[J]. Modern Mining,2021,37(10):219 − 221. (in Chinese with English abstract)] TONG Jiwei. Analysis of development characteristics and influencing factors of geological hazards during the “thirteenth five-year plan” period in Guangdong Province[J]. Modern Mining, 2021, 37(10): 219 − 221. (in Chinese with English abstract)
[7] 陈伟,莫海鸿,陈乐求. 非饱和土边坡降雨入渗过程及最大入渗深度研究[J]. 矿冶工程,2009,29(6):13 − 16. [CHEN Wei,MO Haihong,CHEN Leqiu. Study on rainfall infiltration process and the biggest infiltration depth for unsaturated soil slope[J]. Mining and Metallurgical Engineering,2009,29(6):13 − 16. (in Chinese with English abstract)] CHEN Wei, MO Haihong, CHEN Leqiu. Study on rainfall infiltration process and the biggest infiltration depth for unsaturated soil slope[J]. Mining and Metallurgical Engineering, 2009, 29(6): 13 − 16. (in Chinese with English abstract)
[8] 刘贤, 揭鸿鹄, 蒋水华, 等. 融合历史降雨下斜坡稳定性观测信息的可靠度分析[J]. 地球科学,2023,48(5):1865 − 1874. [LIU Xian, JIE Honghu, JIANG Shuihua, et al. Slope reliability analysis incorporating observation of stability performance under A past rainfall event[J]. Earth Science,2023,48(5):1865 − 1874. (in Chinese with English abstract)] LIU Xian, JIE Honghu, JIANG Shuihua, et al. Slope reliability analysis incorporating observation of stability performance under A past rainfall event[J]. Earth Science, 2023, 48(5): 1865 − 1874. (in Chinese with English abstract)
[9] 许旭堂, 鲜振兴, 杨枫, 等. 水-力耦合及干湿循环效应对浅层残积土斜坡稳定性的影响[J]. 中国地质灾害与防治学报,2022,33(4):28 − 36. [XU Xutang, XIAN Zhenxing, YANG Feng, et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):28 − 36. (in Chinese with English abstract)] XU Xutang, XIAN Zhenxing, YANG Feng, et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 28 − 36. (in Chinese with English abstract)
[10] 李诚诚. 强降雨作用下基于Green-Ampt入渗模型的边坡稳定性分析[D]. 长沙:湖南大学,2019. [LI Chengcheng. Stability analysis of slope based on green-ampt infiltration model under heavy rainfall[D]. Changsha:Hunan University,2019. (in Chinese with English abstract)] LI Chengcheng. Stability analysis of slope based on green-ampt infiltration model under heavy rainfall[D]. Changsha: Hunan University, 2019. (in Chinese with English abstract)
[11] 马世国. 强降雨条件下基于Green-Ampt入渗模型的无限边坡稳定性研究[D]. 杭州:浙江大学,2014. [MA Shiguo. Study on the stability of infinite slope based on green-ampt infiltration model under intense rainfall[D]. Hangzhou:Zhejiang University,2014. (in Chinese with English abstract)] MA Shiguo. Study on the stability of infinite slope based on green-ampt infiltration model under intense rainfall[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
[12] 袁畅,宋雁,李慧生,等. 基于降雨监测的群发性滑坡灾害预警技术研究[J]. 广州建筑,2022,50(4):29 − 32. [YUAN Chang,SONG Yan,LI Huisheng,et al. Research on early warning technology of regional mass shallow landslide based on rainfall monitoring[J]. Guangzhou Architecture,2022,50(4):29 − 32. (in Chinese with English abstract)] YUAN Chang, SONG Yan, LI Huisheng, et al. Research on early warning technology of regional mass shallow landslide based on rainfall monitoring[J]. Guangzhou Architecture, 2022, 50(4): 29 − 32. (in Chinese with English abstract)
[13] 荣广智,张继权,李天涛,等. 极端降水诱发地质灾害链风险评估研究——以贵州省水城县为例[J]. 灾害学,2022,37(4):201 − 210. [RONG Guangzhi,ZHANG Jiquan,LI Tiantao,et al. Risk assessment of extreme precipitation-induced geological disaster chain:A case study of Shuicheng County,Guizhou Province[J]. Journal of Catastrophology,2022,37(4):201 − 210. (in Chinese with English abstract)] RONG Guangzhi, ZHANG Jiquan, LI Tiantao, et al. Risk assessment of extreme precipitation-induced geological disaster chain: A case study of Shuicheng County, Guizhou Province[J]. Journal of Catastrophology, 2022, 37(4): 201 − 210. (in Chinese with English abstract)
[14] 刘正华,余丰华,夏跃珍,等,基于斜坡单元的地质灾害气象预警系统建设初探[J]. 水文地质工程地质,2015,42(6):131-136. [LIU Zhenghua,YU Fenghua,XIA Yuezhen,et al. Primary exploration of the geological hazard meteorological warning system based on slope unit[J]. Hydrogeology & Engineering Geology,2015,42(6):131-136. (in Chinese with English abstract)] LIU Zhenghua, YU Fenghua, XIA Yuezhen, et al. Primary exploration of the geological hazard meteorological warning system based on slope unit[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 131-136. (in Chinese with English abstract)
[15] 刘艳辉,苏永超. 四川青川县区域地质灾害气象风险预警模型研究[J]. 工程地质学报,2019,27(1):134 − 143. [LIU Yanhui,SU Yongchao. Early-warning model of regional geological disasters based on meteorological factor in Qingchuan County,Sichuan Province[J]. Journal of Engineering Geology,2019,27(1):134 − 143. (in Chinese with English abstract)] LIU Yanhui, SU Yongchao. Early-warning model of regional geological disasters based on meteorological factor in Qingchuan County, Sichuan Province[J]. Journal of Engineering Geology, 2019, 27(1): 134 − 143. (in Chinese with English abstract)
[16] 罗鸿东,李瑞冬,张勃,等. 基于信息量法的地质灾害气象风险预警模型:以甘肃省陇南地区为例[J]. 地学前缘,2019,26(6):289 − 297. [LUO Hongdong,LI Ruidong,ZHANG Bo,et al. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area,Gansu Province based on the information value method[J]. Earth Science Frontiers,2019,26(6):289 − 297. (in Chinese with English abstract)] LUO Hongdong, LI Ruidong, ZHANG Bo, et al. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area, Gansu Province based on the information value method[J]. Earth Science Frontiers, 2019, 26(6): 289 − 297. (in Chinese with English abstract)
[17] 阳帅, 谭泽颖, 陈宏信, 等. 基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析[J]. 地质科技通报,2022,41(2):219 − 227. [YANG Shuai, TAN Zeying, CHEN Hongxin, et al. Analysis of instability disaster of rainfall induced shallow landslides at the regional scale based on the modified Green Ampt model[J]. Bulletin of Geological Science and Technology,2022,41(2):219 − 227. (in Chinese with English abstract)] YANG Shuai, TAN Zeying, CHEN Hongxin, et al. Analysis of instability disaster of rainfall induced shallow landslides at the regional scale based on the modified Green Ampt model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 219 − 227. (in Chinese with English abstract)
[18] 缪海波, 王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60 − 70. [MIAO Haibo, WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60 − 70. (in Chinese with English abstract)] MIAO Haibo, WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60 − 70. (in Chinese with English abstract)
-
期刊类型引用(7)
1. 刘恒. 不同降雨强度下多台阶黄土边坡稳定性可靠度分析. 北京建筑大学学报. 2024(04): 73-81 . 百度学术
2. 邹浩,何霏,白俊龙. 黄冈地区降雨型滑坡影响因素及与降雨量的关系. 长江科学院院报. 2023(02): 124-130 . 百度学术
3. 陈忠源,戴自航,简文彬. 基于因子权重反分析的新近失稳土质边坡稳定性评价云模型. 中国地质灾害与防治学报. 2023(04): 125-133 . 本站查看
4. 贲琰棋,易武,李华兵,黄晓虎,刘伟,肖宇煌. 基于“阶跃”变形特征的降雨型滑坡预警判据探讨. 中国地质灾害与防治学报. 2023(04): 30-38 . 本站查看
5. 马明康,缪海宾,王丹. 基于安全监测与预警系统的边坡稳定性研究. 煤矿机械. 2022(05): 29-32 . 百度学术
6. 刘坤,韩长玉,郝艺丹,李冯,王玉涛,李玉真. 基于降雨入渗的非饱和土边坡稳定性影响因素分析. 水电能源科学. 2022(10): 183-186 . 百度学术
7. 栗倩倩,王伟,黄亮,柴波,高乐. 台风暴雨型滑坡滞后效应分析——以浙江青田县“利奇马”台风为例. 中国地质灾害与防治学报. 2022(06): 10-19 . 本站查看
其他类型引用(4)