ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

降雨作用下古滑坡复活机理物理模拟试验研究

王立朝, 任三绍, 李金秋

王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究[J]. 中国地质灾害与防治学报,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
引用本文: 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究[J]. 中国地质灾害与防治学报,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
WANG Lichao,REN Sanshao,LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048
Citation: WANG Lichao,REN Sanshao,LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 21-31. DOI: 10.16031/j.cnki.issn.1003-8035.202403048

降雨作用下古滑坡复活机理物理模拟试验研究

基金项目: 国家自然科学基金项目(41731287;41941017;42307229);中国地质调查局地质调查项目(DD20221748)
详细信息
    作者简介:

    王立朝(1972—),男,岩土工程专业,博士,正高级工程师,主要从事地质灾害调查评价工作。E-mail:wanglc@mail.cigem.gov.cn

  • 中图分类号: P642.22

Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition

  • 摘要:

    水是导致古滑坡复活的重要因素,而经历长久固结的土石混杂滑坡体通常渗透性较低,降雨形成的地表水如何入渗并诱发古滑坡复活的机理尚未明晰。文章在古滑坡复活案例调查和分析的基础上,采用滑坡物理模拟试验研究了降雨与裂缝共同作用下古滑坡复活机理。结果表明:(1)裂缝影响降雨渗透速率和渗透深度,当坡体表面无裂缝时,滑体渗透系数较小,降雨只能引起浅表层滑动;当坡体表面发育裂缝时,雨水沿裂缝快速渗入至深部滑带位置,诱发古滑坡复活。(2)裂缝的位置影响古滑坡的复活模式,无裂缝时,古滑坡表现为渐进式的溯源侵蚀复活;有裂缝时,首先出现溯源侵蚀复活变形,并沿前缘预设裂缝处逐渐扩张滑动,然后沿后缘预设裂缝发生拉张变形并出现向前推挤现象,最终在前部牵引和后缘推挤作用下发生整体复活滑动。(3)滑坡在临滑前,深部孔隙水压力和土压力均急速上升,而在滑动后快速释放,故可将孔隙水压力和土压力值的骤变作为古滑坡复活失稳的临界判据。

    Abstract:

    Water is a crucial factor leading to the reactivation of ancient landslides. However, soil‒rock mixed landslides that have undergone long-term consolidation typically exhibit low permeability. The mechanism by which surface water generated by rainfall infiltrates and triggers landslide reactivation remains unclear. Based on the investigation of reactivation cases, this study explores the reactivation mechanism under the coupling effect of rainfall and cracks using landslide physical model tests. The results show the following: (1) Cracks can affect the seepage rate and depth of the landslide body. Without surface cracks, the landslide body has a low permeability coefficient, and rainfall can only cause shallow landslide. When surface cracks develop, rainwater can quickly infiltrate along the cracks to the deep sliding zone, triggering the reactivation of ancient landslides. (2) The location of the cracks can affect the reactivation mode of ancient landslides. Without cracks, ancient landslides exhibit a gradual retrogressive erosion reactivation. With cracks, reactivation deformation initially appears as retrogressive erosion, and gradually expanding to sliding along the preset cracks at the front edge, followed by tensile deformation and forward pushing at the rear edge, ultimately leading to overall reactivation sliding due to the combined effects of front traction and rear pushing. (3) Before sliding, both deep pore water pressure and soil pressure rapidly increased and then quickly release after sliding. Therefore, abrupt change in pore water pressure and soil pressure can be taken as the critical criterion for the reactivation of ancient landslides.

  • 古滑坡形成的平缓地形是高山峡谷区民众聚居生活的重要场所。随着近年来人类工程活动和极端降雨不断加剧,古滑坡复活问题呈急剧上升趋势[13],造成的人员伤亡和经济损失日益严重(图1)。2020年,青藏高原东缘丹巴阿娘寨古滑坡复活,壅塞小金川河河道,造成G350国道烂水湾段道路中断。2012年,长期水渠渗漏和短时强降雨导致澜沧江争岗古滑坡复活,威胁古水水电站的安全[4]。2018年,强降雨诱发舟曲江顶崖古滑坡复活,堵塞白龙江,淹没上游南峪镇[56];2018年,强降雨导致四川盐源玻璃村古滑坡复活,损坏房屋186 间,造成重大经济损失[7]。在国外,古滑坡复活现象也很普遍[8]。2014年,强降雨导致美国华盛顿Oso古滑坡复活,掩埋SR530公路,造成43人死亡[9];2016年,极端降雨导致意大利Tanarello河上游多个滑坡复活,毁坏建筑和道路[10]。灌溉和降雨导致加拿大Thompson河谷至少8个大型滑坡复活,严重影响铁路的运营安全[11]

    图  1  典型古滑坡复活案例
    注:a为江顶崖滑坡;b为周场坪滑坡;c为甲居滑坡;d为茶树山滑坡;e为55道班滑坡。
    Figure  1.  Typical case of ancient landslide reactivation

    人们已经认识到,水是导致古滑坡复活的重要因素[1214],但对于经历长久固结的古滑坡土石混杂堆积体而言,其渗透性很低[4, 15],降雨等地表水从坡体表面均匀入渗的深度有限[16],难以诱发古滑坡复活[17]。近年来,有研究表明,地表裂缝形成的优势入渗主导着古滑坡稳定性的恶化过程,促进变形的持续发展[1820],裂缝可以是原生节理、构造裂缝或由后期变形活动形成的拉张裂缝、剪切裂缝或卸荷裂隙等[2122]。然而,研究大多集中在野外的定性观察和推测,水如何沿裂缝渗入到古滑体深部、水与裂缝共同作用诱发古滑坡复活机理还不清楚。

    为了揭示降雨等地表水沿裂缝入渗的规律,在大量古滑坡复活案例研究的基础上,本文采用室内物理模型试验模拟了无裂缝和发育裂缝条件下的古滑坡复活动态演化过程,研究成果对于深化认识古滑坡复活机理和风险防控具有一定指导作用。

    在对青藏高原东缘岷江上窑沟滑坡[23]、白龙江江顶崖滑坡[5, 24]、金沙江茶树山滑坡[2526]等典型古滑坡复活案例综合分析的基础上,建立滑坡概化模型。模型长2000 mm,宽600 mm,高985 mm,滑带厚20 mm,滑体厚200~300 mm。滑坡模型由下往上依次为底座滑床、滑带和滑体,其中在滑体前部和后部分别设置裂缝(图2)。综合考虑滑坡原型案例中滑体和滑带土的级配及粒径差异,在本次试验中,滑带所用材料为黏土+粉土(配比4∶6),滑体为黏土、粉土、砂土和砾石(配比2∶4∶2∶2),滑床由砖、粗砂、水泥砌成,裂缝位置填充砾石和砂土(图3)。在模型箱上方布设人工降雨系统,用于向古滑坡模型模拟降雨。

    图  2  滑坡物理模型试验设计图
    注:上部为正视图,下部为俯视图。
    Figure  2.  Design of landslide physical model test
    图  3  模型试验材料
    注:a为黏土;b为粉土;c为砂土;d为砾石。
    Figure  3.  Materials for model test

    为获得物理模型试验过程中滑坡体不同位置的含水率、土压力、孔隙水压力及地表位移变化情况,在滑坡模型浅层和滑带处分别埋设孔隙水压力传感器5个(编号P1、P2、P3、P4、P5)、土壤湿度传感器3个(编号W1、W2、W3)、土压力传感器4个(编号S1、S2、S3、S4,其中S2传感器平行于滑面布设)和拉线式位移传感器3个(编号D1、D2、D3)。传感器具体布设位置见图2

    含水率变化可以改变土体的电阻率。通过电极监测某一点两个时间点电阻率的变化可以反演水在土体中的渗流规律。采用自主研发的基于电阻率层析成像法滑坡渗流监测试验装置,实现了对降雨入渗后古滑坡体中渗流过程的实时三维监测,并克服了传感器只能点状监测的缺陷[2729]。电阻率层析成像法电极布设位置见图4

    图  4  模型试验中的电极布设方案
    Figure  4.  Electrode layout scheme in model test

    将风干试样过筛,按相应颗粒级配和含水率均匀配制滑体和滑带土。在制作滑带和滑体时分层堆填,每层铺完后用橡皮锤击实,将其表面刨毛再堆填下一层,避免出现分层现象[30]。由于本次试验模拟古滑坡复活过程,考虑到古滑坡受力和演化历史,滑带与滑体相比,含水率和固结程度增大,且最大粒径和含石量减小。按试验设计埋置传感器(图2),并保证传感器受力面与土体紧密接触。滑坡模型制作完成后,自然静置固结风干7 d。

    本次试验模拟两种工况:坡体表面不设裂缝和坡体表面前后部设置两条贯通滑带的裂缝(图5)。试验过程中采用降雨控制系统模拟降雨,降雨强度为10 mm/h,试验过程中持续降雨直至滑坡失稳,试验停止,见图6—7

    图  5  滑坡物理模型试验现场模型图
    注:a为无裂缝模型正视图;b为有裂缝模型正视图;c为模型中的滑带;d为无裂缝模型俯视图;e为有裂缝模型俯视图。
    Figure  5.  Photos of landslide physical model test

    当坡体表面未设置裂缝时,降雨50 min,在滑坡前缘首次出现裂缝(图6a),降雨100 min(图6b),前缘出现变形加速,并产生溯源侵蚀破坏,见图8(a)中D3;之后随降雨持时增加,变形破坏范围不断向后扩展(图6c—e),中部位移也出现加速,见图8(a)中的D2,但是至降雨300 min时,后缘也没有出现变形迹象,见图8(a)中的D1,说明滑坡没有发生整体性的复活失稳滑动(图6f)。

    图  6  无裂缝工况下的滑坡复活演化过程
    注:a为降雨50 min;b为降雨100 min;c为降雨150 min;d为降雨200 min;e为降雨250 min;f为降雨300 min。
    Figure  6.  Reactivation and evolution process of landslide under the working condition with no cracks

    当坡体表面设置裂缝时,降雨前80 min(图7a图7b),滑坡首先在前缘产生拉裂缝并发生溯源侵蚀破坏,这与未设裂缝时破坏模式一致。但之后,随着降水持续入渗,开始沿前缘预设裂缝处逐渐扩张(图7c图8(b)中的D3),并推动前缘坡体整体滑动。由于失去前缘坡体的支撑作用,中部坡体开始向前蠕滑并出现拉张裂缝(图8(b)中的D2,图7d)。之后,后缘预设裂缝处也逐渐扩张(图8(b)中的D1,图7e),同时中部滑体表面拉张裂缝不断增多,最终在前部滑体牵引和后缘裂缝推挤的共同作用下,滑坡沿后部预设裂缝处发生整体失稳滑动(图7f)。

    图  7  有裂缝工况下的滑坡复活演化过程
    注:a为降雨40 min;b为降雨80 min;c为降雨120 min;d为降雨160 min;e为降雨200 min;f为降雨240 min。
    Figure  7.  Reactivation and evolution process of landslide under the working condition with cracks
    图  8  物理模拟试验传感器监测曲线
    Figure  8.  Monitoring data from sensors in physical simulation test

    当无裂缝时,见图8(c),滑坡中部(W2)、后部(W1)和前部(W3)分别在约40 min、60 min、120 min含水率开始出现增大,其中中部和后部滑体在含水率达到35%之后,保持平稳几乎不再增加,前部滑坡含水率在达到35%并平稳一段时间后,首先出现快速下降再波动上升,这是由前缘滑动使W3土壤湿度传感器拔出所致。

    当预设裂缝时,见图8(d),滑坡前部(W3)、后部(W1)和中部(W2)分别在约15 min、40 min、50 min含水率开始增大。之后前部含水率增大至50%之后,出现波动下降并保持在40%左右;后部含水率快速增大到70%后,一直保持平稳;中部含水率相对缓慢增加至45%后保持平稳。

    无裂缝时,见图8(e),降雨20 min,后缘浅层滑体处(P2)孔压开始快速增大,降雨70 min,中部浅层滑体处(P5)孔压开始快速增大,降雨100 min后,前缘深部滑体(P4)孔压开始快速增大,降雨约180 min,滑坡中部的深部滑体(P3)孔压开始波动增大,而后缘深部滑体的孔压在180 min之后才开始缓慢增大,但增幅非常小。以上表明,无裂缝时的滑体饱和顺序为先浅层后深部。

    有裂缝时,见图8(f),降雨80 min,后缘裂缝深部(P1)和前缘裂缝深部(P4)的孔压最先开始增大,降雨100 min后,后缘裂缝浅层(P2)、中部浅层(P5)和中部深层(P3)的孔压依次开始增大。以上表明,发育裂缝时的滑体饱和顺序:裂缝处为先深部后浅部,其他部位为先浅部后深部。

    研究表明,当无裂缝时,滑体渗透系数相对较大,需要长时间降雨才能渗透到滑坡深部滑带位置(至少180 min),影响范围主要为浅层坡体。当滑坡发育裂缝时,由于裂缝的饱和渗透系数足够大,持水能力大大下降,雨水可以沿裂缝快速渗入至深层滑带位置(约80 min),造成地下水位抬升,此时的饱和顺序为由下向上,与无裂缝时由上向下近似均匀渗透饱和的特征具有显著差异。

    同时可以发现,在滑坡临滑前,孔隙水压力快速上升,滑坡滑动之后,孔隙水压力快速下降,之后孔隙水压力再次快速上升后快速下降。这是因为,滑动前滑坡向前推挤,致使孔压快速上升,滑动卸荷后孔压快速释放。以上结果说明,孔隙水压力的上升可能会在滑面处产生扬压力,在裂缝处产生扩张力,从而促进滑坡的发生,孔隙水压力的骤降与坡体的变形破坏同步发生或稍微滞后。

    当无裂缝时,见图8(g),前缘推力(S4)在降雨约100 min时先下降后快速上升,最大土压力达到9 kPa,之后再快速下降,变化时间与滑坡前缘变形破坏时间一致,土压力快速上升对应滑坡临滑前的应力积累,土压力骤降说明滑坡已经发生变形破坏。中部(S2,该点土压力传感器平躺以监测上覆土压力变化)土压力减小是因为滑坡前缘滑动,使中部坡体表层向下溜滑造成上覆压力减小造成。大约在降雨150 min后,中前部土压力(S3)快速增大后再骤降,且峰值土压力超过30 kPa,说明前缘发生了较大规模滑动。但后缘(S1)土压力一直没有明显的变化,这与滑坡后缘几乎没有变形相对应。

    当发育裂缝时,见图8(h),前缘土压力(S4)在40~80 min出现了第一次快速上升和骤降,峰值达到30 kPa,对应滑坡前缘的第一次滑动(图6a图6b);120 min后,前缘土压力(S4)开始急速上升,之后到200 min,土压力呈波动下降,其中最大土压力达到75 kPa,远大于第一次滑动时的推力,说明滑动规模明显增大;另外,80~130 min后缘土压力(S1)也出现缓慢的上升和骤降。以上表明,120 min后,滑坡从后缘裂缝处出现了整体性的大规模滑动(图7d—f)。

    对比无裂缝和有裂缝工况下的土压力变化情况发现,有裂缝时,首次变形破坏时间明显提前(40 min和100 min),并且滑动规模明显增大(无裂缝时,仅前缘小规模滑动;有裂缝时,出现整体滑动)。说明坡体裂缝不仅可以加速雨水入渗,还能增大滑坡复活规模。

    无裂缝时(图9),随降雨持时增加,滑坡体电阻率逐渐减小,但30 min以内减小幅度有限,几乎与降雨前没有差别,降雨60 min后电阻率值基本上平行坡面呈“活塞式”逐渐减小。但即使连续降雨超过150 min,低阻区也主要集中在滑坡体浅层位置,没有到达滑坡深部的滑带位置。降雨180 min后,坡体前缘的电阻率值有所升高,这是由于前缘滑动,出现拉张裂缝,造成土质疏松所致。

    图  9  无裂缝工况下不同降雨持时的土壤电阻率相对变化云图
    Figure  9.  Contour map of relative variation of soil resistivity under different rainfall durations under the condition with no cracks

    有裂缝时(图10),降雨持时30 min,就可以明显看到坡体前部的电阻率值减小;随着降雨持时增加,坡体前部的低阻区逐渐扩大,并在降雨90 min后形成贯通滑带的“漏斗”型低阻区;随降雨持时继续增加,在坡体后部也逐渐形成贯通滑带的“漏斗”型低阻区;这表明,当坡表发育裂缝时,雨水可以沿裂缝快速渗入滑坡深部,并在裂缝附近形成低阻区。

    图  10  有裂缝工况下不同降雨持时的土壤电阻率相对变化云图
    Figure  10.  Contour map of relative variation of soil resistivity under different rainfall durations under the condition with cracks

    孔隙水压力监测表明,当坡体表面无裂缝时,滑体渗透系数相对较小,需要长时间降雨才能渗透到滑坡深部滑带位置(至少180 min),影响范围主要为浅层滑体。而当坡体表面发育裂缝时,由于裂缝的饱和渗透系数足够大,持水能力大大下降,雨水可以沿裂缝快速渗入至深层滑带位置(约80 min),造成地下水位抬升,此时的饱和顺序为由下向上,与无裂缝时由上向下近似均匀渗透饱和的特征具有显著差异。

    电阻率层析成像监测表明,裂缝可以明显加快渗透速度,裂缝条件下电阻率值减小时间至少提前了30 min。同时,裂缝也可以明显影响雨水的渗透深度,无裂缝时,连续降雨180 min雨水也仅渗透到滑坡体厚度的一半,而有裂缝时仅需要连续降雨90 min,降雨可以沿裂缝优势入渗通道渗透到滑坡深部的滑带位置。

    对比土压力变化情况发现,有裂缝时和无裂缝时的首次变形破坏时间分别为40 min和100 min。无裂缝时整体表现为溯源侵蚀复活,降雨50 min时,前缘首先出现裂缝,之后从前缘产生溯源侵蚀变形,随降雨持时增加,变形破坏范围不断向后扩展,但降雨300 min也没有出现整体性的复活滑动。有裂缝时,在降雨80 min以内为溯源侵蚀复活变形,120 min之后,沿前缘预设裂缝处逐渐扩张并发生滑动,160 min之后,后缘预设裂缝处也逐渐出现拉张变形,之后沿后缘发生整体性的复活滑动。说明坡体裂缝不仅可以加速雨水入渗,还能增大滑坡复活规模(图11)。

    图  11  无裂缝和有裂缝工况下的古滑坡复活模式
    Figure  11.  Reactivation mode of ancient landslide under the working conditions with no cracks and with cracks

    滑带土抗剪强度的降低、滑面剪切应力的增加或抗滑力的减小是导致古滑坡复活的关键。滑带土抗剪强度的降低可由物理化学作用导致的滑带土物质成分改变或由地下水或孔隙水压力升高等因素引发,剪应力的增加或抗滑力的减小可以由后缘堆载、地震荷载及坡脚扰动等因素引发(图12)。

    图  12  古滑坡复活作用力的综合示意图(据Lacroix et al, 2020修改)[16]
    Figure  12.  Comprehensive schematic demonstrating the forcing of the ancient landslide reactivation (modified from Lacroix et al, 2020)[16]

    (1)滑带土抗剪强度的降低

    滑带土抗剪强度降低是古滑坡复活的主要原因,可由物理化学作用导致的滑带土物质成分改变或由地下水或孔隙水压力升高等因素引发[16]。风化和矿物蚀变等物理化学作用造成的滑带土和滑体强度衰减伴随滑坡演化的长期过程[31]

    研究表明,古滑坡复活取决于材料(滑体和滑带)和外部触发因素(如降雨、融雪、灌溉、库水位波动等)。当坡体表面发育裂缝时,地表水可以沿裂缝形成的优势通道快速入渗到深部滑带位置[17],其不仅可造成滑带土强度弱化,而且可造成地下水或孔隙水压力升高,从而诱发深层古滑坡复活[16]

    (2)滑面剪切应力的增加或抗滑力的减小

    剪应力的增加或抗滑力的减小可以由滑坡后缘堆载、地震瞬时荷载及坡脚扰动、库水位下降等因素引发[1, 32]。滑坡后缘坡体剥落或人类堆载在古滑坡体上,导致作用于滑坡体的剪应力增加,形成不排水荷载,从而引发古滑坡复活,如都江堰红梅村滑坡[33]。短期瞬态载荷(如地震)也会快速增加滑带的应力,导致古滑坡复活[22, 34]。也有研究表明[3536],剪应力的增加往往是内外动力共同作用的结果,一些古滑坡复活与地震和降雨的叠加密切相关,地震可诱发古滑坡体产生裂缝[3738],促进雨水快速入渗[39],从而加剧了古滑坡复活。

    (1)裂缝可以影响滑坡体渗透速度和渗透深度。当坡体表面无裂缝时,滑体渗透系数相对较小,需要长时间降雨才能渗透到滑坡深部滑带位置,影响范围主要为浅层滑体。而当坡体表面发育裂缝时,雨水可以沿裂缝快速渗入至深层滑带位置,造成地下水位抬升,此时的饱和顺序为由下向上,与无裂缝时由上向下近似均匀渗透饱和的特征具有显著差异。

    (2)裂缝可以加速古滑坡变形和改变复活模式。有裂缝时和无裂缝时的首次变形破坏时间分别为40 min和100 min。无裂缝时,整体表现为溯源侵蚀复活;有裂缝时,在降雨80 min以内为溯源侵蚀复活变形,120 min之后,沿前缘预设裂缝处逐渐扩张并发生滑动,160 min之后,后缘预设裂缝处也逐渐出现拉张变形,之后沿后缘发生整体性的复活滑动。

    (3)滑坡在临滑前,深部孔隙水压力和土压力均急速上升;滑动后,压力快速释放,建议将孔隙水压力和土压力值的骤变作为古滑坡复活失稳的临界判据。

  • 图  1   典型古滑坡复活案例

    注:a为江顶崖滑坡;b为周场坪滑坡;c为甲居滑坡;d为茶树山滑坡;e为55道班滑坡。

    Figure  1.   Typical case of ancient landslide reactivation

    图  2   滑坡物理模型试验设计图

    注:上部为正视图,下部为俯视图。

    Figure  2.   Design of landslide physical model test

    图  3   模型试验材料

    注:a为黏土;b为粉土;c为砂土;d为砾石。

    Figure  3.   Materials for model test

    图  4   模型试验中的电极布设方案

    Figure  4.   Electrode layout scheme in model test

    图  5   滑坡物理模型试验现场模型图

    注:a为无裂缝模型正视图;b为有裂缝模型正视图;c为模型中的滑带;d为无裂缝模型俯视图;e为有裂缝模型俯视图。

    Figure  5.   Photos of landslide physical model test

    图  6   无裂缝工况下的滑坡复活演化过程

    注:a为降雨50 min;b为降雨100 min;c为降雨150 min;d为降雨200 min;e为降雨250 min;f为降雨300 min。

    Figure  6.   Reactivation and evolution process of landslide under the working condition with no cracks

    图  7   有裂缝工况下的滑坡复活演化过程

    注:a为降雨40 min;b为降雨80 min;c为降雨120 min;d为降雨160 min;e为降雨200 min;f为降雨240 min。

    Figure  7.   Reactivation and evolution process of landslide under the working condition with cracks

    图  8   物理模拟试验传感器监测曲线

    Figure  8.   Monitoring data from sensors in physical simulation test

    图  9   无裂缝工况下不同降雨持时的土壤电阻率相对变化云图

    Figure  9.   Contour map of relative variation of soil resistivity under different rainfall durations under the condition with no cracks

    图  10   有裂缝工况下不同降雨持时的土壤电阻率相对变化云图

    Figure  10.   Contour map of relative variation of soil resistivity under different rainfall durations under the condition with cracks

    图  11   无裂缝和有裂缝工况下的古滑坡复活模式

    Figure  11.   Reactivation mode of ancient landslide under the working conditions with no cracks and with cracks

    图  12   古滑坡复活作用力的综合示意图(据Lacroix et al, 2020修改)[16]

    Figure  12.   Comprehensive schematic demonstrating the forcing of the ancient landslide reactivation (modified from Lacroix et al, 2020)[16]

  • [1]

    YIN Yueping,ZHENG Wamo,LIU Yuping,et al. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan,China[J]. Landslides,2010,7(3):359 − 365. DOI: 10.1007/s10346-010-0225-9

    [2] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)]

    ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract)

    [3]

    GARCÍA-DELGADO H. The San Eduardo Landslide (Eastern Cordillera of Colombia):Reactivation of a deep-seated gravitational slope deformation[J]. Landslides,2020,17(8):1951 − 1964. DOI: 10.1007/s10346-020-01403-9

    [4]

    TU Guoxiang,HUANG Da,DENG Hui. Reactivation of a huge ancient landslide by surface water infiltration[J]. Journal of Mountain Science,2019,16(4):806 − 820. DOI: 10.1007/s11629-018-5315-5

    [5]

    GUO Changbao,ZHANG Yongshuang,LI Xue,et al. Reactivation of giant Jiangdingya ancient landslide in Zhouqu County,Gansu Province,China[J]. Landslides,2020,17(1):179 − 190. DOI: 10.1007/s10346-019-01266-9

    [6]

    MA Shuyue,QIU Haijun,HU Sheng,et al. Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12,2018,China[J]. Landslides,2021,18(1):383 − 396. DOI: 10.1007/s10346-020-01530-3

    [7]

    HE Kun,MA Guotao,HU Xiewen. Formation mechanisms and evolution model of the tectonic-related ancient giant basalt landslide in Yanyuan County,China[J]. Natural Hazards,2021,106(3):2575 − 2597. DOI: 10.1007/s11069-021-04555-6

    [8]

    BOOTH A M,MCCARLEY J,HINKLE J,et al. Transient reactivation of a deep-seated landslide by undrained loading captured with repeat airborne and terrestrial lidar[J]. Geophysical Research Letters,2018,45(10):4841 − 4850. DOI: 10.1029/2018GL077812

    [9]

    IVERSON R M,GEORGE D L,ALLSTADT K,et al. Landslide mobility and hazards:Implications of the 2014 Oso disaster[J]. Earth and Planetary Science Letters,2015,412:197 − 208. DOI: 10.1016/j.jpgl.2014.12.020

    [10]

    NOTTI D,WRZESNIAK A,DEMATTEIS N,et al. A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event:A case study of the Monesi di Mendatica landslide,Ligurian Alps[J]. Landslides,2021,18(7):2341 − 2365. DOI: 10.1007/s10346-021-01651-3

    [11]

    MACCIOTTA R,HENDRY M,MARTIN C D. Developing an early warning system for a very slow landslide based on displacement monitoring[J]. Natural Hazards,2016,81(2):887 − 907. DOI: 10.1007/s11069-015-2110-2

    [12] 杨校辉,朱鹏,窦晓东,等. 甘肃舟曲江顶崖古滑坡复活变形特征与稳定性分析[J]. 地质通报,2024,43(6):947 − 957. [YANG Xiaohui,ZHU Peng,DOU Xiaodong,et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu,Gansu Province[J]. Geological Bulletin of China,2024,43(6):947 − 957. (in Chinese with English abstract)]

    YANG Xiaohui, ZHU Peng, DOU Xiaodong, et al. Resurrection deformation characteristics and stability of Jiangdingya ancient landslide in Zhouqu, Gansu Province[J]. Geological Bulletin of China, 2024, 43(6): 947 − 957. (in Chinese with English abstract)

    [13] 齐畅,吴瑞安,马海善,等. 西藏庞村古滑坡发育特征与危险性评价[J/OL]. 地质通报,(2023-11-27)[2024-06-08]. [QI Chang,WU Ruian,MA Haishan,et al. Development characteristics and hazard assessment of the Pangcun landslide,Xizang[J/OL]. Geological Bulletin of China,(2023-11-27)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in Chinese with English abstract)]

    QI Chang, WU Ruian, MA Haishan, et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geological Bulletin of China, (2023-11-27)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in Chinese with English abstract)

    [14] 杨志华,吴瑞安,郭长宝,等. 融合斜坡形变特征的复杂山区区域滑坡评价研究现状与展望[J/OL]. 中国地质,(2023-10-10)[2024-06-08]. [YANG Zhihua,WU Rui’an,GUO Changbao,WU Yuming,et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China,(2023-10-10)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.1167.P.20231009.1724.016.html. (in Chinese with English abstract)]

    YANG Zhihua, WU Rui’an, GUO Changbao, WU Yuming, et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China, (2023-10-10)[2024-06-08]. http://kns.cnki.net/kcms/detail/11.1167.P.20231009.1724.016.html. (in Chinese with English abstract)

    [15] 胡瑞林,李晓,王宇,等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报,2020,28(2):255 − 281. [HU Ruilin,LI Xiao,WANG Yu,et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology,2020,28(2):255 − 281. (in Chinese with English abstract)]

    HU Ruilin, LI Xiao, WANG Yu, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255 − 281. (in Chinese with English abstract)

    [16]

    LACROIX P,HANDWERGER A L,BIÈVRE G. Life and death of slow-moving landslides[J]. Nature Reviews Earth & Environment,2020,1:404 − 419.

    [17]

    KRZEMINSKA D M,BOGAARD T A,MALET J P,et al. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide[J]. Hydrology and Earth System Sciences,2013,17(3):947 − 959. DOI: 10.5194/hess-17-947-2013

    [18] 李同录,习羽,侯晓坤. 水致黄土深层滑坡灾变机理[J]. 工程地质学报,2018,26(5):1113 − 1120. [LI Tonglu,XI Yu,HOU Xiaokun. Mechanism of surface water infiltration induced deep loess landslide[J]. Journal of Engineering Geology,2018,26(5):1113 − 1120. (in Chinese with English abstract)]

    LI Tonglu, XI Yu, HOU Xiaokun. Mechanism of surface water infiltration induced deep loess landslide[J]. Journal of Engineering Geology, 2018, 26(5): 1113 − 1120. (in Chinese with English abstract)

    [19] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Krent status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)]

    ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Krent status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)

    [20]

    ZHOU Zhou,SHEN Junhui,LI Ying,et al. Mechanism of colluvial landslide induction by rainfall and slope construction:A case study[J]. Journal of Mountain Science,2021,18(4):1013 − 1033. DOI: 10.1007/s11629-020-6048-9

    [21] 许强,汤明高,徐开祥,等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报,2008,27(6):1104 − 1112. [XU Qiang,TANG Minggao,XU Kaixiang,et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1104 − 1112. (in Chinese with English abstract)]

    XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104 − 1112. (in Chinese with English abstract)

    [22] 杜飞,任光明,夏敏,等. 地震作用诱发老滑坡复活机制的数值模拟[J]. 山地学报,2015,33(2):233 − 239. [DU Fei,REN Guangming,XIA Min,et al. Numerical simulation of ecurrence mechanism of old landslide under earthquake loading[J]. Mountain Research,2015,33(2):233 − 239. (in Chinese with English abstract)]

    DU Fei, REN Guangming, XIA Min, et al. Numerical simulation of ecurrence mechanism of old landslide under earthquake loading[J]. Mountain Research, 2015, 33(2): 233 − 239. (in Chinese with English abstract)

    [23] 吴瑞安,张永双,郭长宝,等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报,2018,40(9):1659 − 1667. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1659 − 1667. (in Chinese with English abstract)]

    WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659 − 1667. (in Chinese with English abstract)

    [24] 任三绍,张永双,徐能雄,等. 含砾滑带土复活启动强度研究[J]. 岩土力学,2021,42(3):863 − 873. [REN Sanshao,ZHANG Yongshuang,XU Nengxiong,et al. Mobilized strength of sliding zone soils with gravels in reactivated landslides[J]. Rock and Soil Mechanics,2021,42(3):863 − 873. (in Chinese with English abstract)]

    REN Sanshao, ZHANG Yongshuang, XU Nengxiong, et al. Mobilized strength of sliding zone soils with gravels in reactivated landslides[J]. Rock and Soil Mechanics, 2021, 42(3): 863 − 873. (in Chinese with English abstract)

    [25] 任三绍,郭长宝,张永双,等. 川西巴塘茶树山滑坡发育特征及形成机理[J]. 现代地质,2017,31(5):978 − 989. [REN Sanshao,GUO Changbao,ZHANG Yongshuang,et al. Development characteristics and formation mechanism of Chashushan landslide in Batang,western Sichuan[J]. Geoscience,2017,31(5):978 − 989. (in Chinese with English abstract)]

    REN Sanshao, GUO Changbao, ZHANG Yongshuang, et al. Development characteristics and formation mechanism of Chashushan landslide in Batang, western Sichuan[J]. Geoscience, 2017, 31(5): 978 − 989. (in Chinese with English abstract)

    [26]

    ZHANG Yongshuang,REN Sanshao,LIU Xiaoyi,et al. Reactivation mechanism of old landslide triggered by coupling of fault creep and water infiltration:A case study from the East Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment,2023,82(8):291. DOI: 10.1007/s10064-023-03290-5

    [27] 闫亚景,闫永帅,赵贵章,等. 基于高密度电法的天然边坡水分运移规律研究[J]. 岩土力学,2019,40(7):2807 − 2814. [YAN Yajing,YAN Yongshuai,ZHAO Guizhang,et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics,2019,40(7):2807 − 2814. (in Chinese with English abstract)]

    YAN Yajing, YAN Yongshuai, ZHAO Guizhang, et al. Study on moisture migration in natural slope using high-density electrical resistivity tomography method[J]. Rock and Soil Mechanics, 2019, 40(7): 2807 − 2814. (in Chinese with English abstract)

    [28] 赵宽耀,许强,刘方洲,等. 黄土中优势通道渗流特征研究[J]. 岩土工程学报,2020,42(5):941 − 950. [ZHAO Kuanyao,XU Qiang,LIU Fangzhou,et al. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):941 − 950. (in Chinese with English abstract)]

    ZHAO Kuanyao, XU Qiang, LIU Fangzhou, et al. Seepage characteristics of preferential flow in loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 941 − 950. (in Chinese with English abstract)

    [29]

    IVANOV V,AROSIO D,TRESOLDI G,et al. Investigation on the role of water for the stability of shallow landslides—insights from experimental tests[J]. Water,2020,12(4):1203. DOI: 10.3390/w12041203

    [30] 肖捷夫,李云安,蔡浚明. 水位涨落作用下藕塘滑坡响应特征模型试验研究[J]. 工程地质学报,2020,28(5):1049 − 1056. [XIAO Jiefu,LI Yun’an,CAI Junming. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology,2020,28(5):1049 − 1056. (in Chinese with English abstract)]

    XIAO Jiefu, LI Yun’an, CAI Junming. Model test research on response characteristics of outang landslide under water level fluctuation[J]. Journal of Engineering Geology, 2020, 28(5): 1049 − 1056. (in Chinese with English abstract)

    [31]

    SHUZUI Haruo. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks,Japan[J]. Engineering Geology,2001,61(4):199 − 220. DOI: 10.1016/S0013-7952(01)00025-4

    [32]

    NERESON A L,DAVILA OLIVERA S,FINNEGAN N J. Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in central California[J]. Geophysical Research Letters,2018,45(18):9672 − 9680. DOI: 10.1029/2018GL079430

    [33] 党杰,杨亮,段方情,等. 贵州晴隆红寨大型古滑坡复活变形特征及成因分析[J]. 中国地质灾害与防治学报,2024,35(4):25 − 35. [DANG Jie,YANG Liang,DUAN Fangqing,et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):25 − 35. (in Chinese with English abstract)]

    DANG Jie, YANG Liang, DUAN Fangqing, et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 25 − 35. (in Chinese with English abstract)

    [34] 胡卸文,黄润秋,朱海勇,等. 唐家山堰塞湖库区马铃岩滑坡地震复活效应及其稳定性研究[J]. 岩石力学与工程学报,2009,28(6):1270 − 1278. [HU Xiewen,HUANG Runqiu,ZHU Haiyong,et al. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1270 − 1278. (in Chinese with English abstract)]

    HU Xiewen, HUANG Runqiu, ZHU Haiyong, et al. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1270 − 1278. (in Chinese with English abstract)

    [35]

    BONTEMPS N,LACROIX P,LAROSE E,et al. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state[J]. Nature Communications,2020,11(1):780. DOI: 10.1038/s41467-020-14445-3

    [36] 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报,2021,40(4):777 − 789. [ZHANG Yongshuang,WU Ruian,REN Sanshao. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):777 − 789. (in Chinese with English abstract)]

    ZHANG Yongshuang, WU Ruian, REN Sanshao. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 777 − 789. (in Chinese with English abstract)

    [37]

    REN Sanshao,ZHANG Yongshuang,LI Jinqiu,et al. Deformation behavior and reactivation mechanism of the dandu ancient landslide triggered by seasonal rainfall:A case study from the East Tibetan Plateau,China[J]. Remote Sensing,2023,15(23):5538. DOI: 10.3390/rs15235538

    [38] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)]

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)

    [39] 黄达,高溢康,黄文波. 基于CT扫描的渗流作用下碎石土孔隙结构变化规律研究[J]. 水文地质工程地质,2024,51(2):123 − 131. [HUANG Da,GAO Yikang,HUANG Wenbo. Research on pore structural change of gravel soil under seepage erosion based on CT scanning[J]. Hydrogeology & Engineering Geology,2024,51(2):123 − 131. (in Chinese with English abstract)]

    HUANG Da, GAO Yikang, HUANG Wenbo. Research on pore structural change of gravel soil under seepage erosion based on CT scanning[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 123 − 131. (in Chinese with English abstract)

图(12)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  25
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-30
  • 修回日期:  2024-06-07
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-28
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回