Study of factors influencing soil water repellency under simulated forest fire
-
摘要:
云南松作为西南山区主要树种,富含树脂易引发森林火灾,林火后火烧迹地土壤通常会产生斥水性,导致火烧区地表径流和侵蚀加剧,最终诱发火后泥石流。为探究土壤斥水性影响因素及形成机制,以四川省冕宁县腊窝乡松林区未火烧土壤为研究对象,采用室内模拟火烧试验,考虑松脂含量、土壤角砾含量、初始有机质含量、加热温度和加热时间等因素设计正交试验,利用X射线衍射和扫描电镜分析土壤化学元素和微观结构变化,研究林火对土壤斥水性的影响。结果表明,林火后各因素对土壤斥水性影响程度排序为:初始有机质含量>加热温度>加热时间>松脂含量>角砾含量,初始有机质含量、加热温度对土壤斥水性的影响极显著,加热时间、松脂含量影响显著,角砾含量影响不显著。各因素均能引起土壤中有机化合物变化,进而影响土壤斥水性。具体表现为,适度火烧后(温度≤400 °C)土壤中有机质化合物发生化学变化,形成致密的疏水有机质薄膜,覆盖于矿物颗粒表面并充填于颗粒间隙,导致土壤斥水性增强。而过度火烧(温度> 400 °C)导致有机质被消耗,土壤微团聚体结构被破坏,矿物颗粒呈松散堆叠状态,土壤斥水性减小。研究结果可为松林区火烧迹地土壤侵蚀模式和火后泥石流形成机制提供依据。
Abstract:Yunnan pine, as the prominent arboreal species in the southwestern mountains, exhibits abundant resin content and displays susceptibility to forest fires. Soil in fire-affected areas typically exhibits water repellency after a forest fire, leading to increased surface runoff and erosion within the affected area, ultimately triggering post-fire debris flows. In order to investigate the influencing factors and formation mechanism of soil water repellency, unburned soils in the pine forest vegetation area of Lawo Township, Mianning County, Sichuan Province was selected as the research project. Indoor simulated fire experiment were conducted, and orthogonal experiments were designed considering factors such as turpentine content, soil debris content, initial organic content, heating temperature, and heating period. X-ray diffraction and scanning electron microscopy were used to analyze changes in chemical elements and microstructure, studying the impact of forest fires on soil water repellency. The results showed that the degree of influence of various factors on soil water repellency was ranked as follows: initial organic matter content, heating temperature, heating period, pine resin content, and debris content. The initial organic matter content and heating temperature on soil water repellency was highly significant, while heating time and pine resin content was significant, and debris content had no significant impact. All factors could cause changes in organic compounds in the soil, thereby affecting soil water repellency. Specifically, after moderate burning (temperature ≤ 400 °C), organic compounds in the soil underwent chemical changes, forming dense hydrophobic organic matter films covering the surface of mineral particles and filling the interstitial space of the particles, resulting in enhanced soil water repellency. Excessive burning (temperature > 400 °C) resulted in the consumption of organic matter, the destruction of soil microaggregate structure, loose stacking of mineral particles, and a decrease in soil water repellency. The research results can provide a basis for the soil erosion pattern of soil in pine forest fire-affected areas and the formation mechanism of post-fire debris flows.
-
Keywords:
- Soil water repellency /
- Burned area /
- Pine forest /
- Chemical properties /
- Microstructure
-
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
表 1 正交实验结果
Table 1 Orthogonal experimental Results
编号 加热温度
A/°C加热时间
B/min初始有机质含量
C/%松脂含量
D/g角砾含量
E/%WDPT
/s有机质含量
/%土壤斥水性变化
对照组→试验组1 100 5 <5 0 0 35 7.61 亲水→轻度 2 100 15 5-10 0.2 20 3956 11.90 轻度→极端 3 100 30 10-15 0.5 5 5257 21.94 强烈→极端 4 100 60 >15 1 40 4122 18.37 强烈→极端 5 100 120 <5 2 10 3204 15.00 亲水→严重 6 200 5 >15 5 20 8038 25.32 强烈→极端 7 200 15 <5 0 5 3584 7.66 亲水→严重 8 200 30 <5 0.2 40 1270 6.95 亲水→严重 9 200 60 5-10 0.5 10 4020 17.94 轻度→极端 10 200 120 10-15 1 0 5538 22.84 强烈→极端 11 400 5 5-10 1 5 6119 10.33 轻度→极端 12 400 15 10-15 2 40 9530 29.07 强烈→极端 13 400 30 >15 0 10 3397 9.06 强烈→严重 14 400 60 <5 0.2 0 11 1.70 亲水→轻度 15 400 120 <5 0.5 20 2300 5.84 亲水→严重 16 600 5 <5 0.5 40 3258 8.16 亲水→严重 17 600 15 <5 1 10 2569 6.06 亲水→严重 18 600 30 5-10 2 0 123 0.45 轻度→强烈 19 600 60 10-15 0 20 1 0.28 强烈→亲水 20 600 120 >15 0.2 5 1 0.16 强烈→亲水 21 800 5 10-15 0.2 10 5225 23.10 强烈→极端 22 800 15 >15 0.5 0 132 1.34 强烈→强烈 23 800 30 <5 1 20 1 0.62 亲水→亲水 24 800 60 <5 2 5 1 0.15 亲水→亲水 25 800 120 5-10 0 40 1 0.46 轻度→亲水 表 2 极差分析结果
Table 2 Extreme variance analysis results
水平 A B C D E 1 3315 4535 1523 1404 1168 2 4490 3954 2844 2093 2992 3 4071 2009 5110 2793 3683 4 1191 1631 3138 3670 2659 5 1072 2009 / 4179 3636 R 3418 2904 3587 2776 2515 排序 2 3 1 4 5 表 3 方差分析结果
Table 3 Analysis of variance (ANOVA) results
来源 F p 加热温度A 12.167 .010 加热时间B 7.478 .024 松脂含量C 5.751 .041 角砾含量D 4.670 .061 初始有机质含量E 12.271 .009 表 4 样品处理前后的有机质含量及WDPT
Table 4 Organic matter content and WDPT before and after sample treatment
土壤样品 平均WDPT/s 有机质含量/% 未处理 3319 12.5% 200°C 6065 10.6% 400°C 8702 9.3% 600°C 1652 5.8% 表 5 土壤样品微团聚体颗粒分析结果
Table 5 Analysis results of soil samples microaggregates particles
火烧程度 平面粒径/um 平均面积/um2 平均周长/um 平均形状系数 未火烧 2.52 2.54 6.12 0.85 200 °C 3.18 2.87 6.96 0.74 400 °C 3.59 3.48 8.48 0.61 600 °C 1.58 1.76 4.89 0.92 表 6 土壤样品孔隙分析结果
Table 6 Results of pore analysis of soil samples
火烧程度 平面孔隙率/% 平均面积/um2 平均周长/um 平均形状系数 未火烧 44.93 3.89 7.76 0.81 200°C 38.18 3.15 7.23 0.76 400°C 30.19 2.58 7.05 0.65 600°C 45.56 1.95 5.54 0.83 -
[1] 王严,胡卸文,杨瀛,等. 火烧迹地土壤斥水性和渗透性变化特性[J]. 水文地质工程地质,2019,46(6):40 − 45. [WANG Yan,HU Xiewen,YANG Ying,et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(6):40 − 45. (in Chinese with English abstract)] WANG Yan, HU Xiewen, YANG Ying, et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 40 − 45. (in Chinese with English abstract)
[2] 胡卸文,金涛,殷万清等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(04):762 − 771. [HU Xiewen,JIN Tao,YIN Wanqing et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township,xichang city[J]. Journal of Engineering Geology,2020,28(04):762 − 771. (in Chinese with English abstract)] HU Xiewen, JIN Tao, YIN Wanqing et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township, xichang city[J]. Journal of Engineering Geology, 2020, 28(04): 762 − 771. (in Chinese with English abstract)
[3] WU Yichen,ZHANG Nan,SLATER G,et al. Hydrophobicity of peat soils:characterization of organic compound changes associated with heat-induced water repellency[J]. The Science of the Total Environment,2020,714:136444. DOI: 10.1016/j.scitotenv.2019.136444
[4] MAO Jiefei,ZHANG Kun,CHEN Baoliang. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil[J]. Environmental Pollution,2019,253:779 − 789. DOI: 10.1016/j.envpol.2019.07.051
[5] THOMAZ E L,FACHIN P A. Effects of heating on soil physical properties by using realistic peak temperature gradients[J]. Geoderma,2014,230/231:243 − 249. DOI: 10.1016/j.geoderma.2014.04.025
[6] POESEN J,LAVEE H. Rock fragments in top soils:significance and processes[J]. CATENA,1994,23(1/2):0341816294900507.
[7] DOERR S H,THOMAS A D. The role of soil moisture in controlling water repellency:new evidence from forest soils in Portugal[J]. Journal of Hydrology,2000,231/232:134 − 147. DOI: 10.1016/S0022-1694(00)00190-6
[8] 张绍科,胡卸文,王严,等. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2021,32(5):79 − 85. [ZHANG Shaoke,HU Xiewen,WANG Yan,et al. Disaster mechanism of post-fire debris flow in Huayanzi gully,Mianning County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):79 − 85. (in Chinese with English abstract)] ZHANG Shaoke, HU Xiewen, WANG Yan, et al. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79 − 85. (in Chinese with English abstract)
[9] 杨瀛,胡卸文,王严,等. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报,2021,56(4):818 − 827. [YANG Ying,HU Xiewen,WANG Yan,et al. Spatial development characteristics of post-fire debris flow in bajiaolou town[J]. Journal of Southwest Jiaotong University,2021,56(4):818 − 827. (in Chinese with English abstract)] YANG Ying, HU Xiewen, WANG Yan, et al. Spatial development characteristics of post-fire debris flow in bajiaolou town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818 − 827. (in Chinese with English abstract)
[10] GORDILLO-RIVERO Á J,GARCÍA-MORENO J,JORDÁN A,et al. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning[J]. Hydrological Processes,2014,28(24):5832 − 5843. DOI: 10.1002/hyp.10072
[11] DEBANO L,RICE R M,CONRAD C E. Soil heating in chaparral fires:Effects on soil properties,plant nutrients,erosion,and runoff[J]. USDA Forest Service Research Paper PSW (USA). no. 145. 1979.
[12] GIMENO-GARC\'\IA E,ANDREU V,RUBIO J L. Spatial patterns of soil temperatures during experimental fires[J]. Geoderma,2004,118(1/2):17 − 38.
[13] 何诚,舒立福,刘超,等. 南方人工林地阴燃火温度变化特征研究[J]. 林业工程学报,2020,5(2):151 − 157. [HE Cheng,SHU Lifu,LIU Chao,et al. Research on variation of temperature of underground fire in South China plantation[J]. Journal of Forestry Engineering,2020,5(2):151 − 157(in Chinese with English abstract)] HE Cheng, SHU Lifu, LIU Chao, et al. Research on variation of temperature of underground fire in South China plantation[J]. Journal of Forestry Engineering, 2020, 5(2): 151 − 157(in Chinese with English abstract)
[14] ZAVALA L M,GRANGED A J P,JORDÁN A,et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma,2010,158(3/4):366 − 374.
[15] CERTINI G,NOCENTINI C,KNICKER H,et al. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests[J]. Geoderma,2011,167/168:148 − 155. DOI: 10.1016/j.geoderma.2011.09.005
[16] JORDÁN A,ZAVALA L M,MATAIX-SOLERA J,et al. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils[J]. CATENA,2011,84(3):136 − 147. DOI: 10.1016/j.catena.2010.10.007
[17] BODÍ M B,MARTIN D A,BALFOUR V N,et al. Wildland fire ash:production,composition and eco-hydro-geomorphic effects[J]. Earth-Science Reviews,2014,130:103 − 127. DOI: 10.1016/j.earscirev.2013.12.007
[18] MASTROLONARDO G,CERTINI G,KREBS R,et al. Effects of fire on soil organic matter quality along an altitudinal sequence on Mt. Etna,Sicily[J]. CATENA,2013,110:133 − 145. DOI: 10.1016/j.catena.2013.05.017
[19] 胡彩莉,马玉贞,郭超,等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境,2016,44(1):110 − 118. [HU Caili,MA Yuzhen,GUO Chao,et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment,2016,44(1):110 − 118. (in Chinese with English abstract)] HU Caili, MA Yuzhen, GUO Chao, et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 2016, 44(1): 110 − 118. (in Chinese with English abstract)
[20] 杜娟. 海南有机质浸染砂水泥土力学特性及微观机理研究[D]. 天津:天津大学,2021. [DU Juan. Mechanical properties and micro-mechanism of cement-stabilized organic-matter-disseminated sand in Hainan[D]. Tianjin:Tianjin University,2021. (in Chinese with English abstract)] DU Juan. Mechanical properties and micro-mechanism of cement-stabilized organic-matter-disseminated sand in Hainan[D]. Tianjin: Tianjin University, 2021. (in Chinese with English abstract)
[21] JORDÁN A,GONZÁLEZ F A,ZAVALA L M. Re-establishment of soil water repellency after destruction by intense burning in a Mediterranean heathland (SW Spain)[J]. Hydrological Processes,2010,24(6):736 − 748. DOI: 10.1002/hyp.7519
[22] DE BLAS E,ALMENDROS G,SANZ J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils[J]. Geoderma,2013,206:75 − 84. DOI: 10.1016/j.geoderma.2013.04.027
[23] 吴小雨,涂安国,李国辉,等. 土壤斥水性影响因素及管理措施研究综述[J]. 中国水土保持,2023(1):27 − 30. [WU Xiaoyu,TU Anguo,LI Guohui,et al. Review on the influencing factors and management measures of soil water repellency[J]. Soil and Water Conservation in China,2023(1):27 − 30. (in Chinese with English abstract)] WU Xiaoyu, TU Anguo, LI Guohui, et al. Review on the influencing factors and management measures of soil water repellency[J]. Soil and Water Conservation in China, 2023(1): 27 − 30. (in Chinese with English abstract)
[24] MATAIX-SOLERA J,CERD\`A A,ARCENEGUI V,et al. Fire effects on soil aggregation:a review[J]. Earth Science Reviews,2011,109(1):44 − 60.
[25] ALCAÑIZ M,OUTEIRO L,FRANCOS M,et al. Effects of prescribed fires on soil properties:a review[J]. The Science of the Total Environment,2018,613/614:944 − 957. DOI: 10.1016/j.scitotenv.2017.09.144
[26] THOMAZ E L. Effects of fire on the aggregate stability of clayey soils:a meta-analysis[J]. Earth-Science Reviews,2021,221:103802. DOI: 10.1016/j.earscirev.2021.103802
[27] FRANCO C M M,CLARKE P J,TATE M E,et al. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands[J]. Journal of Hydrology,2000,231/232:47 − 58. DOI: 10.1016/S0022-1694(00)00182-7
[28] GARCÍA MORENO J,GORDILLO R Á J,GIL T J,et al. Do stones modify the spatial distribution of fire induced soil water repellency? Preliminary data[J]. Flamma,2013 (4 (2)),76.
-
期刊类型引用(4)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
2. 王林康,郑子涵,章广成,曾鑫,丁柄栋,崩兴涛. 顺层陡倾岩质边坡倾倒模式试验. 地质科技通报. 2025(02): 340-354 . 百度学术
3. 王胆,马明红,蒋香莲,陈奇,林令鑫,李昊阳,李泽辰. 先锋露天矿北帮顺倾软岩边坡变形机理. 露天采矿技术. 2025(02): 13-16 . 百度学术
4. 周志伟,田羽,张周爱. 横采内排追踪压帮技术下边坡稳定控制开采参数确定. 露天采矿技术. 2025(02): 41-45 . 百度学术
其他类型引用(0)