Study of dynamic characteristics of ground collapse caused by mining in Gaojialiang coal mine, Inner Mongolia, using SBAS-InSAR technology
-
摘要:
采空造成的地面塌陷是井工矿开采中最常见的问题,若不及时监测治理可能会影响到整体和整体环境。针对传统沉降监测方法难以在地表高低起伏、沟谷纵横的丘陵地貌矿区开展的问题,文章以内蒙古高家梁煤矿203盘区的20314、20313和20312工作面为研究对象,收集2018年4月至2020年12月期间12景Sentinel-1雷达影像,用短基线集差分干涉测量技术(small baseline subset InSAR,SBAS-InSAR)进行处理,获取采空地面塌陷平均位移速度、时序形变量等数据,进而分析研究区动态特征。结果表明:研究区采空地面塌陷整体平均位移速度呈现出“北部快,南部慢”的特征,最大沉降速为−17.2 mm/a,位于20313工作面的北部三分之一处;采空地面塌陷时序形变量整体呈现出“由南向北,由西向东”的特征,符合实际工作面开采方向和顺序,主要沉降区分布在20314和20313工作面的北部,最大形变量达到了−106 mm。实践表明:SBAS-InSAR技术在丘陵地貌的矿区开展采空地面塌陷监测具有较强的技术优势且效果良好,为矿区采空地面塌陷监测提供方法支持。
-
关键词:
- 高家梁矿区 /
- 丘陵地貌 /
- SBAS-InSAR技术 /
- 采空地面塌陷 /
- 特征分析
Abstract:Ground collapse due to mining activities is a prevalent issue in underground coal mining processes. Without timely monitoring and control, it can adversely affect the surrounding structures and the environment. Addressing the challenges of traditional subsidence monitoring methods in the mining areas with uneven hilly terrain, this study focuses on the 20314, 20313, and 20312 working faces within the 203 panel of Gaojialiang coal mine area, Inner Mongolia. It employs 12 images of Sentinel-1 radar from April 2018 to December 2020 processed using the small baseline subset differential interferometry InSAR (SBAS-InSAR) technique to derive average displacement velocities and temporal subsidence data in the study area. The study analyzes the dynamic characteristics of subsidence in the area. The results show that the overall subsidence rate is higher in the northern part of the study area compared to the south, with the maximum subsidence rate of approximately −17.2 mm/year observed in the northern third of the 20313 working face. The subsidence pattern generally progresses from south to north and from west to east, corresponding to the actual mining sequence. Major subsidence areas are concentrated in the northern portions of the 20314 and 20313 working faces, with maximum subsidence reaching about −106 mm. The application shows that SBAS-InSAR technology has effective results and significantly technical advantages in monitoring land subsidence in hilly mining areas, thereby providing certain method support for land subsidence monitoring in mining areas.
-
0. 引言
土体沉积受搬运介质和搬运方式的影响,往往形成不同土层结构的层状土体。层状土层之间孔隙结构和水力学性质的不连续性[1-3],导致层状土体和均质土体的水盐运移规律存在显著差异。
层状土体的水盐运移规律在土壤学领域已经取得了一些研究成果。李韵珠等[4]指出壤土中的黏土夹层对水盐运移具有阻滞作用。史文娟等[5]通过室内土柱试验发现不同层位的夹砂层对水盐运移存在抑制或促进作用。HUANG等[6]发现砂土和砂黄土互层结构可以限制水分向上运移,抑制土体蒸发。李毅等[7]认为砂土夹层和黏土夹层均有阻水作用。黏土的阻水能力源于其低渗透性,砂土层的阻水能力则是因为孔隙水由细粒土层向砂土层运移时存在滞后效应,因此在层状土层界面处水分运移均会出现停滞[8-9]。张莉等[10]研究发现在壤土中设置砂层能够加速上覆土层脱盐和抑制下伏土层返盐,该方法较依赖于降雨的淋滤作用,对干旱半干旱地区的适用性还有待研究。ALIMI等[11]设计了冲积土和黏质砂土以及冲积土和黏土的双层土柱试验,结果表明黏土层的阻渗能力更强,而黏土层厚是延迟溶质运移的关键因素。LIU等[12]对不同土体的水分和溶质含量进行了长期监测,发现均质土中水盐入渗较快,而层状土中水流受阻,盐分在局部累积。
层状土层水盐运移规律研究不仅与土壤水盐管理相关,同时涉及地基承载力计算、隐伏岩溶塌陷和路基盐胀等工程问题[13-16]。目前层状土层水盐运移研究侧重于讨论入渗过程的水盐动态变化,而针对层状土层毛细水盐运移研究尚且不足。本文基于某高铁路基上拱变形处的现场调查,设计了两种不同粒径土层二元结构组合(黄土-砂质粉土和黄土-粉质黏土)的室内土柱模型试验,讨论了不同地下水补给条件下土层结构对土体毛细水分布和盐分累积的影响。研究结果旨在为层状土区硫酸盐病害防治提供试验依据。
1. 试验背景
西北地区某高铁路基上拱变形处的地层剖面和水盐分布如图1所示,表层覆盖薄层砾石土,上覆粉质砂土层,层厚约80 cm,下伏厚层圆砾石土层。粉质砂土层的含水率和离子含量均高于下伏圆砾土层,40 cm层位处盐分聚积,
$ {\rm{SO}}_4^{2 - }$ 和$ {\rm{C}}{{\rm{l}}^ - }$ 含量接近2%,下伏圆砾石土层离子含量则非常低。由于区域内地下水埋深较大(约9 m),而且粗粒土中毛细上升高度较小,距地表400 cm土层中基本没有地下毛细水补给,驱动盐分运移的水分主要来源于降雨入渗和地表径流。由图2可知,未上供变形处剖面上覆砂砾土层,下伏粉质黏土层,含水率和
${\rm{C}}{{\rm{l}}^ - }$ 含量在界面处呈断层式分布。上覆粗粒土层含水率约0.5%~2%,${\rm{C}}{{\rm{l}}^ - }$ 含量均小于0.08%;下伏细粒土层含水率在9%~13%之间,${\rm{C}}{{\rm{l}}^ - }$ 含量均大于0.57%。${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 在深度120~400 cm土层中含量较高,深度0~80 cm土层中含量较低。${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 和${\rm{C}}{{\rm{l}}^ - }$ 最大含量均小于1%,盐分未发生局部聚积,且表层含盐量较低。下伏粉质黏土层的毛细上升高度较大,有利于地下毛细水补给,通过下伏土层含水率较大推测距地表400 cm土层内有一定的毛细水补给。上拱变形处土层呈上细下粗型结构,盐分在上覆细粒土层中聚积,而未上拱变形处土层呈上粗下细型结构,盐分主要储存在下伏细粒土层中,离子分布较为均一,表层土体未发生盐分聚积现象。上述现象表明土层结构对水盐分布存在显著影响,而水盐分布的差异性对硫酸盐病害发育存在潜在影响。
2. 试验设计与方法
2.1 试验设计
根据现场调查情况设计了室内土柱试验,其装置如图3所示,由多层有机玻璃筒和补水瓶组成。有机玻璃筒内径20 cm,高度分为40 cm和10 cm两种,中间用法兰盘连接。模拟试验土柱上覆土层厚30 cm,下伏土层厚10 cm,现场调查发现区域内地下水含盐量较低,盐分主要分布在土层中,因此将下伏土层设置为 质量分数5%的含盐土层。含盐土层下方根据不同的地下水条件设置不同隔断层,标准砂层模拟有毛细水补给的情况,卵砾石层则模拟无毛细水补给的情况,隔离层的另一作用是防止含盐层的盐分扩散至蒸馏水中。
试验组设计如表1所示。上覆土层均为洗盐后的黄土,下伏土层分别为砂质粉土和粉质黏土,黄土-砂质粉土构成上细下粗型土层结构,黄土-粉质黏土构成上粗下细型土层结构,土柱ΙA和ΙB中存在毛细水补给,ⅡA和ⅡB中则无毛细水补给。
表 1 试验组设计Table 1. Test group design土柱编号 ΙA IB ⅡA ⅡB 上覆土层 黄土 黄土 黄土 黄土 下伏土层 砂质粉土 粉质黏土 砂质粉土 粉质黏土 隔断层 标准砂层 标准砂层 卵砾石层 卵砾石层 试验黄土取自甘肃省兰州市东岗镇,砂质粉土与粉质黏土由洗盐后的黄土掺石英砂和黄土掺高岭土得到。三种土样的基本参数见表2,颗分曲线见图4。
表 2 试验土样的物理性质Table 2. Physical properties of soil samples土样 液限/% 塑限/% 塑性指数 最大干密度/(g·cm−3) 最优含水率/% 黄土 27.2 18.2 9.0 1.80 15.0 砂质粉土 21.4 13.5 7.9 2.00 12.0 粉质黏土 30.6 19.5 11.1 1.73 17.0 土样以分层夯实的方式填入有机玻璃筒中,上覆黄土层采用15%最优含水率和90%的压实度,即干密度1.62 g/cm3,下伏土层的含水率与上覆土层保持一致,考虑到不同土样的天然孔隙比存在显著差异,因此干密度通过统一的压实度进行控制,压实度均设置为90%,砂质粉土层夯实干密度为1.8 g/cm3,粉质黏土层夯实干密度为1.56 g/cm3。
2.2 试验过程
试样制作完成后在室内进行蒸发试验,分别在10,20,40,60 d取样,前三次通过筒壁上的预留取样孔进行取样,取样深度为0,7,14,21,28,32,36,40 cm;60 d时拆除土柱取样,并增加2,4 cm取样深度,土样采用烘干法进行含水率测定。取10 g干土样按照土水比1∶5配成土水混合溶液,在 SHZ–88 型振荡器上振荡 30 min,将震荡后的土悬液放入TDL-SA 型离心机中离心30 min,用针管抽出离心管上部清液,经过 0.45 µm孔径微孔膜过滤,得到土样浸出液,采用DIONEX公司生产的 ICS–2500型离子色谱仪测定60 d土样浸出液中的易溶盐离子含量。
3. 试验结果与分析
3.1 毛细水补给土柱的水分运移
毛细水补给土柱ΙA和ΙB含水率沿深度分布结果见图5,两组试验土柱含水率在10 d时已经基本稳定,试验周期内同一层位的含水率略有波动,整体分布趋势没有显著变化。土柱ΙA和ΙB上覆黄土层的含水率随深度增大整体呈线性增大,拟合线性曲线的斜率分别为4.94和4.93,含水率梯度基本一致。ΙA土柱上覆土层中的各层位含水率均大于ΙB,非饱和导水率
$K(\theta )$ 和扩散率$D(\theta )$ 均为含水率的连续增函数,因此ΙA土柱上覆土层中的导水率和扩散率均大于IB,IA土柱毛细水运移速率较大。含水率较大时,砂质粉土层的导水率远大于粉质黏土,毛细水通过砂质粉土层向黄土土层运移相对较为容易;而粉质黏土层孔隙小,导水率低,水分运移速率缓慢,对土柱整体的水分运移存在阻滞作用。IA和IB土柱含水率在土层界面处发生突变,ΙA土柱界面处32 cm与28 cm含水率沿深度减小方向增加8.1%~9.1%,ΙB土柱含水率减少3.6%~4.2%,界面含水率变化存在差异。含水率的突变是土层孔隙结构的不连续性导致的,从吸力角度考虑,当土柱的含水率达到平衡状态时,土体吸力与孔隙水势能具有连续性,30 cm处上下界面的吸力大小一致;由于不同土层的颗粒大小、孔隙分布存在差异,同一土体吸力对应的不同土层的体积含水率存在一特定差值,这一差值在土体中表现为土层界面含水率突增或突降。
为了更好的分析和解释界面含水率的变化差异,通过Arya-Paris模型[17]和Fredlund-Xing模型[18]拟合了试验中三种土层的土水特征曲线。将土层的颗粒分布、干密度和颗粒密度代入AP模型预测出多个吸力与体积含水率对应点,再由FX模型拟合得到完整的土水特征曲线(图6)。
同一吸力对应的三种土层体积含水率不同,细粒土的体积含水率均大于粗粒土的体积含水率。土层之间的含水率差值除了与土层性质有关,还随吸力变化。低吸力段,黄土-砂质粉土的含水率差值较大;高吸力段,黄土-粉质黏土的含水率差值较大。IA和IB土柱土层界面处的含水率较大,吸力较小,因此IA土柱的界面含水率差值大于IB。
3.2 毛细水补给土柱的盐分运移
60 d时土柱主要离子垂直分布情况如图7,ΙA和ΙB离子整体分布均呈 “Γ”型,盐分在表层聚积。土柱中
${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 的初始值较大,表层${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量大于${\rm{N}}{{\rm{a}}^ + }$ ,ΙA土柱表层${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量高达15.64%,ΙB土柱表层${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量约7.69%,仅为ΙA土柱的1/2,IB土柱其他层位的${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量均高于ΙA。${\rm{N}}{{\rm{a}}^ + }$ 分布情况与${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 一致,ΙA土柱表层${\rm{N}}{{\rm{a}}^ + }$ 含量大于ΙB,其他层位则小于IB。两组土柱${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 和${\rm{N}}{{\rm{a}}^ + }$ 的分布差异表明在相同的时间内,ΙA土柱向上的盐分迁移更为剧烈,表层积盐更多,上细下粗型土层结构相对于上粗下细型结构更有利于土体盐分运移和表层盐分积累。土层结构对水分运移的影响直接导致了盐分运移的差异,下伏砂质粉土层的存在加速了土柱的毛细水盐运移,导水率较低的粉质黏土层则阻碍了毛细水盐运移。除了对水分运移的影响,黏土颗粒较强的吸附性也延缓了土体中的溶质运移,黏粘土颗粒比表面积较大,结合水膜较厚,结合水膜中的离子需要先扩散至毛细水中,后随着毛细水迁移,这一过程降低了含盐层的脱盐速率,表层盐分积累速率相应减小。通过60 d表层的泛盐现象可以直观的看出两组土柱的积盐差异(图8),ΙA土柱表层的盐壳厚度较大,表层积盐较多,IB土柱表层盐壳则较薄,盐结晶较少。由于硫酸盐结晶膨胀,土柱表层土体隆起,表面发生盐胀破坏。
3.3 无毛细水补给土柱的水分运移
土柱ⅡA和ⅡB中设置了卵砾石层隔断毛细水补给,模拟了地下水埋深较大或毛细水上升高度较小条件下的水盐运移,其含水率结果见图9。ⅡA和ⅡB土柱随着试验进行,ⅡA和ⅡB土柱整体含水率逐渐降低,在40~60 d时,含水率变化非常小,表明土柱中的水分散失速率减小。一方面是因为随着表层一定深度土层含水率的减小,蒸发速率降低;另一方面则由于孔隙水含量的减小,毛细作用减弱,孔隙水主要受短程吸附作用,以薄膜水的形式附着在土颗粒表面,水分运移速率大幅降低,因此土柱内部的水分散失速率减小。
土柱ⅡA和ⅡB深度30 cm土层界面处的含水率变化趋势与毛细水补给土柱一致,但含水率差值大小存在显著差异。ⅡA土柱界面含水率差值保持在1.68%~2.01%之间,ⅡB土柱保持在2.78%~3.14%之间。由图6已知在高吸力状态下,黄土-砂质粉土土层界面含水率差值小于黄土-粉质黏土,因此ⅡB土柱界面含水率差值大于ⅡA。砂质粉土层的水分向上覆黄土层迁移相对较多,在10~40 d内,ⅡA土柱上覆黄土层的整体含水率以及表层含水率明显大于ⅡB,在40~60 d时,ⅡA土柱下伏土层的含水率变化极小,上下土层之间的水分运移基本停止,而ⅡB土柱下伏土层的含水率在该时间段内仍在减小,说明ⅡA土柱水分运移速率明显大于ⅡB,主要原因是孔隙结构变化导致土水性质的差异,其次则因为黏土颗粒的短程吸附作用较强,结合水膜较厚,粉质黏土层中的薄膜水含量相对于砂质粉土层较多,而毛细水含量较少。
3.4 无毛细水补给土柱的盐分运移
无毛细水补给土柱60 d离子分布如图10所示。土柱表层的
${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 和${\rm{N}}{{\rm{a}}^ + }$ 的含量小幅增大,但并未发生表层积聚,无毛细水补给条件下,土柱中的水分运移速率逐渐降低直至接近停止,因此盐分的上升高度有限,并未全部迁移至表层。ⅡA土柱上覆黄土层中各层位的${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量均大于ⅡB,下伏含盐层的${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量则小于ⅡB,${\rm{N}}{{\rm{a}}^ + }$ 分布趋势与${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 一致。ⅡA土柱下伏含盐层60 d的${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量相比于初始值降低了64%,ⅡB降低了45%。试验结果表明在无毛细水补给条件下,上细下粗型土柱下伏含盐层水盐向上的迁移总量和迁移速率均大于上粗下细型土柱。如图11所示,由于ⅡA和ⅡB土柱表层盐分未发生聚积,表层并没有盐壳生成,但随着含盐量的提高,表层均产生了一定程度的酥碱。
4. 结论
(1)层状土层之间孔隙结构和水力学性质的不连续性对土体水盐运移有显著影响,细粒土层具有较好的持水和持盐特性。上细下粗型土层结构盐分在上覆土层中聚积,浅层高含盐量土体的存在增加了盐渍土病害发生的几率;上粗下细型土层结构盐分在下伏细粒土层中分布较为均一,上覆粗粒土层含盐相对较少。
(2)毛细水补给条件下,上细下粗型土层结构有利于毛细水盐运移;60 d时上细下粗型土柱表层盐分积聚现象更加显著,表层
${\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ 含量是上粗下细型土柱的两倍。(3)无毛细水补给条件下,下伏砂质粉土层水盐向上迁移总量和迁移速率大于下伏粉质黏土层,60 d时,上细下粗型土柱上覆土层各层位离子含量均大于上粗下细型土柱。
-
表 1 工作面详细情况
Table 1 Details of working faces
工作面 长/m 宽/m 开采时间 停采时间 开采深度/m 煤层厚度/m 采深采厚比 20314 1600 280 2017年 2018年初 171.30~186.76 3.98~3.99 42.9~46.9 20313 2000 290 2018年初 2019年初 178.69~189.98 4.20~4.24 42.5~44.8 20312 2600 290 2019年初 2019年末 140.45~205.07 3.78~4.24 33.1~54.3 表 2 SAR数据参数表
Table 2 Parameters of SAR data
编号 轨道号 日期 成像模式 极化方式 飞行方式 入射角/(°) 1 026158 2018-04-12 IW VV 升轨 42.02 2 026683 2018-07-05 IW VV 升轨 42.02 3 027208 2018-10-09 IW VV 升轨 42.02 4 027558 2018-12-08 IW VV 升轨 42.02 5 028083 2019-03-02 IW VV 升轨 42.02 6 028433 2019-06-06 IW VV 升轨 42.02 7 028958 2019-09-10 IW VV 升轨 42.02 8 029308 2019-11-21 IW VV 升轨 42.02 9 029833 2020-02-13 IW VV 升轨 42.02 10 030008 2020-04-25 IW VV 升轨 42.02 11 030183 2020-09-04 IW VV 升轨 42.02 12 030708 2020-11-15 IW VV 升轨 42.02 -
[1] 王毅,黄同新,汪宝存,等. 巨野矿区Sentinel-1A雷达影像PS-InSAR地面形变监测[J]. 自动化与仪器仪表,2019(7):120 − 123. [WANG Yi,HUANG Tongxin,WANG Baocun,et al. Surface deformation monitoring of PS-InSAR in Juye mining based on Sentinel-1A radar images[J]. Automation & Instrumentation,2019(7):120 − 123. (in Chinese with English abstract)] WANG Yi, HUANG Tongxin, WANG Baocun, et al. Surface deformation monitoring of PS-InSAR in Juye mining based on Sentinel-1A radar images[J]. Automation & Instrumentation, 2019(7): 120 − 123. (in Chinese with English abstract)
[2] 范立民,吴群英,彭捷,等. 黄河中游大型煤炭基地地质环境监测思路和方法[J]. 煤炭学报,2021,46(5):1417 − 1427. [FAN Limin,WU Qunying,PENG Jie,et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1417 − 1427. (in Chinese with English abstract)] FAN Limin, WU Qunying, PENG Jie, et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society, 2021, 46(5): 1417 − 1427. (in Chinese with English abstract)
[3] 黄翌,汪云甲,王猛,等. 黄土高原山地采煤沉陷对土壤侵蚀的影响[J]. 农业工程学报,2014,30(1):228 − 235. [HUANG Yi,WANG Yunjia,WANG Meng,et al. Effect of mining subsidence on soil erosion in mountainous area of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(1):228 − 235. (in Chinese with English abstract)] HUANG Yi, WANG Yunjia, WANG Meng, et al. Effect of mining subsidence on soil erosion in mountainous area of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 228 − 235. (in Chinese with English abstract)
[4] 马飞. 矿区沉降InSAR监测与预测方法研究[D]. 西安:长安大学,2020. [MA Fei. Research on in sar monitoring and prediction method of mine subsidence[D]. Xi’an:Changan University,2020. (in Chinese with English abstract)] MA Fei. Research on in sar monitoring and prediction method of mine subsidence[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract)
[5] 牛敏杰,师芸,张童康,等. 基于SBAS-InSAR技术的多工作面矿区地表形变特征[J]. 中国科技论文,2022,17(5):581 − 588. [NIU Minjie,SHI Yun,ZHANG Tongkang,et al. Surface deformation characteristics of multiples working faces mining area based on SBAS-InSAR technology[J]. China Sciencepaper,2022,17(5):581 − 588. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2095-2783.2022.05.016 NIU Minjie, SHI Yun, ZHANG Tongkang, et al. Surface deformation characteristics of multiples working faces mining area based on SBAS-InSAR technology[J]. China Sciencepaper, 2022, 17(5): 581 − 588. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-2783.2022.05.016
[6] 滕超群. 基于InSAR技术的形变灾害监测预测方法及其应用研究[D]. 淮南:安徽理工大学,2021. [TENG Chaoqun. Research on deformation disaster monitoring and prediction method based on InSAR and its application[D]. Huainan:Anhui University of Science & Technology,2021. (in Chinese with English abstract)] TENG Chaoqun. Research on deformation disaster monitoring and prediction method based on InSAR and its application[D]. Huainan: Anhui University of Science & Technology, 2021. (in Chinese with English abstract)
[7] 齐麟. 基于时序InSAR技术的北京平原区地面沉降监测与分析[D]. 青岛:山东科技大学,2020. [QI Lin. Ground subsidence monitoring and analysis in Beijing Plain area based on time series InSAR technique[D]. Qingdao:Shandong University of Science and Technology,2020. (in Chinese with English abstract)] QI Lin. Ground subsidence monitoring and analysis in Beijing Plain area based on time series InSAR technique[D]. Qingdao: Shandong University of Science and Technology, 2020. (in Chinese with English abstract)
[8] 刘文涛. 基于时序InSAR技术的矿区地面沉降监测与分析[D]. 西安:西安科技大学,2020. [LIU Wentao. Monitoring and analysis of land subsidence in mining area based on time series InSAR technology[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)] LIU Wentao. Monitoring and analysis of land subsidence in mining area based on time series InSAR technology[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)
[9] 刘国祥. InSAR原理与应用[M]. 北京:科学出版社,2019. [LIU Guoxiang. Principle and application of InSAR[M]. Beijing:Science Press,2019. (in Chinese with English abstract)] LIU Guoxiang. Principle and application of InSAR[M]. Beijing: Science Press, 2019. (in Chinese with English abstract)
[10] FERRETTI A,PRATI C,ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202 − 2212. DOI: 10.1109/36.868878
[11] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. DOI: 10.1109/TGRS.2002.803792
[12] 马顶. 基于SBAS-InSAR的山西省西山煤田地面沉降监测及对地表状况的影响[D]. 太原:太原理工大学,2022. [MA Ding. Ground subsidence monitoring based on SBAS-InSAR technology in Xishan coalfield,Shanxi Province and its influence on surface condition[D]. Taiyuan:Taiyuan University of Technology,2022. (in Chinese with English abstract)] MA Ding. Ground subsidence monitoring based on SBAS-InSAR technology in Xishan coalfield, Shanxi Province and its influence on surface condition[D]. Taiyuan: Taiyuan University of Technology, 2022. (in Chinese with English abstract)
[13] 汪磊. 基于SAR技术的矿区大梯度形变时序监测[D]. 徐州:中国矿业大学,2017. [WANG Lei. Time-series monitoring of large gradient mining subsidence based on SAR technology[D]. Xuzhou:China University of Mining and Technology,2017. (in Chinese with English abstract)] WANG Lei. Time-series monitoring of large gradient mining subsidence based on SAR technology[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese with English abstract)
[14] 张椿雨,于冰,荆创利,等. SBAS-InSAR及其应用于准噶尔盆地独山子地区地表形变监测[J]. 测绘,2022,45(6):247 − 252. [ZHANG Chunyu,YU Bing,JING Chuangli,et al. SBAS-InSAR and its application for surface deformation monitoring in Dushanzi area of Junggar Basin[J]. Surveying and Mapping,2022,45(6):247 − 252. (in Chinese with English abstract)] ZHANG Chunyu, YU Bing, JING Chuangli, et al. SBAS-InSAR and its application for surface deformation monitoring in Dushanzi area of Junggar Basin[J]. Surveying and Mapping, 2022, 45(6): 247 − 252. (in Chinese with English abstract)
[15] ZEBKER H A,ROSEN P. On the derivation of coseismic displacement fields using differential radar interferometry:The Landers earthquake[C]//Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena,CA,USA. IEEE,1994:286 − 288.
[16] MASSONNET D,ROSSI M,CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. \nat,1993,364(6433):138 − 142.
[17] 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析[J]. 中国地质灾害与防治学报,2023,34(2):61 − 72. [LU Wei,YANG Bin,YANG Kun. Surface deformation monitoring and analysis of southwest university of science and technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):61 − 72. (in Chinese with English abstract)] LU Wei, YANG Bin, YANG Kun. Surface deformation monitoring and analysis of southwest university of science and technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 61 − 72. (in Chinese with English abstract)
[18] 朱琳,宫辉力,李小娟,等. 区域地面塌陷研究进展与展望[J]. 水文地质工程地质,2024,51(4):167 − 177. [ZHU Lin,GONG Huili,LI Xiaojuan,et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology,2024,51(4):167 − 177. (in Chinese with English abstract)] ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167 − 177. (in Chinese with English abstract)
[19] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市采空地面塌陷演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in InnerMongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract)] GE Weili, LI Yuanjie, ZHANG Chunming, et al. An attribution analysis of land subsidence features in the city of Bayannur in InnerMongolia based on InSAR[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 198 − 206. (in Chinese with English abstract)
[20] NATSUAKI R,NAGAI H,MOTOHKA T,et al. SAR interferometry using ALOS-2 PALSAR-2 data for the Mw 7.8 Gorkha,Nepal earthquake[J]. Earth,Planets and Space,2016,68(1):15.
[21] GLENN N F,CARR J R. The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin,Nevada,USA[J]. Computers & Geosciences,2003,29(5):577 − 586.
[22] 李新新,沈震. 基于GM(1,1)模型的矿山开采沉陷预测[J]. 北京测绘,2015(6):62 − 64. [LI Xinxin,SHEN Zhen. Forecast of mining subsidence based on GM(1,1)model[J]. Beijing Surveying and Mapping,2015(6):62 − 64. (in Chinese with English abstract)] LI Xinxin, SHEN Zhen. Forecast of mining subsidence based on GM(1, 1)model[J]. Beijing Surveying and Mapping, 2015(6): 62 − 64. (in Chinese with English abstract)
[23] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报,2017,46(10):1717 − 1733. [ZHU Jianjun,LI Zhiwei,HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1717 − 1733. (in Chinese with English abstract)] ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717 − 1733. (in Chinese with English abstract)
[24] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报,2019,48(2):135 − 144. [ZHU Jianjun,YANG Zefa,LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica,2019,48(2):135 − 144. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2019.20180188 ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135 − 144. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2019.20180188
[25] 尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析[J]. 中国地质灾害与防治学报,2023,34(2):73 − 81. [YIN Chengshen,LIU Quanming,WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):73 − 81. (in Chinese with English abstract)] YIN Chengshen, LIU Quanming, WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 73 − 81. (in Chinese with English abstract)
[26] 莫莉,王贤能. 基于PS-InSAR技术的后海深槽地面及建筑物形变监测分析[J]. 中国地质灾害与防治学报,2023,34(1):68 − 74. [MO Li,WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):68 − 74. (in Chinese with English abstract)] MO Li, WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 68 − 74. (in Chinese with English abstract)
[27] 胡凤鸣,伍吉仓. 时序合成孔径雷达干涉测量的多级化解算[J]. 同济大学学报(自然科学版),2019,47(12):1817 − 1824. [HU Fengming,WU Jicang. A multi-level approach for multi-temporal interferometric synthetic aperture radar[J]. Journal of Tongji University (Natural Science),2019,47(12):1817 − 1824. (in Chinese with English abstract)] HU Fengming, WU Jicang. A multi-level approach for multi-temporal interferometric synthetic aperture radar[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1817 − 1824. (in Chinese with English abstract)
[28] 熊文秀,冯光财,李志伟,等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报,2015,44(11):1246 − 1254. [XIONG Wenxiu,FENG Guangcai,LI Zhiwei,et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristic[J]. Acta Geodaetica et Cartographica Sinica,2015,44(11):1246 − 1254. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2015.20140547 XIONG Wenxiu, FENG Guangcai, LI Zhiwei, et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristic[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1246 − 1254. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2015.20140547
[29] 张童康,师芸,王剑辉,等. InSAR和改进支持向量机的沉陷预测模型分析[J]. 测绘科学,2021,46(11):63 − 70. [ZHANG Tongkang,SHI Yun,WANG Jianhui,et al. Analysis of subsidence prediction model based on InSAR and improved support vector machine[J]. Science of Surveying and Mapping,2021,46(11):63 − 70. (in Chinese with English abstract)] ZHANG Tongkang, SHI Yun, WANG Jianhui, et al. Analysis of subsidence prediction model based on InSAR and improved support vector machine[J]. Science of Surveying and Mapping, 2021, 46(11): 63 − 70. (in Chinese with English abstract)
[30] 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市采空地面塌陷时空分布特征与影响因素分析[J]. 中国地质灾害与防治学报,2023,34(5):81 − 90. [HE Qing,WEI Lu,XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City,Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):81 − 90. (in Chinese with English abstract)] HE Qing, WEI Lu, XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 81 − 90. (in Chinese with English abstract)