Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province
-
摘要:
2020年9月17日,贵州省晴隆县鸡场镇红寨村发生滑坡灾害,导致134栋房屋严重损毁,127户569人紧急避险。通过调查发现,红寨滑坡是一处规模达6.25×106 m3的深层大型滑坡,地表房屋及基础设施破坏严重,但整个滑坡运动距离极短。通过对地形地貌和岩土体结构及物质成分组成的分析、水系变动判断及钻孔揭露的多层滑面等综合分析认为,红寨滑坡是一处顺层的复活古滑坡。为分析研究该滑坡的变形特征和复活成因,采用无人机航测、工程地质调查、岩土体勘查、地球物理勘探等手段,获取了详细的灾害发育特征、影响因素及古滑坡的辨识特征等数据。分析结果表明:红寨滑坡可根据变形破坏特征及应力传递方向分为A、B、C、D 4个分区,其中B区又根据相对滑移量分为B1、B2亚区;滑坡的变形复活是在高陡的地形地貌、复杂的岩体结构、软弱的工程岩组和持续地表水入渗等共同作用下发生的;滑坡后缘圈椅状地形、滑体与周围岩土体的物质差异、断层切割前缘及水系堆积物的变迁等多方面特征验证了古滑坡的事实。
Abstract:On September 17, 2020, a landslide occurred in Hongzhai Village, Jichang Town, Qinglong County, Guizhou Province, resulting in serious damage to 134 houses and emergency evacuation of 569 people from 127 households. Investigation revealed that the Hongzhai landslide is a deep-seated large-scale landslide with a volume of approximately 6.25×106 m3. Although surface buildings and infrastructure were severely damaged, the overall movement distance of the landslide was extremely short. Through comprehensive analysis including terrain geomorphology, rock and soil structure and material composition analysis, assessment of hydrological changes, and disclosure of multiple slip surfaces through borehole drilling, it was concluded that the Hongzhai landslide is a resurrected ancient landslide along bedding planes. In order to analyze and study the deformation characteristics and resurrection causes of the landslide, methods including UAV aerial survey, engineering geological survey, rock and soil mass investigation, and geophysical exploration were employed to obtain detailed data on disaster development characteristics, influencing factors, and identification features of ancient landslides. The results show that the Hongzhai landslide can be divided into four zones (A, B, C, D) based on deformation and stress transfer direction, with zone B further divided into subzones B1 and B2 based on relative displacement. The deformation and resurrection of the landslide occurred under the joint effects of steep terrain, complex rock mass structures, weak engineering rock masses, and continuous surface infiltration. Various features such as the arm-chair shaped topography at the back edge of the landslide, material differences between the slide body and surrounding rock and soil masses, fault-cutting front edges, and changes in hydrological sedimentation verify the existence of the ancient landslide.
-
0. 引言
印度板块向欧亚板块撞击,使得我国西部处于隆升抬起的掀斜区域,河谷地带常发育较多古滑坡。许多学者都对古滑坡的发生时代做过不同的探讨[1 − 2]。随着人类活动的不断扩展,古滑坡的复活成为困扰铁路、公路、水利水电、城镇开发等工程建设的突出问题[3 − 8]。
近年来,古滑坡的研究主要侧重于发育特征和形成机理,大部分古滑坡研究案例分布于西藏、四川、云南、甘肃、贵州等地。许多学者针对不同典型古滑坡开展了富有成效的研究工作,取得了显著的成果。例如,雅鲁藏布江断裂附近西藏加查拉岗村巨型古滑坡具明显的高速远程特征,沿雅鲁藏布江断裂发生的强震可能是该滑坡的直接诱因,岩体受到地震抛掷力作用,原有节理裂隙和新生破裂面发生张剪-拉裂破坏迅速贯通[9];岷江上游槽谷曲流段松潘县元坝子大型古滑坡,是历史地震引发的大型岩质古滑坡,其发展经历了斜坡裂缝、地震滑坡、河流下切和前缘复活等阶段[10];茂县叠溪巨型古滑坡为一巨型顺层岩质滑坡,滑坡后壁高陡,与汶川地震诱发的大型同震滑坡特征相似,并且滑坡区域强震频发,推测叠溪古滑坡可能为地震诱发的顺层岩质滑坡[11];小江断裂带巧家巨型古滑坡成因极可能是由于小江断裂带强烈左旋走滑作用下, 导致巧家东侧山地发生持续性的构造抬升,并在巨大地震活动触发下形成[12];金沙江巧家段巧家巨型古滑坡估算体积约为 12×108 m3,其发生与坡体形态、岩性特征、断裂带活动及地震等有密切联系[13];四川盐源县玻璃村特大型玄武岩古滑坡复活,可分为主滑区和侧滑区两种破坏模式不同的区域,降雨作用下滑坡体内渗流场明显变化,孔隙水压力增大,导致古滑坡体开始发生变形,稳定性系数逐渐降低,主滑区具有多级、多次失稳,渐进破坏的特点[14]、川西大渡河泸定段大型古滑坡主要发育于 120 ka 左右、25 ~ 10 ka 和全新世3个周期段,与大渡河断裂带活动性密切相关[15]。
古滑坡因其所处的地形地貌、岩体结构、诱发因素等的不同,具有不同的形成机理:雅江缝合带角不弄巨型古滑坡属于典型的高速远程巨型岩质滑坡,其形成主要包括节理裂隙形成阶段、失稳启动阶段、高速滑动阶段、高速碰撞解体阶段、冲击消能夯实阶段共 5 个运动状态[16];金沙江断裂带贡觉段雄巴古滑坡发育2级深层蠕变滑带,坡体内发育的深层承压水对斜坡稳定性影响较大,其目前仍处于深层蠕滑中,深层“锁固段”对滑坡的稳定性起关键控制作用,但在降雨-地下水渗流、河流侵蚀和地震等因素作用下,该古滑坡潜在失稳可能性较大[17];甘肃舟曲垭豁口古滑坡,其变形破坏是在降雨作用下上部块体发生缓慢蠕变并塑性流滑,堆载于中部平台引发中部滑体变形,最终一滑而下刮铲下部滑体进入河道,其上中下三部分滑体是逐步被激活的[18];甘肃舟曲南峪江顶崖古滑坡可划分为古滑坡崩塌区、滑坡岩体变形区、古滑坡堆积区等3个大区,以及4个古滑坡复活区等7个区域,坡体内断错陡坎和拉裂缝极为发育,在断裂活动和地震作用下形成的破碎岩土体和斜坡结构特征为滑坡复活提供了内因,强降雨作用增加了坡体自重并弱化了岩土体的力学强度,在暴雨期形成的强烈河流侵蚀作用进一步切割坡脚,从而诱发滑坡的复活[19]。这些典型案例的研究成果,为其他古滑坡的研究提供了有益的参考和借鉴。
当前,研究古滑坡采用的技术手段主要基于野外地质调查,有不同学者尝试采用高密度电法和电阻率测深法、EH4音频大地电磁测深仪等物探方法、InSAR识别方法、激光雷达(LiDAR)识别方法等开展多技术融合方法开展调查[20 − 24]。而古滑坡的稳定性分析、威胁范围及发展变化过程等,则主要通过有限元分析[25]、离散元分析[26 − 27]、神经网络分析[28]、离心机模型试验[29]等手段进行模拟分析来开展。
2020年9月17日贵州省晴隆县鸡场镇红寨村发生的红寨滑坡灾害,导致134栋房屋严重损毁,直接经济损失
4020 万元, 127户569人紧急避险。经过现场调查,发现红寨滑坡是一处发展演化较为特殊的古滑坡复活案例,其不同于其他古滑坡为堆积体受扰动的失稳复活,而是滑面逐渐向深部发展演化、古滑床发生多次复活变形的特殊类型,其变形特征及复活机制值得我们深入研究。本文以该滑坡为例,通过变形特征调查、无人机倾斜摄影测量、工程地质勘察、地球物理勘探等手段,分析了红寨古滑坡复活的变形特征和影响因素,其变形特征可为其他该类型灾害的研究分析提供参考,也为云贵山区城镇建设选址和防灾减灾提供借鉴。1. 研究区概况
红寨滑坡位于贵州省黔西南州晴隆县鸡场镇红寨村一二组,距离晴隆县城约33 km(图1)。研究区属于温凉湿润的高原亚热带季风气候区,年降雨量870.2~
2051.4 mm,年平均降雨1506.9 mm,最大日降雨量220.3 mm,最大时降雨量68.1 mm,降水时空分布不均,雨季和高海拔地区降雨较多。 研究区河流属珠江流域北盘江水系大桥河支流,滑坡前缘有1条常年性溪沟(石蚌沟),由西向东径流,汇入大桥河中,流量约20 L/s。斜坡上季节性冲沟十分发育,对残坡积层冲蚀强烈,形成深度2~3 m的顺坡向深沟。研究区属剥蚀、侵蚀低中山地貌,整体南西高、北东低,相对高差约519 m。区域位于扬子陆块江南复合造山带兴义隆起区(兴义穹盆构造变形区)。研究区位于安谷背斜北东缘,地层为北东倾向的单斜地层,产状36°∠19°。研究区主体出露下三叠统夜郎组(T1y)灰绿色、紫红色粉砂岩、钙质黏土岩等,北东部受河谷切割影响,出露下伏上二叠统龙潭组(P3l)深灰色黏土岩、粉砂岩夹煤层。区内有一条近东西向的区域断层F1穿过,走向约80°,延伸长度约15 km,为平移断层,活动迹象不明显。研究区地震基本烈度为Ⅵ度,地震动峰值加速度为0.05g,反应谱特征周期0.40 s。研究区斜坡结构为顺向坡,岩层倾角略大于坡角,加之坡底河流下切,易发生顺层岩质滑坡。
2. 滑坡特征
2.1 滑坡变形分区
滑坡区整体南高北低,后缘高程912 m,前缘剪出口高程750 m,滑坡体后缘与坡脚高差为162 m。斜坡坡向19°,坡度10°~33°,平均坡度15°,坡体前缘为石蚌沟。滑坡主滑方向26°,滑坡体纵向长约605 m,横向宽约532 m,根据现场调查及勘查,滑体平均厚度25 m,滑坡体积约6.25×106 m3,为深层大型岩土混合滑坡。
根据滑坡变形特征及不同块体间推力的传递方向,将滑体分为4个区(图1):A区为B、C区下滑后的影响变形区,B、C区为主滑区,D区为破坏隆起变形区。A区是主滑区下滑后岩土体失去支撑而发生的影响变形,发育多条弧形拉张裂缝;受坡体地层岩性的倾向影响,滑体埋藏深度呈现出左侧浅、右侧深的特点,导致B区变形强烈、地表建筑物倒塌损毁严重,C区表现出深大拉张裂缝,房屋大多拉裂破坏但屹立不倒。B、C区在整体滑移过程中,B区沿滑床层面倾向运动逐渐挤压C区,在B、C区剪切错动带部分区段形成长约57 m的挤压侧埂。在B区内部,由于滑体上地表冲沟的切割形成薄弱地带,B区滑块在下滑过程中右侧前缘受阻,而左侧前缘相对临空,B区整体沿冲沟分裂为B1和B2两个次级滑块,B1滑动距离较B2次级滑块远,同时在冲沟内形成长约110 m的挤压翻埂。D区为滑坡体前部区域,左侧部分表现为滑塌破坏,右侧部分表现为隆起鼓胀。
2020年9月17日上午6时,B区居民发现房屋、水泥路面开裂;12时许,裂缝变形加剧,B、C区均有房屋变形开裂,村民上报险情,政府组织应急调查及监测;23时,监测变形进一步增大,政府组织撤离避险; 18日8时,滑体开始进入快速滑移阶段,滑坡左前缘发生滑塌(约1×104 m3),B1区房屋出现变形倒塌;18日10时,12栋房屋倒塌,60%房屋损坏;18日17时,90%房屋损坏。
2.2 滑坡变形特征
滑坡发生后,坡体表面的房屋和基础设施变形严重,居民住房、道路发生拉裂破坏,所处山体左右侧、中部及后缘多处出现拉张裂缝和下挫坎(图2—3)。经过现场变形特征调查,发现滑坡4个分区变形特征不尽相同,各分区变形特征如下:
A区为滑坡后缘变形影响区,由于覆盖层的影响,裂缝断续出现,区内调查到裂缝约28条,裂缝呈折线形,总体走向140°~160°,与岩体中一组节理的走向基本一致(图3b—d)。
B区总体位于滑坡体左侧中部,是本次滑坡变形最大的区域,该区域有较为完整的次级边界(剪切裂缝连贯),同时受B区内冲沟影响,分为B1和B2两个块体。B区左侧缘剪切裂缝长约190 m,走向约20°,裂缝宽20~30 cm,下错150~400 cm,该剪切裂缝为整个滑坡的左侧边界(图3e—f)。B区右侧剪切裂缝长约105 m,走向约50°,裂缝宽35~110 cm,下错120~150 cm(图3j)。由于前缘阻挡支撑条件不同,B1区和B2区运动距离略有不同(图3g—h),B1区前缘临空并发生滑塌,滑塌处有水溢出,水质浑浊,流量约 1L/s,滑移距离10~19 m;B2区由于前缘D区阻隔,滑移距离5.5~7.0 m。此外,坡体上分布约39条走向105°~120°的张拉裂缝,中后部裂缝下错约50~100 cm,最大达到158cm,前部裂缝下错仅5~10 cm(图2)。
C区总体位于滑坡体右侧中部,发育约36条走向60°~80°为主的拉张裂缝,裂缝普遍张开10~40 cm,最大达到105 cm,普遍下错5~25 cm,裂缝造成该区域内房屋普遍受损变形,道路拉张错位。C区右侧缘断续发育2条走向350°~10°的剪切裂缝,一直延伸至滑坡右前缘,该裂缝张开10~37 cm,内侧下错10~46 cm,后部滑移错动距离约1.0 m,前缘部位滑移错动约4~5 m,该条裂缝为滑坡的右边界。
D区为相对阻滑隆起区,区内岩土体滑移下错较小,坡体中存在许多鼓胀裂缝。滑坡左侧前缘部分由于鼓胀挤压形成小型次级滑坡(图3i),体积约 1×104 m3,次级滑坡越过石蚌沟刮铲对岸坡体形成滑塌,堆积物质大部分被流水冲刷,仅在沟边可见约1.9 m高的堆积层;右侧前缘部分由于隆起造成坡体上右侧冲沟沟底被抬高约3.5 m(图3 k),右前缘玉米地隆起发生滑塌破坏,滑塌面上有水渗出。
2.3 滑坡结构特征
滑体:根据勘查(图4)及野外调查,滑体主要为粉质黏土、碎石土、粉质黏土夹碎石组成:粉质黏土主要分布在滑坡中前部水田及旱地里,黄褐色,可塑−硬塑,稍湿,含少量碎石与角砾,顶部含大量植物根系,厚度1.5~7.0 m;碎石土分布于整个滑坡体,灰黄色,稍密,稍湿,碎块石成分主要为灰黄色粉砂岩、黏土岩,强−中等风化,厚度7.8~29.6 m;粉质黏土夹碎石,褐色、黑色,可塑−硬塑状,稍湿,该层仅滑坡前缘和滑坡中部有所揭露,厚度6.0~8.4 m。
滑带:滑带物质主要为粉质黏土夹碎石,呈软塑状,厚度2.0(ZK1)~5.7(ZK4) m,泥质含量相较滑体碎块石土显著增多,夹多层软塑状甚至流塑状粘性土,物理力学性质差,为控制滑坡变形演化的主要软弱面。
根据勘查结果,滑体中存在两层滑带(表1),根据不同钻孔揭露第一层滑带埋深约12.8~23.0 m,厚度1.7~5.0 m,平均厚度3.3 m;第二层滑带位于第一层滑带之下4.2~11.3 m,平均间距7.8 m,平均厚度2.9 m。滑带物质为软塑状粉质黏土及压碎研磨的粉砂岩、炭质泥岩等,所含碎石颗粒大小均匀,3~5 mm,磨圆度较好,且以第二层(下层)含水率较高,普遍呈软塑状。
表 1 双层滑带深度分布范围Table 1. Depth distribution of double-layer slip zone钻孔编号 ZK1 ZK2 ZK3 ZK4 ZK5 ZK6 滑带
深度/m第一层 − 18.0~23.0 18.0~22.0 15.0~16.7 16.0~19.6 12.8~16.0 第二层 20.7~22.4 24.3~26.0 23.2~25.3 18.0~23.7 22.4~27.7 24.0~27.4 滑床:主要为上二叠统龙潭组(P3l)青灰色泥质粉砂岩、黏土岩,岩层产状36°∠19°,斜坡结构为顺向坡,岩层倾角略大于坡角,加之坡底河流下切,易发生顺层岩质滑坡。
根据钻探成果及地球物理勘探成果,红寨滑坡结构特征如图5所示。
3. 红寨古滑坡复活成因
3.1 高陡的地形地貌
红寨滑坡所处的地形整体为圈椅形,后缘陡、中部较缓、前缘较陡,滑坡前后缘高差达到162 m。该地形为古滑坡滑动破坏后形成的历史地貌[30 − 32]。前缘有石蚌沟自西向东穿过坡脚并向北转向,在坡脚处形成弯道冲刷,侵蚀坡脚形成高差约3~5 m的河谷临空面。前缘部分高差约55 m,坡度约25°(局部达到45°),坡面呈台阶状。坡体在历经多期滑动破坏及流水冲刷搬运之后,形成现有的地形地貌。
3.2 复杂的岩体结构
受区域构造影响,红寨滑坡地层产状36°∠19°,坡向26°,地层倾向与坡向近于一致,顺向斜坡结构易于发生滑坡地质灾害。受前缘石蚌沟内近东西向的区域断层F1影响,岩体破碎,岩层中存在许多次级断裂。岩体中发育两组节理:①组节理产状359°∠85°,节理间距20~25 cm,平直,泥质填充;②组节理产状57°∠72°,节理间距15~25 cm,平直,泥质填充。两组结构面的组合交线倾向与坡向近于一致,且节理②的倾向与岩层倾向交角小于30°,节理②的走向与滑坡中后缘拉张裂缝的走向相吻合。
3.3 软弱的工程岩组
从古滑坡形成的圈椅形地貌可以看到,古滑坡后壁、两侧壁出露下三叠统夜郎组(T1y)地层,其岩性为灰绿色、灰黄色粉砂岩、钙质黏土岩等。古滑坡的滑床,即现红寨滑坡的主要滑体部分,出露上二叠统龙潭组(P3l)地层,其岩性为深灰色黏土岩、青灰色泥质粉砂岩夹煤层。区内岩体为软岩、半坚硬岩,力学性质较差,在构造作用影响下,岩体破碎呈散体结构。
红寨滑坡滑体主要为浅表层第四系残坡积粉质黏土和龙潭组强风化黏土岩、粉砂岩及煤层。根据钻探和工程地质调查,残坡积粉质黏土层厚2~6.5 m,自后缘向前缘逐渐增厚。强风化深灰色黏土岩、粉砂岩厚15~29.6 m。滑带为粉质黏土,钻孔揭露其呈软塑状,厚度2.0(ZK1)~5.7(ZK4) m,其中ZK4中为一层软塑状炭质泥岩。
3.4 持续的地表入渗
根据红寨滑坡南西侧800 m处大新组滑坡地质灾害安装的自动化雨量计近一个月的数据显示,2020年9月10日至9月17日,红寨滑坡区域连降暴雨,8日累计降雨量达到375.8 mm,单日最大雨量达112.6 mm(9月14日)(图6)。滑坡区附近8日累计降雨量,已经达到了当地年平均降雨量的约25%,属于极端持续性降雨。滑坡主要变形破坏的9月17日至9月18日,降雨已经趋于减少及停止,滑坡的发生主要源于前期累计降雨的影响。降雨入渗后,滑体中粉质黏土、碎石土含水增重,滑带软化饱和、黏聚力下降,滑带中地下水饱和,坡体中下部泉点排泄不畅形成静水压力及扬压力,最终导致滑坡的发生。此外,坡体外围地表水集中排泄于滑坡区域,从古滑坡后壁进入到滑坡区域后,由滑坡后缘古滑坡后壁滑塌堆积体迅速转入地下,成为坡体内地下水的又一重要来源。
滑体中前部存在3处常年性泉点(图2),其中滑体中下部泉点Q1流量约为0.09 L/s,部分泉水供附近村民灌溉使用,多余的沿滑坡体中部浅冲沟(深1.0~1.5 m)向下汇入石蚌沟(图3g);右侧冲沟内泉点Q2流量约6 L/s,沿滑坡体内右侧冲沟(深3.0~5.0 m)向下汇入石蚌沟;前缘存在一处泉点Q3及多处溢水点,流量约1 L/s,该泉点及溢水点使得滑坡前缘形成一处积水塘,水塘之后的斜坡由于地下水丰富种植水稻,其他区域均种植玉米。
4. 红寨古滑坡的辨识
古滑坡是河谷沿岸斜坡长期复杂演化的结果,一些大型滑坡会存在多次滑动、多级滑面的现象[33 − 35]。红寨滑坡多层滑面的发现,与地表形态相一致。
从地形地貌上看,红寨古滑坡具有典型滑坡破坏后具有的圈椅状地形,与周围山体具有明显的地貌差异,其圈椅状滑坡后壁、侧壁陡立,形成高差达到约45 m的陡坎,坡度达到45°以上,局部达到60°,这与自然形成的地表形态极为不符;坡体上村民房屋的分布区域总体形态平整,地表坡度与岩层角度近似,推测现存坡面(即本次变形破坏的滑坡表面)为古滑坡滑动破坏后的滑面、滑床经风化侵蚀而成(图7a)。古滑体(图7中Ⅰ)滑动破坏后堆积于石蚌沟沿岸形成古堆积体(图7中Ⅱ),造成古滑面、古滑床出露成为新的地表,而古堆积体由于石蚌沟水流的长期冲刷大部分消失殆尽,成为现形的沟壑。古滑坡的发生和发展,为本次复活变形破坏提供了良好的地形地貌基础。
从物质组成上看,红寨古滑坡滑床位置出露地层为上二叠统龙潭组灰黄色、青灰色泥质粉砂岩、黏土岩,而后缘及两侧缘出露地层为下三叠统夜郎组灰绿色、紫红色粉砂岩。古滑坡堆积区主要为夜郎组紫红色强风化−全风化粉砂岩堆积,堆积体深厚、平缓,成为村民耕植的有利地块。
从水系变动来看,初期的石蚌沟沿着F1断层分布,经滑坡前缘自西向东切穿坡脚汇入大桥河,在大桥河右岸形成切割较深的河谷及冲积扇(图7b中②区域)。古滑坡发生后堵塞石蚌沟,造成冲沟改道至现有的位置,形成深切的沟谷并在汇入大桥河时形成更大范围的冲积扇(图7b中①区域)。
5. 结论
(1)红寨滑坡是一处规模达6.25×106 m3的深层大型滑坡,平均坡度15°,主滑方向26°,其变形破坏过程历时2 d,为缓变型推移式滑坡。红寨滑坡是一处发展演化较为特殊的古滑坡复活案例,其不同以往古滑坡堆积体的失稳复活,而是滑面逐渐向深部发展演化、古滑床发生多次复活变形的特殊类型。
(2)根据变形破坏特征及应力传递方向将滑坡分为4个分区,A区为B、C区下滑后的影响变形区,B、C区为主滑区,D区为破坏隆起变形区,各区具有明显的分区界线。A区发育裂缝约28条,裂缝总体走向与岩体中一组节理的走向基本一致;B区发育39条裂缝,受前缘临空条件及中部冲沟影响,分为B1和B2两个滑移量不同次级滑块,坡表房屋破损严重;C区发育裂缝36条,均表现为深大拉张裂缝,房屋大多拉裂破坏但屹立不倒;D区左侧滑体破坏,右侧阻隔隆起发育许多鼓胀裂缝。
(3)红寨滑坡的复活是在高陡的地形地貌、复杂的岩体结构、软弱的工程岩组和持续地表入渗等共同作用下发生的;通过工程地质调查,从地形地貌、物质组成、水系变动、多层滑面等特征验证古滑坡的事实。红寨滑坡变形演化特征可为其他该类型灾害的研究分析提供参考,也为云贵山区城镇建设选址和防灾减灾提供借鉴。
致谢:感谢深圳市工勘岩土集团有限公司及贵州省地质矿产勘查开发局117地质大队提供的部分野外调查资料。
-
表 1 双层滑带深度分布范围
Table 1 Depth distribution of double-layer slip zone
钻孔编号 ZK1 ZK2 ZK3 ZK4 ZK5 ZK6 滑带
深度/m第一层 − 18.0~23.0 18.0~22.0 15.0~16.7 16.0~19.6 12.8~16.0 第二层 20.7~22.4 24.3~26.0 23.2~25.3 18.0~23.7 22.4~27.7 24.0~27.4 -
[1] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2018.07.0728 ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2018.07.0728
[2] 齐畅,吴瑞安,马海善,等. 西藏庞村古滑坡发育特征与危险性评价[J/OL]. 地质通报, (2023-11-27)[2023-12-12]. [QI Chang,WU Ruian,MA Haishan,et al. Development characteristics and hazard assessment of the Pangcun landslide,Xizang[J/OL]. Geological Bulletin of China(2023-11-27)[2023-12-12]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in English with Chinese abstract)] QI Chang, WU Ruian, MA Haishan, et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geological Bulletin of China(2023-11-27)[2023-12-12]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in English with Chinese abstract)
[3] 任三绍,郭长宝,吴瑞安,等. 成兰铁路松潘隧道入口红花屯古滑坡发育特征与稳定性分析[J]. 地质力学学报,2017,23(5):754 − 765. [REN Sanshao,GUO Changbao,WU Ruian,et al. Development characteristics and stability analysis of the honghuatun ancient landslide at Songpan tunnel entrance of Chengdu-Lanzhou railway[J]. Journal of Geomechanics,2017,23(5):754 − 765. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.05.012 REN Sanshao, GUO Changbao, WU Ruian, et al. Development characteristics and stability analysis of the honghuatun ancient landslide at Songpan tunnel entrance of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 2017, 23(5): 754 − 765. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.05.012
[4] 王富平,叶堃,岳志勤. 成贵铁路高山田巨型古滑坡成因分析及地质选线[J]. 高速铁路技术,2018,9(1):76 − 79. [WANG Fuping,YE Kun,YUE Zhiqin. Cause analysis and geologic route selection for Gaoshantian giant fossil landslide of chengdu-Guiyang railway[J]. High Speed Railway Technology,2018,9(1):76 − 79. (in Chinese with English abstract)] WANG Fuping, YE Kun, YUE Zhiqin. Cause analysis and geologic route selection for Gaoshantian giant fossil landslide of chengdu-Guiyang railway[J]. High Speed Railway Technology, 2018, 9(1): 76 − 79. (in Chinese with English abstract)
[5] 王家柱,高延超,冉涛,等. 川藏铁路交通廊道某大型古滑坡成因及失稳模式分析[J]. 现代地质,2021,35(1):18 − 25. [WANG Jiazhu,GAO Yanchao,RAN Tao,et al. Analysis of genetic mechanism and failure mode of a large paleo-landslide in Sichuan-Tibet railway transportation corridor[J]. Geoscience,2021,35(1):18 − 25. (in Chinese with English abstract)] WANG Jiazhu, GAO Yanchao, RAN Tao, et al. Analysis of genetic mechanism and failure mode of a large paleo-landslide in Sichuan-Tibet railway transportation corridor[J]. Geoscience, 2021, 35(1): 18 − 25. (in Chinese with English abstract)
[6] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)] WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)
[7] 宋丹青,冯兴波. 库水位上升对古滑坡稳定性的影响[J]. 河南理工大学学报(自然科学版),2016,35(6):876 − 880. [SONG Danqing,FENG Xingbo. The influence of reservoir water level rise on the stability of ancient landslide[J]. Journal of Henan Polytechnic University (Natural Science),2016,35(6):876 − 880. (in Chinese with English abstract)] SONG Danqing, FENG Xingbo. The influence of reservoir water level rise on the stability of ancient landslide[J]. Journal of Henan Polytechnic University (Natural Science), 2016, 35(6): 876 − 880. (in Chinese with English abstract)
[8] 黄晓虎,易武,龚超,等. 开挖致使古滑坡复活变形机理研究[J]. 岩土工程学报,2020,42(7):1276 − 1285. [HUANG Xiaohu,YI Wu,GONG Chao,et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1276 − 1285. (in Chinese with English abstract)] DOI: 10.11779/CJGE202007011 HUANG Xiaohu, YI Wu, GONG Chao, et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276 − 1285. (in Chinese with English abstract) DOI: 10.11779/CJGE202007011
[9] 吴瑞安,张永双,郭长宝,等. 西藏加查拉岗村巨型古滑坡发育特征与形成机理研究[J]. 地质学报,2018,92(6):1324 − 1334. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Characteristics and formation mechanisms of the lagangcun giant ancient landslide in Jiacha,Tibet[J]. Acta Geologica Sinica,2018,92(6):1324 − 1334. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5717.2018.06.015 WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Characteristics and formation mechanisms of the lagangcun giant ancient landslide in Jiacha, Tibet[J]. Acta Geologica Sinica, 2018, 92(6): 1324 − 1334. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2018.06.015
[10] 魏昌利,张瑛,冯文凯,等. 岷江上游槽谷曲流段大型古滑坡成因与复活性分析——以松潘县元坝子古滑坡为例[J]. 水文地质工程地质,2018,45(6):141 − 149. [WEI Changli,ZHANG Ying,FENG Wenkai,et al. Formation mechanism and reactivation analyses of large ancient landslides in the meandering trough valley of the upper Minjiang River:A case study of the Yuanbazi ancient landslide in Songpan County[J]. Hydrogeology & Engineering Geology,2018,45(6):141 − 149. (in Chinese with English abstract)] WEI Changli, ZHANG Ying, FENG Wenkai, et al. Formation mechanism and reactivation analyses of large ancient landslides in the meandering trough valley of the upper Minjiang River: A case study of the Yuanbazi ancient landslide in Songpan County[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 141 − 149. (in Chinese with English abstract)
[11] 钟育瑾,范宣梅,戴岚欣,等. 岷江叠溪巨型古滑坡研究[J]. 地球物理学进展,2021,36(4):1784 − 1796. [ZHONG Yujin,FAN Xuanmei,DAI Lanxin,et al. Research on the Diexi giant paleo-landslide along Minjiang River in Sichuan,China[J]. Progress in Geophysics,2021,36(4):1784 − 1796. (in Chinese with English abstract)] DOI: 10.6038/pg2021EE0367 ZHONG Yujin, FAN Xuanmei, DAI Lanxin, et al. Research on the Diexi giant paleo-landslide along Minjiang River in Sichuan, China[J]. Progress in Geophysics, 2021, 36(4): 1784 − 1796. (in Chinese with English abstract) DOI: 10.6038/pg2021EE0367
[12] 冯振,吴中海,曹佳文,等. 小江断裂带巧家段巨型古滑坡及其工程地质特征[J]. 地球学报,2019,40(4):629 − 636. [FENG Zhen,WU Zhonghai,CAO Jiawen,et al. Engineering geological characteristics of gigantic pre-historic landslide along Qiaojia section of the Xiaojiang fault[J]. Acta Geoscientica Sinica,2019,40(4):629 − 636. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2019.012401 FENG Zhen, WU Zhonghai, CAO Jiawen, et al. Engineering geological characteristics of gigantic pre-historic landslide along Qiaojia section of the Xiaojiang fault[J]. Acta Geoscientica Sinica, 2019, 40(4): 629 − 636. (in Chinese with English abstract) DOI: 10.3975/cagsb.2019.012401
[13] 刘莉,张丽萍,李萍,等. 金沙江巧家巨型古滑坡发育特征及其形成条件[J]. 人民长江,2022,53(1):118 − 125. [LIU Li,ZHANG Liping,LI Ping,et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River,2022,53(1):118 − 125. (in Chinese with English abstract)] LIU Li, ZHANG Liping, LI Ping, et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River, 2022, 53(1): 118 − 125. (in Chinese with English abstract)
[14] 何坤,胡卸文,马国涛,等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学,2020,41(10):3443 − 3455. [HE Kun,HU Xiewen,MA Guotao,et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan,Sichuan[J]. Rock and Soil Mechanics,2020,41(10):3443 − 3455. (in Chinese with English abstract)] HE Kun, HU Xiewen, MA Guotao, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443 − 3455. (in Chinese with English abstract)
[15] 郭长宝,倪嘉伟,杨志华,等. 川西大渡河泸定段大型古滑坡发育特征与稳定性评价[J]. 地质通报,2021,40(12):1981 − 1991. [GUO Changbao,NI Jiawei,YANG Zhihua,et al. The ancient landslides development characteristics and stability evaluation along the Luding Section,Dadu River,western Sichuan Province[J]. Geological Bulletin of China,2021,40(12):1981 − 1991. (in Chinese with English abstract)] GUO Changbao, NI Jiawei, YANG Zhihua, et al. The ancient landslides development characteristics and stability evaluation along the Luding Section, Dadu River, western Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 1981 − 1991. (in Chinese with English abstract)
[16] 杨德宏,陈兴强,黄勇,等. 雅江缝合带角不弄巨型古滑坡发育特征及形成机制研究[J]. 铁道标准设计,2021,65(3):34 − 40. [YANG Dehong,CHEN Xingqiang,HUANG Yong,et al. Study on the development characteristics and formation mechanism of the Jiao bunong giant ancient landslide in Yajiang suture zone[J]. Railway Standard Design,2021,65(3):34 − 40. (in Chinese with English abstract)] YANG Dehong, CHEN Xingqiang, HUANG Yong, et al. Study on the development characteristics and formation mechanism of the Jiao bunong giant ancient landslide in Yajiang suture zone[J]. Railway Standard Design, 2021, 65(3): 34 − 40. (in Chinese with English abstract)
[17] 李雪,郭长宝,杨志华,等. 金沙江断裂带雄巴巨型古滑坡发育特征与形成机理[J]. 现代地质,2021,35(1):47 − 55. [LI Xue,GUO Changbao,YANG Zhihua,et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience,2021,35(1):47 − 55. (in Chinese with English abstract)] LI Xue, GUO Changbao, YANG Zhihua, et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience, 2021, 35(1): 47 − 55. (in Chinese with English abstract)
[18] 窦晓东,张泽林. 甘肃舟曲垭豁口滑坡复活机理及成因探讨[J]. 中国地质灾害与防治学报,2021,32(2):9 − 18. [DOU Xiaodong,ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes(Zhouqu County,Gansu,China)[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):9 − 18. (in Chinese with English abstract)] DOU Xiaodong, ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes(Zhouqu County, Gansu, China)[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 9 − 18. (in Chinese with English abstract)
[19] 郭长宝,任三绍,李雪,等. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理[J]. 现代地质,2019,33(1):206 − 217. [GUO Changbao,REN Sanshao,LI Xue,et al. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town,Zhouqu County,Gansu Province[J]. Geoscience,2019,33(1):206 − 217. (in Chinese with English abstract)] GUO Changbao, REN Sanshao, LI Xue, et al. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town, Zhouqu County, Gansu Province[J]. Geoscience, 2019, 33(1): 206 − 217. (in Chinese with English abstract)
[20] 郭桥桥,郭长宝,申维,等. 川西岷江河谷典型大型—巨型古滑坡特征物探解译分析[J]. 地质力学学报,2017,23(5):788 − 797. [GUO Qiaoqiao,GUO Changbao,SHEN Wei,et al. Geophysical exploration and sliding surface discriminant analysis of large-giant ancient landslides in Minjiang River valley,western Sichuan[J]. Journal of Geomechanics,2017,23(5):788 − 797. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.05.015 GUO Qiaoqiao, GUO Changbao, SHEN Wei, et al. Geophysical exploration and sliding surface discriminant analysis of large-giant ancient landslides in Minjiang River valley, western Sichuan[J]. Journal of Geomechanics, 2017, 23(5): 788 − 797. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.05.015
[21] 李忠,吴中海,汪金明,等. 利用EH4音频大地电磁测深仪探测巧家巨型古滑坡及其结构面特征[J]. 地质力学学报,2021,27(2):317 − 325. [LI Zhong,WU Zhonghai,WANG Jinming,et al. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics,2021,27(2):317 − 325. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2021.27.02.029 LI Zhong, WU Zhonghai, WANG Jinming, et al. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics, 2021, 27(2): 317 − 325. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.02.029
[22] 张永双,刘筱怡,姚鑫. 基于InSAR技术的古滑坡复活早期识别方法研究——以大渡河流域为例[J]. 水利学报,2020,51(5):545 − 555. [ZHANG Yongshuang,LIU Xiaoyi,YAO Xin. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River,China[J]. Journal of Hydraulic Engineering,2020,51(5):545 − 555. (in Chinese with English abstract)] ZHANG Yongshuang, LIU Xiaoyi, YAO Xin. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River, China[J]. Journal of Hydraulic Engineering, 2020, 51(5): 545 − 555. (in Chinese with English abstract)
[23] 吴明辕,罗明,刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别——以滇西北地区为例[J]. 中国地质灾害与防治学报,2022,33(3):84 − 93. [WU Mingyuan,LUO Ming,LIU Suihai. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies:A case study in northwestern Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):84 − 93. (in Chinese with English abstract)] WU Mingyuan, LUO Ming, LIU Suihai. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies: A case study in northwestern Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 84 − 93. (in Chinese with English abstract)
[24] 李彩虹,郭长宝,张广泽,等. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例[J]. 地质通报,2021,40(12):2015 − 2023. [LI Caihong,GUO Changbao,ZHANG Guangze,et al. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction:A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China,2021,40(12):2015 − 2023. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2021.12.004 LI Caihong, GUO Changbao, ZHANG Guangze, et al. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction: A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015 − 2023. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.12.004
[25] 陈豫津,吴志坚,刘兴荣. 基于有限元的动力稳定性评价方法与应用——以王家墩古滑坡为例[J]. 西北地质,2019,52(4):286 − 293. [CHEN Yujin,WU Zhijian,LIU Xingrong. Evaluation method and application of dynamic stability based on finite element analysis:Example from the Wangjiadun landslide in Tianshui City,Gansu Province[J]. Northwestern Geology,2019,52(4):286 − 293. (in Chinese with English abstract)] CHEN Yujin, WU Zhijian, LIU Xingrong. Evaluation method and application of dynamic stability based on finite element analysis: Example from the Wangjiadun landslide in Tianshui City, Gansu Province[J]. Northwestern Geology, 2019, 52(4): 286 − 293. (in Chinese with English abstract)
[26] 吴瑞安,张永双,郭长宝,等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报,2018,40(9):1659 − 1667. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1659 − 1667. (in Chinese with English abstract)] DOI: 10.11779/CJGE201809012 WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659 − 1667. (in Chinese with English abstract) DOI: 10.11779/CJGE201809012
[27] 孙昊,李天涛,裴向军,等. 青海隆务西山古滑坡群复活机理及威胁范围预测[J]. 工程地质学报,2022,30(3):829 − 842. [SUN Hao,LI Tiantao,PEI Xiangjun,et al. Revitalization mechanism and threat range prediction of longwuxishan ancient landslide group,Qinghai Province[J]. Journal of Engineering Geology,2022,30(3):829 − 842. (in Chinese with English abstract)] SUN Hao, LI Tiantao, PEI Xiangjun, et al. Revitalization mechanism and threat range prediction of longwuxishan ancient landslide group, Qinghai Province[J]. Journal of Engineering Geology, 2022, 30(3): 829 − 842. (in Chinese with English abstract)
[28] 田倩,吴健,赵东. 基于神经网络和多标度特征分析的古滑坡变形预测及趋势评价[J]. 大地测量与地球动力学,2022,42(10):1056 − 1062. [TIAN Qian,WU Jian,ZHAO Dong. Deformation prediction and trend evaluation of paleo-landslide based on neural network and multi-scale feature analysis[J]. Journal of Geodesy and Geodynamics,2022,42(10):1056 − 1062. (in Chinese with English abstract)] TIAN Qian, WU Jian, ZHAO Dong. Deformation prediction and trend evaluation of paleo-landslide based on neural network and multi-scale feature analysis[J]. Journal of Geodesy and Geodynamics, 2022, 42(10): 1056 − 1062. (in Chinese with English abstract)
[29] 郭长宝,张永双,刘定涛,等. 基于离心机模型试验的甘肃江顶崖古滑坡复活机理研究[J]. 工程地质学报,2022,30(1):164 − 176. [GUO Changbao,ZHANG Yongshuang,LIU Dingtao,et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology,2022,30(1):164 − 176. (in Chinese with English abstract)] GUO Changbao, ZHANG Yongshuang, LIU Dingtao, et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology, 2022, 30(1): 164 − 176. (in Chinese with English abstract)
[30] 王康,畅俊斌,李晓科,等. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6):47 − 56. [WANG Kang,CHANG Junbin,LI Xiaoke,et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution:A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):47 − 56. (in Chinese with English abstract)] WANG Kang, CHANG Junbin, LI Xiaoke, et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47 − 56. (in Chinese with English abstract)
[31] 殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)] YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)
[32] 王溢禧,赵俊彦,朱兴华,等. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析[J/OL]. 中国地质灾害与防治学报,(2023-09-13)[2024-01-26]. [WANG Yixi,ZHAO Junyan,ZHU Xinghua, et al. Analysis on characteristics and reactivtion mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin [J/OL]. The Chinese Journal of Geological Hazard and Control,(2023-09-13)[2024-01-26]. (in Chinese with English abstract) https://kns.cnki.net/kcms/detail/11.2852.P.20230913.1035.002.html.] WANG Yixi, ZHAO Junyan, ZHU Xinghua, et al. Analysis on characteristics and reactivtion mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin [J/OL]. The Chinese Journal of Geological Hazard and Control, (2023-09-13)[2024-01-26]. (in Chinese with English abstract) https://kns.cnki.net/kcms/detail/11.2852.P.20230913.1035.002.html.
[33] 陈家兴,赵兰英,司长亮. 碎石土古滑坡演化复活机理分析[J]. 人民长江,2019,50(10):136 − 142. [CHEN Jiaxing,ZHAO Lanying,SI Changliang. Mechanism analysis of reactivation evolution of ancient detritus landslide[J]. Yangtze River,2019,50(10):136 − 142. (in Chinese with English abstract)] CHEN Jiaxing, ZHAO Lanying, SI Changliang. Mechanism analysis of reactivation evolution of ancient detritus landslide[J]. Yangtze River, 2019, 50(10): 136 − 142. (in Chinese with English abstract)
[34] 张永双,刘筱怡,吴瑞安,等. 青藏高原东缘深切河谷区古滑坡:判识、特征、时代与演化[J]. 地学前缘,2021,28(2):94 − 105. [ZHANG Yongshuang,LIU Xiaoyi,WU Ruian,et al. Cognization,characteristics,age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau,China[J]. Earth Science Frontiers,2021,28(2):94 − 105. (in Chinese with English abstract)] ZHANG Yongshuang, LIU Xiaoyi, WU Ruian, et al. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 94 − 105. (in Chinese with English abstract)
[35] 赵瑛,王显彪,陈菊林,等. 古滑坡活动诱发次级滑坡的稳定性评价及变形潜势分析[J]. 三峡大学学报(自然科学版),2022,44(3):27 − 33. [ZHAO Ying,WANG Xianbiao,CHEN Julin,et al. Stability evaluation and deformation potential analysis of secondary landslide induced by ancient landslide activity[J]. Journal of China Three Gorges University (Natural Sciences),2022,44(3):27 − 33. (in Chinese with English abstract)] ZHAO Ying, WANG Xianbiao, CHEN Julin, et al. Stability evaluation and deformation potential analysis of secondary landslide induced by ancient landslide activity[J]. Journal of China Three Gorges University (Natural Sciences), 2022, 44(3): 27 − 33. (in Chinese with English abstract)