ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势

辜超颖, 王新刚

辜超颖,王新刚. 基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势[J]. 中国地质灾害与防治学报,2025,36(3): 39-56. DOI: 10.16031/j.cnki.issn.1003-8035.202404046
引用本文: 辜超颖,王新刚. 基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势[J]. 中国地质灾害与防治学报,2025,36(3): 39-56. DOI: 10.16031/j.cnki.issn.1003-8035.202404046
GU Chaoying,WANG Xingang. Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis[J]. The Chinese Journal of Geological Hazard and Control,2025,36(3): 39-56. DOI: 10.16031/j.cnki.issn.1003-8035.202404046
Citation: GU Chaoying,WANG Xingang. Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis[J]. The Chinese Journal of Geological Hazard and Control,2025,36(3): 39-56. DOI: 10.16031/j.cnki.issn.1003-8035.202404046

基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势

基金项目: 国家重点研发计划项目(2023YFC3008401);陕西省自然科学基础研究计划重点项目(2024JC-ZDXM-19)
详细信息
    作者简介:

    辜超颖(2000—),女,山西临汾人,硕士研究生,主要从事黄土地质灾害与防控研究。E-mail:guchaoying@stumail.nwu.edu.cn

    通讯作者:

    王新刚(1984—),男,陕西宝鸡人,教授,博士生导师,主要从事地质灾害机理与防控研究。E-mail:xgwang@nwu.edu.cn

  • 中图分类号: P642.22

Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis

  • 摘要:

    我国是世界上滑坡灾害频发的国家之一,对滑坡的研究一直是防灾减灾的重点。滑带土是滑坡的重要组成部分,对滑带土展开研究不仅有助于深化对滑坡机理的认识,也可为预测滑坡的发生提供有力的支撑和依据。文章首先利用CiteSpace软件对我国近十二年来的滑坡滑带土相关研究进行关键词的图谱分析,归纳了近年来有关滑坡滑带土的主要研究方向;然后重点从滑带土的力学特性以及其在滑带演化过程中起到的关键作用进行文献梳理分析;最后对未来滑坡滑带土研究可能遇到的机遇与挑战进行了展望,提出了从滑坡的预警预报和韧性防控角度出发,结合多学科交叉方法,通过大数据挖掘、人工智能等新技术,对滑坡滑带土进行多尺度(巨-宏-细-微)、全方位、多时序的科学研究将是未来的主要方向。

    Abstract:

    China ranks among the nations globally that are prone to frequent landslide disasters. The investigation and research of landslide has always been key focuses of disaster prevention and mitigation. Slide zone soil is a crucial component of landslides. Studying slip zone soils not only deepens the understanding of landslide mechanisms but also provides strong support for predicting landslide occurrences. This paper uses CiteSpace software to analyze keywords and graphs of landslide soil in recent 12 years, summarizing the main research directions in recent years. It then reviews and analyzes the mechanical characteristics of slip zone soils and their key role in the evolution of slip zones. Finally, the paper explores the opportunities and challenges that may be encountered in the study of slip zone soil in future, proposing that from the perspectives of landslide early warning and resilience control, combining multidisciplinary methods and leveraging new technologies such as big data mining and artificial intelligence for multi-scale (macro-micro-nano), comprehensive, and multi-temporal scientific research on landslide slip zone soils will be the main direction in the future.

  • 据统计,季节性寒区面积在我国国土面积中占比为75%,而在自然界中具有层状构造的岩石约占陆地面积的三分之二,在中国更是占到77%以上[1],说明在寒区工程中面临更多的层状岩石冻融破坏问题,在冻融环境下,温度下降使岩石内部孔隙水冻结,体积膨胀,而固体介质遇冷收缩,致使冻胀力的产生,导致岩石内部原生孔隙和裂隙发展,同时产生新的孔隙,并破坏岩石内的胶结物;温度上升使岩石内部冰融化成水,并在岩石内部渗流迁移,形成裂隙通道并带走破坏后的胶结物质与颗粒,使岩石孔隙率进一步增大,进而导致岩石的损伤[2]。而对于层状岩石的层理面更易于发生冻融损伤,这对寒区工程稳定性存在一定的威胁,容易发生工程事故[3]。所以研究层状岩石受冻融作用后的力学特征,对寒区工程具有一定的指导意义。

    层状岩石是指具有一组占绝对优势的结构面(层理面或者片理面)的岩体,与普通岩石相比具有一些特殊的特征。一些沉积岩(如砂岩、石灰石和页岩)和变质岩(如花岗岩、玄武岩和麻粒岩)具有明显的层理结构,声发射(acoustic emission,AE)技术可以有效、连续地实时监测脆性材料中细裂纹的产生和扩展,并实现裂纹的定位,已成为岩石变形和破坏的重要监测方法。Jia等[4]在不同次数的冻融循环后,测试了不同层理砂岩的P波速度、单轴抗压强度、拉伸强度和剪切强度。通过上述参数定义了几个各向异性指数,并分析了它们随冻融循环的变化;常森等[5]研究了冲击作用下冻融循环层理砂岩的强度、变形性质,针对性地对岩石的层理动荷载关系进行了力学响应的试验研究;张东明等[6]、Wang等[7]研究了含层理岩石在单轴压缩下损伤破坏声发射参数及能量耗散规律;姜德义等[8]、刘慧等[9]、宋彦琦等[10]、杨更社等[11]开展了不同冻融循环次数岩石单轴声发射试验,获得相应的物理力学参数,并分析声发射信号与冻融灰岩内部微裂纹活动的相关性; Qiao等[12]研究了冻融压缩荷载作用下非永久性节理岩石的断裂和声发射特征,结果表明,随着冻融循环次数的增加,材料的物理力学参数有不同程度的劣化;郑坤等[1314]、付斌等[15]、王桂林等[16]、张艳博等[17]、蒋利松等[18]开展了岩石的声发射监测试验,获取了岩石的声发射累计振铃计数、累计能量计数等参数演化特征;赵娜等[19]、陈东升等[20]、何建华等[21]分析了岩石变形破坏过程中岩石损伤与声发射特征参数的变化情况。

    综上,虽然学者对层状岩石的研究较多,但是对在冻融循环下层状岩石声发射特征研究还是相对较少。本文对层理砂岩进行了单轴压缩和声发射试验,研究了声发射振铃计数、振铃累计数、RA-AF值以及b值的演化特征。

    砂岩试样取自四川省某露天矿区,该地气候寒冷,冬季寒冷漫长,昼夜温差大。试样表面呈黄色,层理发育明显。取样后经过切割、打磨等加工工序,根据ISRM标准,将试件制成50×100 mm、表面平行度小于0.02的标准圆柱体试件。由于层状岩石的力学特性在同一层面内大致相同,但在平行和垂直方向上差异较大。因此,仅选用平行和垂直于层理面的两种试样,平行层理试样和垂直层理试样分别简称为P试样和V试样,两种试样用声波测速仪筛选出波速相近,剔除波速离散度较高的试件,减小试验的离散程度。选出层理均匀、结构完整的试样后,将其分为8组试样,每组平行、垂直层理试样各一个,如图1所示。

    图  1  平行、垂直层理试样
    Figure  1.  Parallel and vertical bedding samples

    将试样在模拟环境试验机内进行冻融循环,在试验机里−20 °C冻结6 h,然后在20 °C下融化6 h,如图2所示,循环次数分别为0,20,40,60次,每个循环次数设置两个平行组。先将所有试样在105 °C烘箱中干燥24 h后,留下两组(0次冻融循环)试样,直接进行单轴声发射试验,然后将剩下的试样真空饱水24 h后,放入环境模拟试验机分别进行冻融循环20,40,60次,其中将需要进行60次冻融循环的两组试样每隔20次冻融循环取出并烘干,同时对试样的波速、质量进行统计,最后进行单轴声发射试验。

    图  2  冻融流程曲线示意
    Figure  2.  Schematic diagram of freeze-thaw flow curve

    加载系统采用DSZ-1000型应力应变三轴剪切渗透试验仪。加载试验设备由加载系统、声发射系统和观测系统组成。该设备由伺服液压动力系统、伺服介质控制系统和数据采集及控制系统组成,针对岩石和混凝土材料,该设备可以进行单轴、三轴应力应变试验,剪切试验,岩石力学流变试验,岩石力学渗透试验,温度条件下的岩石力学试验等。试验设备最大轴向力1000 kN,最大切向力300 kN,试验力测量精度小于±0.5%;声发射系统采用PIC-Express型声发射监测系统。该系统由1台计算机、1个软件、8个波形通道、8个放大器和探头组成;该系统支持多通道声发射信号检测,稳定性好,灵敏度高,传输高速。单轴轴向压缩试验加载采用位移控制方式,加载速率为0.05 mm/min,试样失去承载能力时停止加载。AE监测系统的主放大器设置为40 dB,阈值为40 dB。试验设备见图3

    图  3  试验设备
    Figure  3.  Test equipment

    岩石在经过冻融循环后,岩石内部孔隙得到较好的发育,孔隙率和波速都能定量地反映出岩石内部孔隙的发育情况以及岩石质量的优劣程度[22]。在本次试验中将试样分别在0,20,40,60次冻融循环后取出烘干后测波速和称重,测完后将试样进行饱水24 h称重继续进行冻融循环直到60次,采用称重法计算试样的孔隙率[23],如式(1):

    n=(msmdρW)V (1)

    式中:n——岩石孔隙率/%;

    ms——岩样饱和后的质量/g;

    md——干燥岩样的质量/g;

    ρW——水的密度/(g·cm−3);

    V——岩样块体体积/cm3

    根据60次冻融循环过程中所测得孔隙率和波速,对结果取平均值得到图4。如图所示平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。平行、垂直层理试样纵波波速岩石孔隙度增加、纵波波速降低可集中反应结构体密度的降低,进一步表明随着冻融循环次数的增加,岩石内部孔隙等微观缺陷数量也在增加,岩石本身存在孔隙,在冻融循环过程中,孔隙中的水冻结成冰,产生冻胀力,扩大了孔隙体积;在融化过程中,孔隙里面的冰消融,液态水在新增微孔隙的虹吸作用下不断补充进来,在这样的冻融循环过程中,试样的孔隙率逐渐变大,纵波波速逐渐变小。由于层理角度的不同,相同条件下,在图中可以看出,垂直组试样的纵波波速比水平组试样的纵波波速大,这是由于层理弱面角度不同而导致的,垂直组试样具有的层理弱面更利于纵波传播,这说明不同层理角度的试样具有各向异性。

    图  4  不同冻融循环次数孔隙率及纵波波速的变化
    Figure  4.  Variation of porosity and P-wave velocity in different freeze-thaw cycles

    图5为不同冻融循环次数下两组层理砂岩的单轴压缩应力-应变曲线,在图中可以看出两组试样的应力-应变曲线,整体变化趋势相近,可分为OA孔隙压密阶段,AB线弹性阶段,BC非稳定破裂发展阶段,CD峰后失稳破坏阶段,随着冻融循环次数的增加,可以看出两组试样的应力峰值降低,曲线都有向下压缩,向右拉伸的趋势。

    图  5  不同冻融循环次数平行、垂直层理试样应力-应变曲线
    Figure  5.  Stress-strain curves of parallel and vertical bedding samples at different freeze-thaw cycles

    图6为不同冻融循环次数试样应力峰值及最大轴向应变的变化趋势,在对比0到60次冻融循环后,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样。

    图  6  不同冻融循环次数试样应力峰值及最大轴向应变的变化
    Figure  6.  Variation of stress peak and maximum axial strain of samples with different freeze-thaw cycles

    岩石在低温冻结下,水凝结成冰,体积会膨胀9%,这时会产生冻胀力,使试样内部孔隙发育,微裂纹开始产生;当温度升高时,冰融化,水在孔隙之间连通,形成水流通道,充满微裂纹空间。随着冻融循环作用的增强,试样内部微裂纹发育逐渐增强,直至微裂纹互相连接贯通。试样内部由于冻融损伤的累积,微观孔隙缺陷数量增多并造成了压密阶段增大,导致应力峰值降低,应变增加。所以两组试样的OA段孔隙压密阶段和CD段峰后破坏阶段明显变长,岩石从脆性破坏变为延性破坏的特征显著。但对比两组试样,平行组试样的峰后破坏阶段更加平缓,时间更长,这是由于层理方向不同。对于平行组试样,当轴向压力与层理面垂直时,在应力达到峰值时,平行层理弱面相对于垂直层理弱面能更充分发挥抵抗轴向压力的作用(表1)。

    表  1  试样冻融前后应力、应变峰值变化情况
    Table  1.  Peak stress and strain changes of samples before and after freeze-thaw
    冻融循环
    次数
    应力峰值下降比例/% 应变峰值增加比例/%
    平行层理试样 垂直层理试样 平行层理试样 垂直层理试样
    20 37.9 13.4 13.4 16.5
    40 41.3 29.1 33.7 30.4
    60 57.5 52.8 40.7 35.7
    下载: 导出CSV 
    | 显示表格

    声发射信号如果越过门槛值,就被定义为一次撞击,一个或若干个撞击构成一个AE事件,其主要作用是反映AE源(材料内部缺陷)的活跃度。事件率是单位时间内AE事件发生的次数,累计事件数则是单位时间内AE事件的累计叠加。因岩石在损伤破裂过程中1 s内对应若干个AE事件,故以1 s时间为单位,统计砂岩在单轴压缩试验全过程中AE事件率及其累计事件数,对比分析其演化特征[2425]

    图7图8所示,两组不同层理砂岩在不同冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,所以可整体分析将其分为三个阶段,平静阶段、阶梯式增长阶段、骤增阶段。

    图  7  平行层理试样振铃计数、振铃累计数变化特征
    Figure  7.  Variation characteristics of ringing counts and cumulative ringing counts of parallel bedding samples
    图  8  垂直层理试样振铃计数、振铃累计数变化特征
    Figure  8.  Variation characteristics of ringing counts and cumulative ringing counts of vertical bedding samples

    (1) 平静阶段振铃计数和振铃累计数增长缓慢,声发射事件较少,原生缺陷渐进压密使得岩样内部整体趋于完整,不具备发生明显声发射活动条件。

    (2) 阶梯式增长阶段处在砂岩的弹性阶段及非稳定破裂发展阶段振铃计数及振铃累计数显著增长,其中振铃累计数多呈阶段式增长。这是随着应力的增加,岩石内部开始产生微裂纹,更利于声发射事件的发生。

    (3) 骤增阶段声发射信号显著增强。此时应力达到峰值,试样内部微裂纹连接贯通,同时试样外部出现宏观裂纹,试样破坏前声发射的信号多且间隔时间短,声发射接收信号灯此时长亮,是试样破坏的前兆特征。

    岩石的劣化程度与AE事件数有明显的变化关系,随着冻融循环次数的增加,可以看到两组试样的平静阶段相对一个完整试验过程逐渐变短,阶梯增长阶段逐渐变长,试样在冻融循环作用下,内部孔隙之间发生联通,向外扩张,使岩石的抗压强度下降,在轴向应力增大时,AE事件也更容易发生;每个试样的对应的骤增阶段都很明显,说明试样在破坏时AE事件大量发生,声发射信号显著增强,是一个明显的破坏前兆特征。

    AE监测中使用较多的是借鉴于地震学中的破裂源参数统计指标,主要有b值以及对该统计指标的进一步统计分析。b值(b-value)起源于地震学中的 Gutenberg Richter(G-R)关系,即区域地震中大于M级的累计次数N的对数,与M级呈线性关系,如式(2)所示。

    lgN=abM (2)

    式中,ab是常数。在分析AE参数时,通常可以用振幅(A)除以20来表示声发射震级M,即 M=A/20。在计算b值时,A的单位是dB[26]

    在监测压缩岩石过程发生的小破裂事件和大断裂事件的相对数量可以用b值表示,并且可以代表 AE事件的规模分布,因此,在分析和预测岩石破裂的前兆中被广泛利用[27]。声发射b值与岩石内部裂纹萌生扩展过程密切相关,b值较大时对应大量弱声发射事件产生,说明小破裂占据主导,而当b值迅速降低时,则说明岩石内部大破裂开始增加或裂纹扩展的速度突增。

    图9中可以得知两组不同层理砂岩的声发射b值变化有很大的区别,说明不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,随着冻融循环次数的增加,b值变化明显,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变大,说明这些阶段以微破裂或者小破裂为主导,而在60次冻融循环后b值又变小,说明此时由微破裂转为大破裂。垂直组试样声发射b值变化与平行组试样相反呈正“V”型,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变小,说明在这些阶段垂直层理砂岩以大破裂为主,在60次冻融循环后,b值开始变大,这时岩石在冻融循环作用下,内部微破裂增多,产生的微裂纹相互连接贯通,岩石整体劣化程度高,以微破裂为主导。

    图  9  平行、垂直层理试样b值特征
    Figure  9.  Variation characteristics of b value in parallel and vertical bedding samples

    对于平行层理岩石,层理弱面与外界环境的接触程度更高,试件侧面平行层理弱面分布更广,更利于冻融损伤的累积。因此,随着冻融循环作用的加强,平行层理弱面劣化程度要高于垂直层理试样,这与前面两组试样的单轴抗压强度的变化结果一致。故在0~40次冻融循环作用下,由于平行层理试样的劣化程度高于垂直层理试样,故更可能发生大破裂,则b值变小。而在60次冻融循环后,试样内部得到充分劣化,又因为层理方向与轴向应力方向垂直,平行层理弱面相对于垂直层理弱面更能起到抵抗外力的作用,岩石内部以微破裂为主,则b值变大。

    基于声发射参数特征判别法是使用上升时间与最大振幅的比值(risetime/amplitude,RA)与平均频率(average frequency,AF)来进行破裂类型的判断。一般而言,拉伸破坏对应的声发射事件具有较小的 RA值和较大的 AF值;与剪切破坏对应的声发射事件具有较大的RA值和较小的AF值。

    图10显示了使用RAAF的声发射参数方法对拉伸和剪切裂纹进行分类的方法[28]。对角线可以用来作为拉伸裂纹和剪切裂纹的分界直线,直线上侧的裂纹即为拉伸裂纹,直线下侧的裂纹则为剪切裂纹,而直线的斜率AF/RA称之为拉剪裂纹判断的阈值。

    图  10  基于RA/AF值的裂纹分类
    Figure  10.  Crack classification based on RA/AF values

    图11图12可知,我们可以看到对于不同冻融循环次数的平行层理砂岩的破坏模式主要以拉伸裂纹为主,带有少量的剪切裂纹或者复合裂纹,在经过20,40,60次冻融循环的试样同样是以拉伸裂纹为主,剪切裂纹或者复合裂纹的变化比较小,但是没有经过冻融循环处理的试样对照经过冻融循环作用的试样组,它的剪切裂纹或者复合裂纹较多,与图13试样的宏观破裂特征与其对应一致。对于垂直层理砂岩的破坏模式与平行层理砂岩有所区别,在未经过冻融处理的试样主要以拉伸裂纹和剪切裂纹为主,但随着冻融作用的加强,试样的拉伸裂纹逐渐增多,剪切裂纹逐渐减少,在经过60次冻融循环处理后,试样破坏基本以拉伸裂纹为主,这与图13试样在宏观上的拉伸破裂特征一致。

    图  11  平行层理试样RA-AF值变化特征
    Figure  11.  Characteristics of RA-AF value changes in parallel bedding samples
    图  12  垂直层理试样RA-AF值变化特征
    Figure  12.  Characteristics of RA-AF value changes in vertically layered samples
    图  13  试样宏观破坏特征
    Figure  13.  Macroscopic failure characteristics of samples

    (1) 平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。

    (2) 在对比0到60次冻融循环后,水平层理试样的应力峰值下降了57.5%、应变增大40.7%,而垂直层理砂岩应力峰值下降52.8%、应变增大35.4%,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样,

    (3) 两组不同层理砂岩在冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,可分为三个阶段:平静阶段、阶梯式增长阶段、骤增阶段。

    (4) 不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,而垂直组试样声发射b值变化呈正“V”型,基于RA-AF值变化特征表明平行层理黄砂岩基本以拉伸破坏为主,而垂直层理砂岩在未处理时以拉伸破坏和剪切破坏为主,在60次冻融循环处理后,以拉伸破坏为主。

  • 图  1   不同类型的滑带土

    Figure  1.   Different types of slip zone soils

    图  2   滑坡滑带土主要研究国家分布及合作关系

    Figure  2.   Distribution and collaboration of major research countries on landslide slip zone soils

    图  3   关键词聚类(a)及时间线图谱(b)

    Figure  3.   Keyword clustering (a) and timeline atlas (b)

    图  4   关键词突现分析

    注:Keywords为关键词;Year为关键词出现的年份;Strength为关键词的实现强度;Begin与End为关键词突现开始与结束时间。

    Figure  4.   Keyword emergence analysis

    图  5   滑带土力学性质简介

    Figure  5.   Overview of the mechanical properties of slip zone soil of landslides

    图  6   滑带土等时曲线和蠕变曲线概念图(引自文献[66])

    Figure  6.   Conceptual diagram of isochronous and creep curves of slip zone soil of landslides (cited from Ref. [66])

    图  7   滑带土的力学性质在滑坡演化过程中的关键作用

    Figure  7.   The key role of mechanical properties of slip zone soils in the evolution process of landslides

    图  8   新技术的出现所面临的挑战与机遇

    Figure  8.   Challenges and opportunities posed by the emergence of new technologies

    图  9   滑坡“天-空-地-内”协同监测体系(陕西合阳北郭村黄土滑坡)

    Figure  9.   The system of “space-air-ground-interior” cooperative monitoring of landslide (loess landslide in Beiguo village, Heyang, Shaanxi)

    图  10   近5年滑坡监测关键词图谱分析

    Figure  10.   Analysis of keyword atlas of landslide monitoring in the past five years

    图  11   滑坡滑带土巨-宏-细-微多尺度孕灾机理

    Figure  11.   Multi-scale (macro-micro-nano) disaster pregnancy mechanism of landslide slip zone soils

  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001

    [2] 傅传元. 滑坡七类七型分类和中国铁路滑坡分布规律[J]. 重庆交通学院学报,1985(2):83 − 91. [FU Chuanyuan. Classification of seven types and seven types of landslides and distribution law of railway landslides in China[J]. Journal of Chongqing Jiaotong University,1985(2):83 − 91. (in Chinese with English abstract)]

    FU Chuanyuan. Classification of seven types and seven types of landslides and distribution law of railway landslides in China[J]. Journal of Chongqing Jiaotong University, 1985(2): 83 − 91. (in Chinese with English abstract)

    [3] 李晓,梁收运,郑国东. 滑带土的研究进展[J]. 地球科学进展,2010,25(5):484 − 491. [LI Xiao,LIANG Shouyun,ZHENG Guodong. Progresses in sliding zone soil of landslides[J]. Advances in Earth Science,2010,25(5):484 − 491. (in Chinese with English abstract)]

    LI Xiao, LIANG Shouyun, ZHENG Guodong. Progresses in sliding zone soil of landslides[J]. Advances in Earth Science, 2010, 25(5): 484 − 491. (in Chinese with English abstract)

    [4]

    LIAN Baoqin,WANG Xingang,PENG Jianbing,et al. Shear rate effect on the residual strength characteristics of saturated loess in naturally drained ring shear tests[J]. Natural Hazards and Earth System Sciences,2020,20(10):2843 − 2856. DOI: 10.5194/nhess-20-2843-2020

    [5] 王新刚,刘凯,连宝琴,等. 黄土-泥岩滑坡诱发因素及形成机理研究进展[J]. 西北大学学报(自然科学版),2021,51(3):404 − 413. [WANG Xingang,LIU Kai,LIAN Baoqin,et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides[J]. Journal of Northwest University (Natural Science Edition),2021,51(3):404 − 413. (in Chinese with English abstract)]

    WANG Xingang, LIU Kai, LIAN Baoqin, et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 404 − 413. (in Chinese with English abstract)

    [6]

    LIAN Baoqin,WANG Xingang,LIU Kai,et al. A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay[J]. Scientific Reports,2021,11:17556. DOI: 10.1038/s41598-021-96384-7

    [7] 辛鹏,吴树仁,石菊松,等. 黄土高原渭河宝鸡段北岸大型深层滑坡动力学机制研究[J]. 地质学报,2014,88(7):1341 − 1352. [XIN Peng,WU Shuren,SHI Jusong,et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica,2014,88(7):1341 − 1352. (in Chinese with English abstract)]

    XIN Peng, WU Shuren, SHI Jusong, et al. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica, 2014, 88(7): 1341 − 1352. (in Chinese with English abstract)

    [8] 柳万里. 含泥岩类夹层巴东组斜坡工程地质特性及其孕滑机理研究[D]. 武汉:中国地质大学,2022. [LIU Wanli. Study on engineering geological characteristics and sliding mechanism of Badong formation slope with mudstone interlayer[D]. Wuhan:China University of Geosciences,2022. (in Chinese with English abstract)]

    LIU Wanli. Study on engineering geological characteristics and sliding mechanism of Badong formation slope with mudstone interlayer[D]. Wuhan: China University of Geosciences, 2022. (in Chinese with English abstract)

    [9] 许强,黄润秋,殷跃平,等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报,2009,17(4):433 − 444. [XU Qiang,HUANG Runqiu,YIN Yueping,et al. A preliminary study on the basic characteristics and genetic mechanism of Jiwei landslide in Wulong,Chongqing on June 5,2009[J]. Journal of Engineering Geology,2009,17(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.04.001

    XU Qiang, HUANG Runqiu, YIN Yueping, et al. A preliminary study on the basic characteristics and genetic mechanism of Jiwei landslide in Wulong, Chongqing on June 5, 2009[J]. Journal of Engineering Geology, 2009, 17(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.001

    [10]

    TANG Huiming,LI Changdong,HU Xinli,et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides,2015,12(3):511 − 521. DOI: 10.1007/s10346-014-0500-2

    [11] 邬 凯,周立荣,张乐,等. 饱水软化下顺层边坡原状滑带土强度特性研究[J]. 土木工程学报. 2023,11(56):24 − 34. [WU Kai,ZHOU Lirong,ZHANG Le,et al. Study on strength characteristics of undisturbed sliding zone soil in water-softened lower bedding slope [J]. Chinese Journal of Civil Engineering. 2023,11(56):24 − 34. (in Chinese with English abstract)]

    WU Kai, ZHOU Lirong, ZHANG Le, et al. Study on strength characteristics of undisturbed sliding zone soil in water-softened lower bedding slope [J]. Chinese Journal of Civil Engineering. 2023, 11(56): 24 − 34. (in Chinese with English abstract)

    [12]

    SHIFFRIN R M,BÖRNER K. Mapping knowledge domains[J]. PNAS2004,101(Sup 1):5183 − 5185.

    [13] 陈文玥,余静,姜璐. 基于CiteSpace的海岸地质灾害风险评估研究知识图谱分析[J]. 海洋湖沼通报. 2022,44(6):173 − 182. [CHEN Wenyue,YU Jing,JIANG Lu. Analysis of knowledge map for coastal geological hazard risk assessment based on CiteSpace [J]. Bulletin of Oceanology and Limnology. 202,44(6):173 − 182. (in Chinese with English abstract)]

    CHEN Wenyue, YU Jing, JIANG Lu. Analysis of knowledge map for coastal geological hazard risk assessment based on CiteSpace [J]. Bulletin of Oceanology and Limnology. 202, 44(6): 173 − 182. (in Chinese with English abstract)

    [14] 赵蓉英,许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010,36(5):60 − 68. [ZHAO Rongying,XU Limin. Analysis on the knowledge map of the development and evolution of bibliometrics and its research frontier[J]. Journal of Library Science in China,2010,36(5):60 − 68. (in Chinese with English abstract)]

    ZHAO Rongying, XU Limin. Analysis on the knowledge map of the development and evolution of bibliometrics and its research frontier[J]. Journal of Library Science in China, 2010, 36(5): 60 − 68. (in Chinese with English abstract)

    [15]

    CHEN Chaomei. CiteSpace II:detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology,2006,57(3):359 − 377. DOI: 10.1002/asi.20317

    [16] 张绍波,王梦琪,姜俊超. 基于CiteSpace的水资源承载力的热点与前沿可视化分析[J]. 辽宁师范大学学报(自然科学版),2022,45(4):524 − 532. [ZHANG Shaobo,WANG Mengqi,JIANG Junchao. CiteSpace-based visualisation of hotspots and frontiers in water carrying capacity[J]. Journal of Liaoning Normal University (Natural Science Edition),2022,45(4):524 − 532. (in Chinese with English abstract)]

    ZHANG Shaobo, WANG Mengqi, JIANG Junchao. CiteSpace-based visualisation of hotspots and frontiers in water carrying capacity[J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 45(4): 524 − 532. (in Chinese with English abstract)

    [17] 夏梅梅,钟宛凌,欧阳里山,等. 1989—2018年国内作物连作障碍研究现状——基于CNKI的文献计量学分析和科学知识图谱研究[J]. 农学学报,2021,11(3):46 − 54. [XIA Meimei,Zhong Wanling,OUYANG Lishan,et al. Research status of continuous cropping obstacles in China from 1989 to 2018:Bibliometric analysis and scientific knowledge map research based on CNKI [J]. Journal of Agricultural Sciences,2019,11(3):46 − 54. (in Chinese with English abstract)]

    XIA Meimei, Zhong Wanling, OUYANG Lishan, et al. Research status of continuous cropping obstacles in China from 1989 to 2018: Bibliometric analysis and scientific knowledge map research based on CNKI [J]. Journal of Agricultural Sciences, 2019, 11(3): 46 − 54. (in Chinese with English abstract)

    [18] 王志荣,王念秦. 黄土滑坡研究现状综述[J]. 中国水土保持,2004(11):16 − 18. [WANG Zhirong,WANG Nianqin. A summary of present study on loess landslides[J]. Soil and Water Conservation in China,2004(11):16 − 18. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0941.2004.11.008

    WANG Zhirong, WANG Nianqin. A summary of present study on loess landslides[J]. Soil and Water Conservation in China, 2004(11): 16 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2004.11.008

    [19] 祝艳波,刘振谦,李文杰,等. 黄土−三趾马红土滑坡滑带土的长期强度影响因素研究[J]. 水文地质工程地质,2022,49(2):148 − 156. [ZHU Yanbo,LIU Zhenqian,LI Wenjie,et al. Experimental investigation of influencing factors on the long-term strength of sliding zones of the Loess-Hipparion laterite landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):148 − 156. (in Chinese with English abstract)]

    ZHU Yanbo, LIU Zhenqian, LI Wenjie, et al. Experimental investigation of influencing factors on the long-term strength of sliding zones of the Loess-Hipparion laterite landslide[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 148 − 156. (in Chinese with English abstract)

    [20] 程东幸,刘大安,丁恩保,等. 滑带土长期强度参数的衰减特性研究[J]. 岩石力学与工程学报,2005(增刊2):5827 − 5834. [CHENG Dongxing,LIU Da’an,DING Enbao,et al. Study on attenuation characteristics of long-term strength parameters of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering,2005(Sup 2):5827 − 5834. (in Chinese with English abstract)]

    CHENG Dongxing, LIU Da’an, DING Enbao, et al. Study on attenuation characteristics of long-term strength parameters of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(Sup 2): 5827 − 5834. (in Chinese with English abstract)

    [21] 汤文,姚志宾,李邵军,等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学,2016,37(10):2885 − 2892. [TANG Wen,YAO Zhibin,LI Shaojun,et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil:A experimental study[J]. Rock and Soil Mechanics,2016,37(10):2885 − 2892. (in Chinese with English abstract)]

    TANG Wen, YAO Zhibin, LI Shaojun, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: A experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885 − 2892. (in Chinese with English abstract)

    [22] 李维树,邬爱清,丁秀丽. 三峡库区滑带土抗剪强度参数的影响因素研究[J]. 岩土力学,2006,27(1):56 − 60. [LI Weishu,WU Aiqing,DING Xiuli. Study on influencing factors of shear strength parameters of slide zone clay in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics,2006,27(1):56 − 60. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2006.01.011

    LI Weishu, WU Aiqing, DING Xiuli. Study on influencing factors of shear strength parameters of slide zone clay in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2006, 27(1): 56 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.01.011

    [23] 董金玉,郑珠光,赵志强,等. 滑带土强度参数的水致弱化规律试验研究[J]. 华北水利水电大学学报(自然科学版),2016,37(2):83 − 86. [DONG Jinyu,ZHENG Zhuguang,ZHAO Zhiqiang,et al. Experimental study on the decrease regularity of the strength parameters of slip soil because of the influence of moisture[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2016,37(2):83 − 86. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-5634.2016.02.015

    DONG Jinyu, ZHENG Zhuguang, ZHAO Zhiqiang, et al. Experimental study on the decrease regularity of the strength parameters of slip soil because of the influence of moisture[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(2): 83 − 86. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-5634.2016.02.015

    [24] 李妥德. 滑坡滑带土抗剪强度的确定方法[J]. 山地学报,1984,2(1):25 − 30. [LI Tuode. Determination method of shear strength of soil in landslide slip zone[J]. Journal of Mountain Science,1984,2(1):25 − 30. (in Chinese with English abstract)]

    LI Tuode. Determination method of shear strength of soil in landslide slip zone[J]. Journal of Mountain Science, 1984, 2(1): 25 − 30. (in Chinese with English abstract)

    [25] 张玉,徐卫亚,李德亮. 大型滑坡演化机制及滑带剪切特性试验研究[J]. 岩石力学与工程学报. 2013,32(1):2606 − 2616. [ZHANG Yu,XU Weiya,LI Deliang. Experimental study on evolution mechanism of large-scale landslide and shear characteristics of sliding zone [J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(1):2606 − 2616. (in Chinese with English abstract)]

    ZHANG Yu, XU Weiya, LI Deliang. Experimental study on evolution mechanism of large-scale landslide and shear characteristics of sliding zone [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 2606 − 2616. (in Chinese with English abstract)

    [26] 林锋,丁秀美,杨松. 滑带土强度对水的敏感性直剪试验研究[C]. 中国岩石力学与工程学会. 第八次全国岩石力学与工程学术大会论文集. 北京:科学出版社,2004. [LIN Feng,DING Xiumei,YANG Song. Direct shear test study on the strength sensitivity of slip zone soil to water [C]. Chinese Society of Rock Mechanics and Engineering. Proceedings of the eighth National Conference on Rock Mechanics and Engineering. Beijing:Science Press,2004. (in Chinese with English abstract)]

    LIN Feng, DING Xiumei, YANG Song. Direct shear test study on the strength sensitivity of slip zone soil to water [C]. Chinese Society of Rock Mechanics and Engineering. Proceedings of the eighth National Conference on Rock Mechanics and Engineering. Beijing: Science Press, 2004. (in Chinese with English abstract)

    [27] 柏永岩,聂德新. 茨菇滑坡滑带土扰动样强度参数取值分析及滑坡稳定性评价[J]. 工程地质学报,2009,17(4):496 − 502. [BAI Yongyan,NIE Dexin. Strength of disturbed clay in sliding zone of Cigu landslide and associated stability analysis[J]. Journal of Engineering Geology,2009,17(4):496 − 502. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.04.010

    BAI Yongyan, NIE Dexin. Strength of disturbed clay in sliding zone of Cigu landslide and associated stability analysis[J]. Journal of Engineering Geology, 2009, 17(4): 496 − 502. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.010

    [28] 周永昆,魏作安,朱彬,等. 滑带土厚度及含水率对其强度参数的影响[J]. 中国地质灾害与防治学报,2010,21(2):25 − 29. [ZHOU Yongkun,WEI Zuoan,ZHU Bin,et al. Study on the effect about interlayer thickness and water content to the strength parameters of landslide soil[J]. The Chinese Journal of Geological Hazard and Control,2010,21(2):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2010.02.005

    ZHOU Yongkun, WEI Zuoan, ZHU Bin, et al. Study on the effect about interlayer thickness and water content to the strength parameters of landslide soil[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(2): 25 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2010.02.005

    [29] 林鹏,赵思健,李昂,等. 坡积土渗水软化对边坡稳定性的影响[J]. 工程勘察,2002,30(1):26 − 28. [LIN Peng,ZHAO Sijian,LI Ang,et al. Effect of infiltration into cliff debris on the stability of slope[J]. Geotechnical Investigation & Surveying,2002,30(1):26 − 28. (in Chinese with English abstract)]

    LIN Peng, ZHAO Sijian, LI Ang, et al. Effect of infiltration into cliff debris on the stability of slope[J]. Geotechnical Investigation & Surveying, 2002, 30(1): 26 − 28. (in Chinese with English abstract)

    [30] 周春梅,赵子鹏,鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报,2016,36(2):213 − 219. [ZHOU Chunmei,ZHAO Zipeng,LU Yang. The influence of water content on strength and deformation parameters of sliding zone and slope stability[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(2):213 − 219. (in Chinese with English abstract)]

    ZHOU Chunmei, ZHAO Zipeng, LU Yang. The influence of water content on strength and deformation parameters of sliding zone and slope stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 213 − 219. (in Chinese with English abstract)

    [31] 李险峰. 含水率对滑带土力学特性的影响研究[J]. 四川理工学院学报(自然科学版),2012,25(1):83 − 85. [LI Xianfeng. Effect of water content on mechanical properties of slip soil[J]. Journal of Sichuan University of Science and Technology (Natural Science Edition),2012,25(1):83 − 85. (in Chinese with English abstract)]

    LI Xianfeng. Effect of water content on mechanical properties of slip soil[J]. Journal of Sichuan University of Science and Technology (Natural Science Edition), 2012, 25(1): 83 − 85. (in Chinese with English abstract)

    [32] 刘小丽,邓建辉,李广涛. 滑带土强度特性研究现状[J]. 岩土力学,2004,25(11):1849 − 1854. [LIU Xiaoli,DENG Jianhui,LI Guangtao. Shear strength properties of slip soils of landslides:An overview[J]. Rock and Soil Mechanics,2004,25(11):1849 − 1854. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2004.11.037

    LIU Xiaoli, DENG Jianhui, LI Guangtao. Shear strength properties of slip soils of landslides: An overview[J]. Rock and Soil Mechanics, 2004, 25(11): 1849 − 1854. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2004.11.037

    [33] 洪勇,孙涛,栾茂田,等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学,2009,30(3):628 − 634. [HONG Yong,SUN Tao,LUAN Maotian,et al. Development and application of geotechnical ring shear apparatus:An overview[J]. Rock and Soil Mechanics,2009,30(3):628 − 634. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2009.03.009

    HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus: An overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628 − 634. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2009.03.009

    [34]

    WEN B P,AYDIN A. Microstructural study of a natural slip zone:Quantification and deformation history[J]. Engineering Geology,2003,68(3/4):289 − 317.

    [35]

    YU Miao,HUANG Yu,DENG Wenbin,et al. Forecasting landslide mobility using an SPH model and ring shear strength tests:A case study[J]. Natural Hazards and Earth System Sciences,2018,18(12):3343 − 3353. DOI: 10.5194/nhess-18-3343-2018

    [36]

    DEWOOLKAR M M,HUZJAK R J. Drained residual shear strength of some claystones from front range,Colorado[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(12):1543 − 1551. DOI: 10.1061/(ASCE)1090-0241(2005)131:12(1543)

    [37] 孟颂颂,李德营,李仕波,等. 不同前期固结压力下粉砂类滑带土抗剪强度环剪试验研究[J]. 工程地质学报,2016,(24):1355 − 1361. [MENG Songsong,LI Deying,LI Shibo,et al. Ring shear test on shear strength of silty slip-belt soil under different pre-consolidation pressures [J]. Chinese Journal of Engineering Geology,2016,(24):1355 − 1361. (in Chinese with English abstract)]

    MENG Songsong, LI Deying, LI Shibo, et al. Ring shear test on shear strength of silty slip-belt soil under different pre-consolidation pressures [J]. Chinese Journal of Engineering Geology, 2016, (24): 1355 − 1361. (in Chinese with English abstract)

    [38] 胡静,张广浩,刘军. 三浙高速公路滑带土微观及残余强度特性研究[J]. 河南城建学院学报. 2019,28(4):39 − 44. [HU Jing,ZHANG Guanghao,LIU Jun. Study on micro and residual strength characteristics of slip-belt soil in Sanzhe expressway [J]. Journal of Henan University of Urban Construction. 2019,28(4):39 − 44. (in Chinese with English abstract)]

    HU Jing, ZHANG Guanghao, LIU Jun. Study on micro and residual strength characteristics of slip-belt soil in Sanzhe expressway [J]. Journal of Henan University of Urban Construction. 2019, 28(4): 39 − 44. (in Chinese with English abstract)

    [39] 江强强,刘路路,焦玉勇,等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学,2019,40(3):1005 − 1012. [JIANG Qiangqiang,LIU Lulu,JIAO Yuyong,et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics,2019,40(3):1005 − 1012. (in Chinese with English abstract)]

    JIANG Qiangqiang, LIU Lulu, JIAO Yuyong, et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 1005 − 1012. (in Chinese with English abstract)

    [40] 任三绍,张永双,徐能雄,等. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制[J]. 岩土工程学报,2021,43(8):1473 − 1482. [REN Sanshao,ZHANG Yongshuang,XU Nengxiong,et al. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1473 − 1482. (in Chinese with English abstract)] DOI: 10.11779/CJGE202108012

    REN Sanshao, ZHANG Yongshuang, XU Nengxiong, et al. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473 − 1482. (in Chinese with English abstract) DOI: 10.11779/CJGE202108012

    [41]

    KIMURA S,NAKAMURA S,VITHANA S B,et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides,2014,11(6):969 − 979. DOI: 10.1007/s10346-013-0457-6

    [42] 高旭,晏鄂川,崔学杰. 应变速率对含砾滑带土抗剪强度影响研究[J]. 水文地质工程地质,2016,43(1):94 − 98. [GAO Xu,YAN Echuan,CUI Xuejie. Influence of strain rate to the shear strength of conglomeratic sliding-zone soil[J]. Hydrogeology & Engineering Geology,2016,43(1):94 − 98. (in Chinese with English abstract)]

    GAO Xu, YAN Echuan, CUI Xuejie. Influence of strain rate to the shear strength of conglomeratic sliding-zone soil[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 94 − 98. (in Chinese with English abstract)

    [43] 胡世英. 库区顺层滑坡滑带土残余强度变化机制分析[J]. 水利科学与寒区工程,2022,5(4):24 − 27. [HU Shiying. Analysis on the change mechanism of residual strength of soil in bedding landslide zone in reservoir area[J]. Water Conservancy Science and Cold Area Engineering,2022,5(4):24 − 27. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2096-5419.2022.04.007

    HU Shiying. Analysis on the change mechanism of residual strength of soil in bedding landslide zone in reservoir area[J]. Water Conservancy Science and Cold Area Engineering, 2022, 5(4): 24 − 27. (in Chinese with English abstract) DOI: 10.3969/j.issn.2096-5419.2022.04.007

    [44]

    WEN B P,AYDIN A,DUZGOREN-AYDIN N S,et al. Residual strength of slip zones of large landslides in the Three Gorges Area,China[J]. Engineering Geology,2007,93(3/4):82 − 98.

    [45] 朱兆波,王新刚,朱荣森,等. 甘肃黑方台黄土滑坡滑带土剪切特性环剪试验研究[J]. 干旱区资源与环境,2021,35(5):144 − 150. [ZHU Zhaobo,WANG Xingang,ZHU Rongsen,et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai,Gansu[J]. Journal of Arid Land Resources and Environment,2021,35(5):144 − 150. (in Chinese with English abstract)]

    ZHU Zhaobo, WANG Xingang, ZHU Rongsen, et al. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai, Gansu[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 144 − 150. (in Chinese with English abstract)

    [46] 王明龙. 滑坡滑带土蠕变特性及其模型研究综述与展望[J]. 工程技术研究,2020,5(14):34 − 35. [WANG Minglong. State-of-the-art and prospect of the creep characteristics of slip soil and its models[J]. Engineering and Technological Research,2020,5(14):34 − 35. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-3818.2020.14.012

    WANG Minglong. State-of-the-art and prospect of the creep characteristics of slip soil and its models[J]. Engineering and Technological Research, 2020, 5(14): 34 − 35. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-3818.2020.14.012

    [47] 周静静,赵法锁,袁湘秦,等. 滑带土蠕变过程及微观结构演化分析[J]. 水文地质工程地质,2020,47(3):115 − 121. [ZHOU Jingjing,ZHAO Fasuo,YUAN Xiangqin,et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology,2020,47(3):115 − 121. (in Chinese with English abstract)]

    ZHOU Jingjing, ZHAO Fasuo, YUAN Xiangqin, et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 115 − 121. (in Chinese with English abstract)

    [48] 黄志全,李小慧,孙怡,等. 魏家沟滑坡滑带土非饱和蠕变特性试验研究[J]. 华北水利水电大学学报(自然科学版),2015,36(1):47 − 50. [HUANG Zhiquan,LI Xiaohui,SUN Yi,et al. Experimental research on unsaturated creep characteristics of slip soils in Weijiagou landslide[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2015,36(1):47 − 50. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-5634.2015.01.010

    HUANG Zhiquan, LI Xiaohui, SUN Yi, et al. Experimental research on unsaturated creep characteristics of slip soils in Weijiagou landslide[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2015, 36(1): 47 − 50. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-5634.2015.01.010

    [49] 张晓奇,胡新丽,刘忠绪,等. 呷爬滑坡滑带土蠕变特性及其稳定性[J]. 地质科技通报,2020,39(6):145 − 153. [ZHANG Xiaoqi,HU Xinli,LIU Zhongxu,et al. Creep characteristics and stability of soil in Xiashan landslide slip zone [J]. Bulletin of Geological Science and Technology,2019,39(6):145 − 153. (in Chinese with English abstract)]

    ZHANG Xiaoqi, HU Xinli, LIU Zhongxu, et al. Creep characteristics and stability of soil in Xiashan landslide slip zone [J]. Bulletin of Geological Science and Technology, 2019, 39(6): 145 − 153. (in Chinese with English abstract)

    [50] 陈沛,王雁林,陈新建,等. 黄土-基岩滑坡滑带土蠕变本构模型研究[J]. 灾害学,2020,35(4):228 − 234. [CHEN Pei,WANG Yanlin,CHEN Xinjian,et al. Research on creep constitutive model of loess-basic landslide slip zone soil[J]. Journal of Catastrophology,2020,35(4):228 − 234. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2020.04.042

    CHEN Pei, WANG Yanlin, CHEN Xinjian, et al. Research on creep constitutive model of loess-basic landslide slip zone soil[J]. Journal of Catastrophology, 2020, 35(4): 228 − 234. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2020.04.042

    [51]

    TANG Hao,DUAN Zhao,WANG Dongpo,et al. Experimental investigation of creep behavior of loess under different moisture contents[J]. Bulletin of Engineering Geology and the Environment,2020,79(1):411 − 422. DOI: 10.1007/s10064-019-01545-8

    [52] 蒋秀姿,宝萍. 缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J]. 岩土力学,2015,36(2):495 − 501. [JIANG Xiuzi,BAO Ping. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics,2015,36(2):495 − 501. (in Chinese with English abstract)]

    JIANG Xiuzi, BAO Ping. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics, 2015, 36(2): 495 − 501. (in Chinese with English abstract)

    [53] 赖小玲,叶为民,王世梅. 滑坡滑带土非饱和蠕变特性试验研究[J]. 岩土工程学报,2012,34(2):286 − 293. [LAI Xiaoling,YE Weimin,WANG Shimei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering,2012,34(2):286 − 293. (in Chinese with English abstract)]

    LAI Xiaoling, YE Weimin, WANG Shimei. Experimental study on unsaturated creep characteristics of landslide soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 286 − 293. (in Chinese with English abstract)

    [54]

    HU Wei,CHANG C S,MCSAVENEY M,et al. A weakening rheology of dry granular flows with extensive brittle grain damage in high-speed rotary shear experiments[J]. Geophysical Research Letters,2020,47(11):e87763.

    [55] 郭威. 滑带土蠕变本构模型综述[J]. 山西建筑,2022,48(4):82 − 88. [GUO Wei. Review on creep constitutive model of slip zone soil[J]. Shanxi Architecture,2022,48(4):82 − 88. (in Chinese with English abstract)]

    GUO Wei. Review on creep constitutive model of slip zone soil[J]. Shanxi Architecture, 2022, 48(4): 82 − 88. (in Chinese with English abstract)

    [56]

    LI Chun,TANG Huiming,HAN Dawei,et al. Exploration of the creep properties of undisturbed shear zone soil of the Huangtupo landslide[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):1237 − 1248. DOI: 10.1007/s10064-017-1174-5

    [57]

    LAI Xiaoling,WANG Shimei,YE Weimin,et al. Experimental investigation on the creep behavior of an unsaturated clay[J]. Canadian Geotechnical Journal,2014,51(6):621 − 628. DOI: 10.1139/cgj-2013-0064

    [58] 王鹏程,骆亚生,胡连信,等. 重塑黄土三轴蠕变特性研究及模型分析[J]. 岩土力学,2015,36(6):1627 − 1632. [WANG Pengcheng,LUO Yasheng,HU Lianxin,et al. Research on triaxial creep characteristics and models of remolded loess[J]. Rock and Soil Mechanics,2015,36(6):1627 − 1632. (in Chinese with English abstract)]

    WANG Pengcheng, LUO Yasheng, HU Lianxin, et al. Research on triaxial creep characteristics and models of remolded loess[J]. Rock and Soil Mechanics, 2015, 36(6): 1627 − 1632. (in Chinese with English abstract)

    [59] 黄海峰,巨能攀,周新,等. 红层滑坡滑带土经验型蠕变模型研究[J]. 人民长江,2017,48(5):91 − 95. [HUANG Haifeng,JU Nengpan,ZHOU Xin,et al. Research on empirical creep model of red bed slip soil[J]. Yangtze River,2017,48(5):91 − 95. (in Chinese with English abstract)]

    HUANG Haifeng, JU Nengpan, ZHOU Xin, et al. Research on empirical creep model of red bed slip soil[J]. Yangtze River, 2017, 48(5): 91 − 95. (in Chinese with English abstract)

    [60] 王力,王世梅,李高,等. 考虑渗流与蠕变耦合作用的水库滑坡变形数值分析[J]. 工程科学与技术,2020,52(1):66 − 74. [WANG Li,WANG Shimei,LI Gao,et al. Numerical analysis on deformation of reservoir landslides considering coupling effect of seepage and creep[J]. Advanced Engineering Sciences,2020,52(1):66 − 74. (in Chinese with English abstract)]

    WANG Li, WANG Shimei, LI Gao, et al. Numerical analysis on deformation of reservoir landslides considering coupling effect of seepage and creep[J]. Advanced Engineering Sciences, 2020, 52(1): 66 − 74. (in Chinese with English abstract)

    [61] 郑俊,王世梅,周辉,等. 基于伯格模型的非饱和土蠕变模型构建[J]. 长江科学院院报,2019,36(8):112 − 118. [ZHENG Jun,WANG Shimei,ZHOU Hui,et al. A creep model of unsaturated soil based on burger’s model[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):112 − 118. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20180096

    ZHENG Jun, WANG Shimei, ZHOU Hui, et al. A creep model of unsaturated soil based on burger’s model[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 112 − 118. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20180096

    [62] 刘虎虎,缪海波,陈志伟,等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J]. 岩土工程学报,2019,41(8):1573 − 1580. [LIU Huhu,MIAO Haibo,CHEN Zhiwei,et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir Area[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1573 − 1580. (in Chinese with English abstract)] DOI: 10.11779/CJGE201908024

    LIU Huhu, MIAO Haibo, CHEN Zhiwei, et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir Area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573 − 1580. (in Chinese with English abstract) DOI: 10.11779/CJGE201908024

    [63] 龙建辉,郭文斌,李萍,等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报,2010,32(7):1023 − 1028. [LONG Jianhui,GUO Wenbin,LI Ping,et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2010,32(7):1023 − 1028. (in Chinese with English abstract)]

    LONG Jianhui, GUO Wenbin, LI Ping, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1023 − 1028. (in Chinese with English abstract)

    [64] 胡新丽,孙淼军,唐辉明,等. 三峡库区马家沟滑坡滑体粗粒土蠕变试验研究[J]. 岩土力学,2014,35(11):3163 − 3169. [HU Xinli,SUN Miaojun,TANG Huiming,et al. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics,2014,35(11):3163 − 3169. (in Chinese with English abstract)]

    HU Xinli, SUN Miaojun, TANG Huiming, et al. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2014, 35(11): 3163 − 3169. (in Chinese with English abstract)

    [65] 李翔,程聪. 基于数值模拟的滑带土蠕变特性研究[J]. 安全与环境工程,2014,21(4):25 − 29. [LI Xiang,CHENG Cong. Numerical simulation on the creep property of slip soil[J]. Safety and Environmental Engineering,2014,21(4):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1556.2014.04.006

    LI Xiang, CHENG Cong. Numerical simulation on the creep property of slip soil[J]. Safety and Environmental Engineering, 2014, 21(4): 25 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1556.2014.04.006

    [66] 王新刚,刘凯,王友林,等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质,2022,49(5):137 − 143. [WANG Xingang,LIU Kai,WANG Youlin,et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology,2022,49(5):137 − 143. (in Chinese with English abstract)]

    WANG Xingang, LIU Kai, WANG Youlin, et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 137 − 143. (in Chinese with English abstract)

    [67] 严绍军,项伟,唐辉明,等. 大岩淌滑坡滑带土蠕变性质研究[J]. 岩土力学,2008,29(1):58 − 62. [YAN Shaojun,XIANG Wei,TANG Huiming,et al. Research on creep behavior of slip band soil of Dayantang landslide[J]. Rock and Soil Mechanics,2008,29(1):58 − 62. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.012

    YAN Shaojun, XIANG Wei, TANG Huiming, et al. Research on creep behavior of slip band soil of Dayantang landslide[J]. Rock and Soil Mechanics, 2008, 29(1): 58 − 62. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.012

    [68]

    LIU Xiaowei,ZHANG Xudong,FU Xiaogang,et al. Experimental study on creep characteristics of saturated Q2 loess[J]. Frontiers in Earth Science,2022,10:815275. DOI: 10.3389/feart.2022.815275

    [69] 王者超,乔丽苹,李术才,等. 土的内变量蠕变模型研究[J]. 岩土工程学报,2011,33(10):1569 − 1575. [WANG Zhechao,QIAO Liping,LI Shucai,et al. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering,2011,33(10):1569 − 1575. (in Chinese with English abstract)]

    WANG Zhechao, QIAO Liping, LI Shucai, et al. An internal-variable creep model for soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569 − 1575. (in Chinese with English abstract)

    [70] 孙淼军,唐辉明,王潇弘,等. 蠕动型滑坡滑带土蠕变特性研究[J]. 岩土力学,2017,38(2):385 − 391. [SUN Miaojun,TANG Huiming,WANG Xiaohong,et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics,2017,38(2):385 − 391. (in Chinese with English abstract)]

    SUN Miaojun, TANG Huiming, WANG Xiaohong, et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics, 2017, 38(2): 385 − 391. (in Chinese with English abstract)

    [71]

    KARIMPOUR H,LADE P V. Creep behavior in Virginia Beach sand[J]. Canadian Geotechnical Journal,2013,50(11):1159 − 1178. DOI: 10.1139/cgj-2012-0467

    [72] 欧阳梓铭,左小清,李勇发, 等. 基于SBAS-InSAR技术的阿海电站滑坡形变监测可靠性分析[J]. 大地测量与地球动力学,2023,43(11):1117 − 1122. [OUYANG Ziming,ZUO Xiaoqing,LI Yongfa,et al. Reliability analysis of landslide deformation monitoring of Ahai power station based on SBAS-inSAR technology[J]. Geodesy and Geodynamics,2023,43(11):1117 − 1122. (in Chinese with English abstract)]

    OUYANG Ziming, ZUO Xiaoqing, LI Yongfa, et al. Reliability analysis of landslide deformation monitoring of Ahai power station based on SBAS-inSAR technology[J]. Geodesy and Geodynamics, 2023, 43(11): 1117 − 1122. (in Chinese with English abstract)

    [73] 龙建辉,李同录,雷晓锋,等. 黄土滑坡滑带土的物理特性研究[J]. 岩土工程学报,2007,29(2):289 − 293. [LONG Jianhui,LI Tonglu,LEI Xiaofeng,et al. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering,2007,29(2):289 − 293. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2007.02.023

    LONG Jianhui, LI Tonglu, LEI Xiaofeng, et al. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289 − 293. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2007.02.023

    [74] 张茂省,李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 540. [ZHANG Maosheng,LI Tonglu. Triggering factors and forming mechanism of loess land-slides[J]. Journal of Engineering Geology,2011,19(4):530 − 540. (in Chinese with English abstract)]

    ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess land-slides[J]. Journal of Engineering Geology, 2011, 19(4): 530 − 540. (in Chinese with English abstract)

    [75] 罗浩,伍法权,王定伟,等. 赵家岸滑坡地区马兰黄土物理力学特性试验研究[J]. 工程地质学报,2015,23(1):44 − 51. [LUO Hao,WU Faquan,WANG Dingwei,et al. Physical and mechanical properties of Malan loess at Zhaojiaan landslide area[J]. Journal of Engineering Geology,2015,23(1):44 − 51. (in Chinese with English abstract)]

    LUO Hao, WU Faquan, WANG Dingwei, et al. Physical and mechanical properties of Malan loess at Zhaojiaan landslide area[J]. Journal of Engineering Geology, 2015, 23(1): 44 − 51. (in Chinese with English abstract)

    [76] 许领,戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J]. 水文地质工程地质,2008,35(5):28 − 32. [XU Ling,DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology,2008,35(5):28 − 32. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2008.05.007

    XU Ling, DAI Fuchu. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 28 − 32. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2008.05.007

    [77] 唐辉明,鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报,2018,26(1):129 − 136. [TANG Huiming,LU Sha. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir Area[J]. Journal of Engineering Geology,2018,26(1):129 − 136. (in Chinese with English abstract)]

    TANG Huiming, LU Sha. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 2018, 26(1): 129 − 136. (in Chinese with English abstract)

    [78] 杨校辉,周廷昱,刁显锋,等. 江水冲刷与降雨耦合作用下堆积体滑坡模型试验[J]. 兰州大学学报(自然科学版),2022,58(4):483 − 491. [YANG Xiaohui,ZHOU Tingyu,DIAO Xianfeng,et al. A model test of accumulation landslide under the coupling effect of river erosion and rainfall[J]. Journal of Lanzhou University (Natural Sciences),2022,58(4):483 − 491. (in Chinese with English abstract)]

    YANG Xiaohui, ZHOU Tingyu, DIAO Xianfeng, et al. A model test of accumulation landslide under the coupling effect of river erosion and rainfall[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(4): 483 − 491. (in Chinese with English abstract)

    [79] 任占强,宋章,林棋文,等. 滑坡碎屑化运动物理模型相似材料特性研究[J]. 水文地质工程地质,2021,48(2):132 − 142. [REN Zhanqiang,SONG Zhang,LIN Qiwen,et al. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology,2021,48(2):132 − 142. (in Chinese with English abstract)]

    REN Zhanqiang, SONG Zhang, LIN Qiwen, et al. A study of the similar material characteristics of fragmenting rock mass physical model[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 132 − 142. (in Chinese with English abstract)

    [80] 杨登芳,胡新丽,徐楚,等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报,2022,41(2):300 − 308. [YANG Dengfang,HU Xinli,XU Chu,et al. Evolution characteristics of multi-layer slip zone landslide deformation based on physical model test[J]. Bulletin of Geological Science and Technology,2022,41(2):300 − 308. (in Chinese with English abstract)]

    YANG Dengfang, HU Xinli, XU Chu, et al. Evolution characteristics of multi-layer slip zone landslide deformation based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300 − 308. (in Chinese with English abstract)

    [81] 钟源,李远耀,殷坤龙,等. 基于物理模型试验的厚层堆积层滑坡强降雨触发机制[J]. 地球科学,2023,48(10):3912 − 3924. [ZHONG Yuan,LI Yuanyao,YIN Kunlong,et al. Trigger mechanism of heavy rainfall in landslide of thick accumulation layer based on physical model test [J]. Earth Science,2023,48(10):3912 − 3924. (in Chinese with English abstract)]

    ZHONG Yuan, LI Yuanyao, YIN Kunlong, et al. Trigger mechanism of heavy rainfall in landslide of thick accumulation layer based on physical model test [J]. Earth Science, 2023, 48(10): 3912 − 3924. (in Chinese with English abstract)

    [82] 王旋,胡新丽,周昌,等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报,2020,39(4):103 − 108. [WANG Xuan,HU XL,ZHOU Chang,et al. Change characteristics of displacement field of landslide-anti-slide pile based on physical model test[J]. Bulletin of Geological Science and Technology,2020,39(4):103 − 108. (in Chinese with English abstract)]

    WANG Xuan, HU XL, ZHOU Chang, et al. Change characteristics of displacement field of landslide-anti-slide pile based on physical model test[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103 − 108. (in Chinese with English abstract)

    [83]

    ZOU Zongxing,YAN Junbiao,TANG Huiming,et al. A shear constitutive model for describing the full process of the deformation and failure of slip zone soil[J]. Engineering Geology,2020,276:105766. DOI: 10.1016/j.enggeo.2020.105766

    [84] 刘洋,王锐. 两种非严格条分法在山区公路滑坡稳定性计算中的应用研究[A]. 2018年全国工程勘察学术大会论文集[C]. 中国建筑学会工程勘察分会、全国建筑工程勘察科技情报网、全国建工勘察科技情报网华北站,2018:484 − 488. [LIU Yang,WANG Rui. Application of two non-strict strip methods to landslide stability calculation in mountainous areas[A]. Proceedings of the 2018 National Engineering Investigation Conference[C]. China Architectural Society Engineering Survey Branch,National Construction Engineering Survey Science and Technology Information Network,North China Station of National Construction Engineering Survey Science and Technology Information Network,2018:484 − 488. (in Chinese with English abstract)]

    LIU Yang, WANG Rui. Application of two non-strict strip methods to landslide stability calculation in mountainous areas[A]. Proceedings of the 2018 National Engineering Investigation Conference[C]. China Architectural Society Engineering Survey Branch, National Construction Engineering Survey Science and Technology Information Network, North China Station of National Construction Engineering Survey Science and Technology Information Network, 2018: 484 − 488. (in Chinese with English abstract)

    [85] 霍善欣,王新刚,薛晨,等. 熵权法改进的模糊数学滑坡稳定性评价方法研究[J]. 中国地质灾害与防治学报. 2024,35(1):19 − 27. [HUO Shanxin,WANG Xingang,XUE Chen,et al. Study on the stability evaluation method of fuzzy mathematical landslide improved by entropy weight method [J]. The Chinese Journal of Geological Hazards and Control. 2024,35(1):19 − 27. (in Chinese with English abstract)]

    HUO Shanxin, WANG Xingang, XUE Chen, et al. Study on the stability evaluation method of fuzzy mathematical landslide improved by entropy weight method [J]. The Chinese Journal of Geological Hazards and Control. 2024, 35(1): 19 − 27. (in Chinese with English abstract)

    [86] 肖松春. 滑坡稳定性计算和滑坡稳定性量化评分方法的适用性对比研究——以湖南衡东某风电场公路切坡为例[J]. 水文地质工程地质,2018,45(3):159 − 164. [XIAO Songchun. Comparison of the landslide stability calculation and landslide stability evaluation method:A case of the cutting slope of a wind farm in Hengdong,Hunan[J]. Hydrogeology & Engineering Geology,2018,45(3):159 − 164. (in Chinese with English abstract)]

    XIAO Songchun. Comparison of the landslide stability calculation and landslide stability evaluation method: A case of the cutting slope of a wind farm in Hengdong, Hunan[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 159 − 164. (in Chinese with English abstract)

    [87]

    MIGNELLI C,LO RUSSO S,PEILA D. ROckfall risk MAnagement assessment:the RO. MA. approach[J]. Natural Hazards,2012,62(3):1109 − 1123. DOI: 10.1007/s11069-012-0137-1

    [88]

    MINEO S,PAPPALARDO G,D’URSO A,et al. Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route[J]. Environmental Earth Sciences,2017,76(17):620. DOI: 10.1007/s12665-017-6958-1

    [89] 秦四清. 斜坡失稳过程的非线性演化机制与物理预报[J]. 岩土工程学报,2005,27(11):1241 − 1248. [QIN Siqing. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Journal of Geotechnical Engineering,2005,27(11):1241 − 1248. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2005.11.001

    QIN Siqing. Nonlinear evolutionary mechanisms and physical prediction of instability of planar-slip slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1241 − 1248. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2005.11.001

    [90]

    CHEN Hongran,QIN Siqing,XUE Lei,et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology,2018,242:34 − 43. DOI: 10.1016/j.enggeo.2018.05.012

    [91]

    XUE Lei,QIN Siqing,LI Pei,et al. New quantitative displacement criteria for slope deformation process:From the onset of the accelerating creep to brittle rupture and final failure[J]. Engineering Geology,2014,182:79 − 87. DOI: 10.1016/j.enggeo.2014.08.007

    [92] 秦四清,王媛媛,马平. 崩滑灾害临界位移演化的指数律[J]. 岩石力学与工程学报,2010,29(5):873 − 880. [QIN Siqing,WANG Yuanyuan,MA Ping. Exponential laws of critical displacement evolution or landslides and avalanches[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):873 − 880. (in Chinese with English abstract)]

    QIN Siqing, WANG Yuanyuan, MA Ping. Exponential laws of critical displacement evolution or landslides and avalanches[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 873 − 880. (in Chinese with English abstract)

    [93]

    FEDERICO A,POPESCU M,ELIA G,et al. Prediction of time to slope failure:A general framework[J]. Environmental Earth Sciences,2012,66(1):245 − 256. DOI: 10.1007/s12665-011-1231-5

    [94]

    SAITO M. Forecasting the time of occurrence of a slope failure[J]. Proc. 6 th Int. Conf. Soil Mechanics and Foundation Eng. 1965:537–541.

    [95]

    VOIGHT B. A method for prediction of volcanic eruptions[J]. Nature,1988,332:125 − 130. DOI: 10.1038/332125a0

    [96]

    SEGALINI A,VALLETTA A,CARRI A. Landslide time-of-failure forecast and alert threshold assessment:A generalized criterion[J]. Engineering Geology,2018,245:72 − 80. DOI: 10.1016/j.enggeo.2018.08.003

    [97]

    ROSE N D,HUNGR O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(2):308 − 320. DOI: 10.1016/j.ijrmms.2006.07.014

    [98]

    QIN SQ,XU XW,HU P,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics,Chinese Journal of Geophysics. 2010,53(4):1001 − 1014.

    [99]

    YAN Junbiao,ZOU Zongxing,MU Rui,et al. Evaluating the stability of Outang landslide in the Three Gorges Reservoir Area considering the mechanical behavior with large deformation of the slip zone[J]. Natural Hazards,2022,112(3):2523 − 2547. DOI: 10.1007/s11069-022-05276-0

    [100]

    TANG Huiming,ZOU Zongxing,XIONG Chengren,et al. An evolution model of large consequent bedding rockslides,with particular reference to the Jiweishan rockslide in southwest China[J]. Engineering Geology,2015,186:17 − 27. DOI: 10.1016/j.enggeo.2014.08.021

    [101]

    ZHANG Shilin,ZHU Zhaohui,QI Shunchao,et al. Deformation process and mechanism analyses for a planar sliding in the Mayanpo massive bedding rock slope at the Xiangjiaba Hydropower Station[J]. Landslides,2018,15(10):2061 − 2073. DOI: 10.1007/s10346-018-1041-x

    [102]

    LU C Y,TANG C L,CHAN Yuchang,et al. Forecasting landslide hazard by the 3D discrete element method:A case study of the unstable slope in the Lushan hot spring District,central Taiwan[J]. Engineering Geology,2014,183:14 − 30. DOI: 10.1016/j.enggeo.2014.09.007

    [103]

    WU Jianhong,LIN Weikang,HU H T. Assessing the impacts of a large slope failure using 3DEC:The Chiu-Fen-erh-Shan residual slope[J]. Computers and Geotechnics,2017,88:32 − 45. DOI: 10.1016/j.compgeo.2017.03.002

    [104] 郑博宁,丁大勇,张丹,等. 含砾滑带土三维颗粒流模型建模方法研究[J]. 工程地质学报,2019,27(3):569 − 576. [ZHENG Boning,DING Dayong,ZHANG Dan,et al. CT scanning and PFC modeling combined 3d method for gravel-bearing slip soil[J]. Journal of Engineering Geology,2019,27(3):569 − 576. (in Chinese with English abstract)]

    ZHENG Boning, DING Dayong, ZHANG Dan, et al. CT scanning and PFC modeling combined 3d method for gravel-bearing slip soil[J]. Journal of Engineering Geology, 2019, 27(3): 569 − 576. (in Chinese with English abstract)

    [105] 吴剑,冯夏庭. 高速剪切条件下土的颗粒流模拟[J]. 岩石力学与工程学报,2008(增刊1):3064 − 3069. [WU Jian,FENG Xiating. Particle flow simulation of soil under high speed shear[J]. Chinese Journal of Rock Mechanics and Engineering,2008(Sup 1):3064 − 3069. (in Chinese with English abstract)]

    WU Jian, FENG Xiating. Particle flow simulation of soil under high speed shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(Sup 1): 3064 − 3069. (in Chinese with English abstract)

    [106]

    ŽIC E,ARBANAS,BIĆANIĆ N,et al. A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)[J]. Natural Hazards and Earth System Sciences,2015,15(2):293 − 313. DOI: 10.5194/nhess-15-293-2015

    [107] 王学滨,白雪元,张博闻,等. 基于数字图像相关方法的单轴压缩黏土试样剪切带剪胀实验研究[J]. 工程地质学报,2018,26(4):882 − 890. [WANG Xuebin,BAI Xueyuan,ZHANG Bowen,et al. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology,2018,26(4):882 − 890. (in Chinese with English abstract)]

    WANG Xuebin, BAI Xueyuan, ZHANG Bowen, et al. Experimental studies of shear dilatancy of shear bands for wet clay specimens in uniaxial compression using digital image correlation method[J]. Journal of Engineering Geology, 2018, 26(4): 882 − 890. (in Chinese with English abstract)

    [108] 许强,朱星,李为乐,等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416 − 1436. [XU Qiang,ZHU Xing,LI Weile,et al. Progress of "space-space-ground" collaborative landslide monitoring technology[J]. Journal of Surveying and Mapping,2022,51(7):1416 − 1436. (in Chinese with English abstract)] DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207027

    XU Qiang, ZHU Xing, LI Weile, et al. Progress of "space-space-ground" collaborative landslide monitoring technology[J]. Journal of Surveying and Mapping, 2022, 51(7): 1416 − 1436. (in Chinese with English abstract) DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207027

    [109] 唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,LI Changdong,GONG Wenping,et al. Basic properties and research approaches of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)]

    TANG Huiming, LI Changdong, GONG Wenping, et al. Basic properties and research approaches of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)

    [110] 李长冬,谭钦文,动水驱动型滑坡物理启滑能够预测吗?[J]. 地球科学,2022,47(10):3908 − 3910. [LI Changdong,TAN Qinwen,Can the physical initiation of landslides driven by moving water be predicted? [J]. Earth Science,2022,47(10):3908 − 3910. (in Chinese with English abstract)]

    LI Changdong, TAN Qinwen, Can the physical initiation of landslides driven by moving water be predicted? [J]. Earth Science, 2022, 47(10): 3908 − 3910. (in Chinese with English abstract)

    [111] 李长冬,龙晶晶,姜茜慧,等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报,2020,39(1):67 − 77. [LI Changdong,LONG Jingjing,JIANG Xihui,et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology,2020,39(1):67 − 77. (in Chinese with English abstract)]

    LI Changdong, LONG Jingjing, JIANG Xihui, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67 − 77. (in Chinese with English abstract)

图(11)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  37
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22
  • 修回日期:  2024-07-04
  • 录用日期:  2024-08-07
  • 网络出版日期:  2024-08-08
  • 刊出日期:  2025-06-24

目录

/

返回文章
返回