ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

不同失稳模式的典型危岩体崩塌产生涌浪公式法体系研究

张杰, 黄波林, 董星辰, 李秋旺

张杰,黄波林,董星辰,等. 不同失稳模式的典型危岩体崩塌产生涌浪公式法体系研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202407017
引用本文: 张杰,黄波林,董星辰,等. 不同失稳模式的典型危岩体崩塌产生涌浪公式法体系研究[J]. 中国地质灾害与防治学报,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202407017
ZHANG Jie,HUANG Bolin,DONG Xingchen,et al. Study on the surge formula system of typical dangerous rock mass collapse with different instability modes[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202407017
Citation: ZHANG Jie,HUANG Bolin,DONG Xingchen,et al. Study on the surge formula system of typical dangerous rock mass collapse with different instability modes[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202407017

不同失稳模式的典型危岩体崩塌产生涌浪公式法体系研究

基金项目: 国家自然科学基金区域创新发展联合基金项目(U23A2045);重庆市规划和自然资源局科研项目(KJ-2023046);三峡大学土木与建筑学院科研创新基金项目(2024SSCX007)
详细信息
    作者简介:

    张 杰(1999—),男,湖北利川人,硕士研究生,主要从事危岩体涌浪灾害研究。E-mail:202308180021014@ctgu.edu.cn

    通讯作者:

    黄波林(1979—),男,湖北仙桃人,研究员、博士生导师,主要从事水库地质灾害及涌浪灾害方面的教学与研究工作。E-mail:bolinhuang@aliyun.com

Study on the surge formula system of typical dangerous rock mass collapse with different instability modes

  • 摘要:

    峡谷区高陡危岩崩塌产生涌浪危害巨大,严重危及航道及景区安全;但危岩崩塌产生涌浪的系统性研究不够,针对性快速评估技术有待加强。本文旨在建立一个针对不同失稳模式的危岩体涌浪公式计算体系,以加强峡谷区高陡危岩崩塌产生涌浪灾害的快速评估技术。通过系统梳理了适用于危岩体不同失稳模式的涌浪计算公式,并建立了适用于不同失稳模式的危岩体涌浪全过程公式计算体系,以此体系为基础编制了危岩涌浪计算引擎。通过对典型压溃式龙门寨危岩体运用公式法计算体系进行涌浪计算,发现175 m水位时最大首浪高度为13.9 m,传播至2 km处传播浪高度为1.75 m,码头处爬高值为2.91 m,与数值模拟结果误差在20%以内,验证了计算体系的可行性,并进行了涌浪危险性分析。随后运用该计算体系对典型坠落式渔峡口危岩体和典型倾倒式巴西卡皮托利乌危岩体进行了涌浪计算,两者危岩体涌浪传播200 m后都进入低风险区域,体现了该计算体系在不同失稳模式下的应用情况。

    Abstract:

    The collapse of high and steep dangerous rock in the gorge area produces huge surge hazards, which seriously endangers the safety of waterways and scenic spots. However, the systematic research on the surge caused by perilous rock collapse is not enough, and the targeted rapid assessment technology needs to be strengthened. The purpose of this paper is to establish a calculation system of dangerous rock surge formula for different instability modes, so as to strengthen the rapid assessment technology of surge disaster caused by high and steep dangerous rock collapse in canyon area. The surge calculation formulas suitable for different instability modes of perilous rock mass are systematically sorted out, and the calculation system of the whole process formula of perilous rock mass surge suitable for different instability modes is established. Based on this system, the calculation engine of perilous rock surge is compiled. By using the formula method to calculate the surge of the typical crushed Longmenzhai dangerous rock mass, it is found that the maximum first wave height is 13.9 m at 175 m water level, the propagation wave height is 1.75 m at 2 km, and the climbing height at the wharf is 2.91m. The error with the numerical simulation results is within 20 %, which verifies the feasibility of the calculation system and analyzes the surge risk. Then, the calculation system is used to calculate the surge of the typical falling Yuxiakou dangerous rock mass and the typical toppling Brazilian Capitoliu dangerous rock mass. Both dangerous rock masses enter the low-risk area after 200 m surge propagation, which reflects the calculation system under different instability modes.

  • 图  1   涌浪传播区域图

    Figure  1.   Surge propagation area diagram

    图  2   坠落式危岩涌浪灾害示意图

    Figure  2.   schematic diagram of falling dangerous rock surge disaster

    图  3   压溃式涌浪灾害示意图

    Figure  3.   Chart of crushing surge disaster

    图  4   倾倒式涌浪灾害示意图

    Figure  4.   schematic diagram of toppling surge disaster

    图  5   涌浪公式计算引擎流程图

    Figure  5.   Surge formula calculation engine flow chart

    图  6   涌浪公式计算引擎与计算过程

    Figure  6.   Surge formula calculation engine and calculation process

    图  7   龙门寨危岩体剖面图(郑嘉豪等,2020)

    Figure  7.   Profile of Longmenzhai perilous rock mass (Zheng Jiahao et al., 2020)

    图  8   压溃式涌浪公式计算体系计算结果

    Figure  8.   The calculation results of the collapse surge formula calculation system

    图  9   渔峡口危岩体涌浪过程

    Figure  9.   Surge process of Yuxiakou perilous rock mass

    (a) t = 0 s;(b) t = 4 s;(c) t =8 s;(d) t =14 s

    图  10   坠落式涌浪公式计算体系计算结果

    Figure  10.   The calculation results of the falling surge formula calculation system

    图  11   Capitólio危岩体涌浪过程(Maciel,2023):(a)危岩体原始尺寸;(b)发生倾倒及概化尺寸;(c)形成飞溅及入水速度

    Figure  11.   Surge process of Capitólio perilous rock mass (Maciel, 2023)

    图  12   倾倒式涌浪公式计算体系计算结果

    Figure  12.   Calculation results of toppling surge formula calculation system

    表  1   涌浪研究方法及优劣

    Table  1   Surge research methods and advantages and disadvantages

    方法公式法概化物理试验模型法缩尺物理模型试验法数值模拟法
    准确度中-高
    时间非常多
    经费非常高中等
    技术门槛中等
    下载: 导出CSV

    表  2   最大首浪公式

    Table  2   Part of propagation wave formula

    公式 来源 适用模式 适用条件
    V=vghw Hshw HmaxHs Noda[15]
    (1970)
    坠落式
    倾倒式
    h>hw
    Hmaxhw=1.17vghw 潘家铮[16]
    (1980)
    坠落式 0.5<Fr数<2
    Hmaxhw=0.159a0.641(vghw)1.6(h1hw)0.839(dhw)0.23(h1h2)0.294
    v=0.636a0.172(gh1)0.5(h1hw)0.007(h2hw)0.156(h1h2)0.003
    张全等[17]
    (2021)
    压溃式 2<a<16
    30 m<h2<120 m
      式中,v为入水最大速度,hw为水深,Hs为滑坡体厚度,由VHshw确认波浪特性,Hmax为最大首浪高度,由VHmaxHs确认涌浪高度,h为坠落高度;a为柱体高宽比,h1为危岩体高度,h2基座高度,d为危岩体宽度;Fr为相对Froude数,可根据Fr=vghw进行计算。
    下载: 导出CSV

    表  3   部分传播浪公式

    Table  3   Part of propagation wave formula

    公式 来源 范围 适用条件
    HPhw=1.67sin(α)cos2(23γ)(ρρw)14[Vs(dhw2)]12(rhw)23 Huber and Hager[13](1997) 近场环状传播 高倾角入水
    HPhw=34(vghw(shw)0.5(ρVsρwdhw2)0.25(cos(67α))0.5(xhw)13)45 沿程平行传播
    HPhw=1.47Hmaxhw(xhw)0.5 殷坤龙和汪洋[27](2008) 近场环状传播 0.063<Fr数<0.9
    5°<α<45°
    HPhw=Hmaxhwe0.4(xhw)0.35 沿程平行传播
    HPhw=2.75Fr0.67SM0.6(rhw)1fγ
    fγ=cos2(1+e0.2(rhw))(23λ)
    Heller and Spinneken[25]
    (2015)
    近场环状传播 0.54<Fr数<2.47
    α=45°
      式中,HP为传播浪高度,Θ为入水角度,©为滑动方向与径向夹角,λ为危岩体密度,λw为水密度,Vs为体积,r为径向距离,x为距危岩体距离;S为滑坡相对厚度,可根据S=Hshw进行计算,M为危岩相对质量,可根据M=mρswhw2进行计算,m为危岩体质量。
    下载: 导出CSV

    表  4   部分爬高浪公式

    Table  4   Part of climbing wave formula

    公式 来源 适用范围 适用条件
    HRhw=2.831(cotβ)12(HPhw)54 Synolakis [28]
    (1987)
    正对岸爬高 坡比1:19.85
    HRhw=1.25(90β)0.2(HPhw)1.25(HPL)0.15 Müller [29]
    (1995)
    正对岸爬高 坡比1:1、1:3或坡度90°
    HRhw=2.3HPhw(90β)0.2 殷坤龙和汪洋[27](2008) 正对岸爬高 0.063<Fr数<0.9
    5<α<45
    HRhw=((2.3(90β)0.21)cosδ+1)HPhw 沿程爬高
      式中,HR为爬高,®为岸坡坡角,L为坝前波长;为爬坡方位角,根据河道宽度B和计算点与滑坡的水平距离xs计算cosδ=BB2+xs2
    下载: 导出CSV

    表  5   危岩体计算参数

    Table  5   Calculation parameters of dangerous rock mass

    符号 g hw v h1 h2 d a Vs
    参数重力加速度(m/s2水深(m)入水速度(m/s)高度(m)基座高度(m)宽度(m)柱体高宽比体积(万m³)
    145m9.86527.119012404.7530.4
    175m9525.6
    下载: 导出CSV

    表  6   危岩体计算参数

    Table  6   Calculation parameters of dangerous rock mass

    符号 g hw v HS Vs
    参数 重力加速度
    (m/s2
    水深
    (m)
    入水速度
    (m/s)
    平均厚度
    (m)
    体积
    (万m³)
    渔峡口危岩体 9.8 63 30 3 0.01
    下载: 导出CSV
  • [1]

    YIN Yueping,HUANG Bolin,LIU Guangning,et al. Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir,China[J]. Environmental Earth Sciences,2015,74(3):2595 − 2607. DOI: 10.1007/s12665-015-4278-x

    [2] 郑嘉豪,黄波林,张全,等. 三峡库区龙门寨危岩体崩塌产生涌浪研究[J]. 地质力学学报,2020,26(4):533 − 543. [ZHENG Jiahao,HUANG Bolin,ZHANG Quan,et al. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges Reservoir area[J]. Journal of Geomechanics,2020,26(4):533 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2020.26.04.046

    ZHENG Jiahao, HUANG Bolin, ZHANG Quan, et al. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges Reservoir area[J]. Journal of Geomechanics, 2020, 26(4): 533 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.04.046

    [3] 闫举生,谭建民. 三峡库区秭归县棺木岭危岩体发育特征及成因机制探讨[J]. 华南地质与矿产,2018,34(4):347 − 353. [YAN Jusheng,TAN Jianmin. Preliminary analysis on development characteristics and genetic mechanism of Guanmuling dangerous rock in Zigui County,Three Gorges Reservoir Area[J]. Geology and Mineral Resources of South China,2018,34(4):347 − 353. (in Chinese with English abstract)]

    YAN Jusheng, TAN Jianmin. Preliminary analysis on development characteristics and genetic mechanism of Guanmuling dangerous rock in Zigui County, Three Gorges Reservoir Area[J]. Geology and Mineral Resources of South China, 2018, 34(4): 347 − 353. (in Chinese with English abstract)

    [4] 李俊男. 三峡库区望霞危岩破坏与解体机制研究[D]. 重庆:重庆交通大学,2018. [LI Junnan. Research on Damage and Disintegration Mechanism of Wangxia Unstable Rocks in Three Gorges Reservoir Area[D]. Chongqing:Chongqing Jiaotong University,2018. (in Chinese with English abstract)]

    LI Junnan. Research on Damage and Disintegration Mechanism of Wangxia Unstable Rocks in Three Gorges Reservoir Area[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese with English abstract)

    [5] 黄波林,殷跃平,王世昌等. 2019a. 滑坡涌浪分析[M]. 北京:科学出版社. [HUANG Bolin,YIN Yueping,WANG Shichang,et al. 2019a. Analysis of landslide surge[M]. BeiJing:Science Press. (in Chinese)]

    HUANG Bolin, YIN Yueping, WANG Shichang, et al. 2019a. Analysis of landslide surge[M]. BeiJing: Science Press. (in Chinese)

    [6] 牟英华,陈再谦. 洪家渡水电站库区文昌阁危岩体稳定分析及入库涌浪预测[J]. 贵州水力发电,2007,21(5):32 − 36. [MOU Yinghua,CHEN Zaiqian. Stable analysis of wenchangge dangerous rock mass in reservoir area of hongjiadu hydropower station & surge forecast when it falls down in the reservoir[J]. Guizhou Water Power,2007,21(5):32 − 36. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-0133.2007.05.009

    MOU Yinghua, CHEN Zaiqian. Stable analysis of wenchangge dangerous rock mass in reservoir area of hongjiadu hydropower station & surge forecast when it falls down in the reservoir[J]. Guizhou Water Power, 2007, 21(5): 32 − 36. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-0133.2007.05.009

    [7] 代云霞,汪洋,殷坤龙,等. 三峡库区巫山县某崩塌体涌浪调查及计算分析[J]. 武汉理工大学学报,2010,32(19):71 − 74. [DAI Yunxia,WANG Yang,YIN Kunlong,et al. Surge survey and calculation analysis of a landslide in Wushan County in the Three Gorges Reservoir[J]. Journal of Wuhan University of Technology,2010,32(19):71 − 74. (in Chinese with English abstract)]

    DAI Yunxia, WANG Yang, YIN Kunlong, et al. Surge survey and calculation analysis of a landslide in Wushan County in the Three Gorges Reservoir[J]. Journal of Wuhan University of Technology, 2010, 32(19): 71 − 74. (in Chinese with English abstract)

    [8] 杨渠锋,王平义,喻涛,等. 三峡库区陡岩滑坡涌浪爬高试验分析[J]. 中国地质灾害与防治学报,2014,25(3):43 − 48. [YANG Qufeng,WANG Pingyi,YU Tao,et al. Experimental research on dangerous rock-type landslide Run-up of the river—channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2014,25(3):43 − 48. (in Chinese with English abstract)]

    YANG Qufeng, WANG Pingyi, YU Tao, et al. Experimental research on dangerous rock-type landslide Run-up of the river—channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(3): 43 − 48. (in Chinese with English abstract)

    [9] 易臻彦. 库岸崩塌涌浪计算方法研究[D]. 重庆:重庆交通大学,2020. [YI Zhenyan. Study on calculation method of bank landslide surge[D]. Chongqing:Chongqing Jiaotong University,2020. (in Chinese with English abstract)]

    YI Zhenyan. Study on calculation method of bank landslide surge[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese with English abstract)

    [10] 黄波林,刘广宁,王世昌,等. 三峡库区高陡岸坡成灾机理研究[M]. 北京:科学出版社,2015. [HUANG Bolin,LIU Guangning,WANG Shichang,et al. Study on disaster mechanism of high and steep bank slope in Three Gorges Reservoir area[M]. Beijing:Science Press,2015. (in Chinese)]

    HUANG Bolin, LIU Guangning, WANG Shichang, et al. Study on disaster mechanism of high and steep bank slope in Three Gorges Reservoir area[M]. Beijing: Science Press, 2015. (in Chinese)

    [11] 李鹏峰. 水库库区滑坡涌浪生成、爬坡机理研究及灾害分析[D]. 西安:西安理工大学,2023. [LI Pengfeng. Study on Landslide Generated Waves,Run-Up Regime and Engineering Disaster in Reservoir[D]. Xi’an:Xi’an University of Technology,2023. (in Chinese with English abstract)]

    LI Pengfeng. Study on Landslide Generated Waves, Run-Up Regime and Engineering Disaster in Reservoir[D]. Xi’an: Xi’an University of Technology, 2023. (in Chinese with English abstract)

    [12] 牟萍,王平义,韩林峰,等. 滑坡涌浪灾害物理模型试验研究综述[J]. 中国安全生产科学技术,2020,16(1):43 − 49. [MU Ping,WANG Pingyi,HAN Linfeng,et al. Review on research about disaster of landslide-generated impulse waves based on physical model experiment approach[J]. Journal of Safety Science and Technology,2020,16(1):43 − 49. (in Chinese with English abstract)]

    MU Ping, WANG Pingyi, HAN Linfeng, et al. Review on research about disaster of landslide-generated impulse waves based on physical model experiment approach[J]. Journal of Safety Science and Technology, 2020, 16(1): 43 − 49. (in Chinese with English abstract)

    [13]

    HUBER A,HAGER WH. Forecasting impulse waves in reservoirs [A]. In:Dixneuvième Congress des Grands Barrages C,Florence,Italy,Commission International des Grands Barrages,Paris [C],1997,31:993 ~ 1005.

    [14] 徐刚,张志斌,范泽英. 危岩失稳模式分类研究[J]. 工程地质学报,2017,25(s1):390 − 399. [XU Gang,ZHANG Zhibin,FAN Zheying. Study on classification of dangerous rock mass failure modes[J]. Journal of engineering geology,2017,25(s1):390 − 399. (in Chinese with English abstract)]

    XU Gang, ZHANG Zhibin, FAN Zheying. Study on classification of dangerous rock mass failure modes[J]. Journal of engineering geology, 2017, 25(s1): 390 − 399. (in Chinese with English abstract)

    [15]

    NODA E. Water waves generated by landslides[J]. Journal of the Waterways,Harbors and Coastal Engineering Division,1970,96(4):835 − 855. DOI: 10.1061/AWHCAR.0000045

    [16] 潘家铮. 建筑物的抗滑稳定和滑坡分析[M]. 北京:水利出版社,1980. [PAN Jiazheng. Anti-sliding stability and landslide analysis of buildings[M]. China Water&Power Press,1980. (in Chinese)]

    PAN Jiazheng. Anti-sliding stability and landslide analysis of buildings[M]. China Water&Power Press, 1980. (in Chinese)

    [17]

    HE Kai,YIN Yueping,LI Bin,et al. The mechanism of the bottom-crashing rockfall of a massive layered carbonate rock mass at Zengziyan,Chongqing,China[J]. Journal of Earth System Science,2019,128(4):104. DOI: 10.1007/s12040-019-1141-6

    [18]

    DE FREITAS MACIEL G,PEREIRA J B,SÁO Y T,et al. Impulse wave in the Brazilian Lake of capitólio[J]. Rbrh,2023,28:e27. DOI: 10.1590/2318-0331.282320230036

    [19] 张全,黄波林,郑嘉豪,等. 柱状危岩体压溃式崩塌产生涌浪预测分析[J]. 岩土力学,2021,42(10):2845 − 2854. [ZHANG Quan,HUANG Bolin,ZHENG Jiahao,et al. Prediction and analysis of surge generated by crushing failure collapse of columnar dangerous rock mass[J]. Rock and Soil Mechanics,2021,42(10):2845 − 2854. (in Chinese with English abstract)]

    ZHANG Quan, HUANG Bolin, ZHENG Jiahao, et al. Prediction and analysis of surge generated by crushing failure collapse of columnar dangerous rock mass[J]. Rock and Soil Mechanics, 2021, 42(10): 2845 − 2854. (in Chinese with English abstract)

    [20]

    HUANG Bolin,LI Bin,ZHENG Jiahao,et al. Dynamic analysis of impulse waves generated by the collapse of granular pillars[J]. Journal of Mountain Science,2022,19(1):198 − 210. DOI: 10.1007/s11629-020-6558-5

    [21]

    HUANG Bolin,YIN Yueping,LI Renjiang,et al. Three-dimensional experimental investigation on hazard reduction of landslide-generated impulse waves in the Baihetan Reservoir,China[J]. Landslides,2023,20(9):2017 − 2028. DOI: 10.1007/s10346-023-02068-w

    [22]

    PANIZZO A,DE GIROLAMO P,PETACCIA A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research:Oceans,2005,110(C12):C12025.

    [23]

    HELLER V,HAGER W H,MINOR H E. Landslide generated impulse waves in reservoirs:Basics and computation[J]. VAW-Mitteilungen,2009,211.

    [24]

    MOHAMMED F,FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research:Oceans,2012,117(C11):C11015.

    [25]

    HELLER V,SPINNEKEN J. On the effect of the water body geometry on landslide–tsunamis:Physical insight from laboratory tests and 2D to 3D wave parameter transformation[J]. Coastal Engineering,2015,104:113 − 134. DOI: 10.1016/j.coastaleng.2015.06.006

    [26] 黄种为,董兴林. 水库库岸滑坡激起涌浪的试验研究[C]. 水利水电科学研究院科学研究论文集第13集(水力学),1983:157-170. [HUANG Zhongwei,DONG Xinglin. Experimental study on surge induced by reservoir bank landslide[C]. Institute of Water Resources and Hydropower Research Collection of Scientific Research Papers No. 13 (Hydraulics ),1983:157 − 170. (in Chinese)]

    HUANG Zhongwei, DONG Xinglin. Experimental study on surge induced by reservoir bank landslide[C]. Institute of Water Resources and Hydropower Research Collection of Scientific Research Papers No. 13 (Hydraulics ), 1983: 157 − 170. (in Chinese)

    [27] 汪洋,殷坤龙. 水库库岸滑坡涌浪的传播与爬高研究[J]. 岩土力学,2008,29(4):1031 − 1034. [WANG Yang,YIN Kunlong. Research on propagation and climb height of surge triggered by landslide in reservoir[J]. Rock and Soil Mechanics,2008,29(4):1031 − 1034. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.04.033

    WANG Yang, YIN Kunlong. Research on propagation and climb height of surge triggered by landslide in reservoir[J]. Rock and Soil Mechanics, 2008, 29(4): 1031 − 1034. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.04.033

    [28]

    SYNOLAKIS C E. The runup of solitary waves[J]. Journal of Fluid Mechanics,1987,185:523 − 545.

    [29]

    Müller D R. Auflaufen und Überschwappen von Impulswellen an Talsperren[D]. ETH Zurich,1995.

    [30] 中华人民共和国水利部. 滑坡涌浪模拟技术规程:SL/T 165—2019[S]. 北京:中国水利水电出版社,2019. [Ministry of Water Resources of the People’s Republic of China. Code for simulation of landslide. generated waves:SL/T 165—2019[S]. Beijing:China Water & Power Press,2019. (in Chinese)]

    Ministry of Water Resources of the People’s Republic of China. Code for simulation of landslide. generated waves: SL/T 165—2019[S]. Beijing: China Water & Power Press, 2019. (in Chinese)

    [31] 王佳佳,陈浩,肖莉丽,等. 散粒体滑坡涌浪运动特征与能量转化规律研究[J]. 水文地质工程地质,2023,50(4):160 − 172. [WANG Jiajia,CHEN Hao,XIAO Lili,et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology,2023,50(4):160 − 172. (in Chinese with English abstract)]

    WANG Jiajia, CHEN Hao, XIAO Lili, et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 160 − 172. (in Chinese with English abstract)

  • 期刊类型引用(1)

    1. 王盈,曾江波,姚文敏,李长冬. 基于可靠度理论的阻滑键加固渣土边坡多目标优化设计方法. 中国地质灾害与防治学报. 2020(05): 88-97 . 本站查看

    其他类型引用(1)

图(12)  /  表(6)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  8
  • PDF下载量:  17
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2025-03-17
  • 录用日期:  2025-03-18
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回