ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

九寨沟县张家河坝沟滑坡-泥石流成灾机制与演化过程

吴逢涛, 杨志全, 胡桂胜, 夏湘朕

吴逢涛,杨志全,胡桂胜,等. 九寨沟县张家河坝沟滑坡-泥石流成灾机制与演化过程[J]. 中国地质灾害与防治学报,2025,36(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202408013
引用本文: 吴逢涛,杨志全,胡桂胜,等. 九寨沟县张家河坝沟滑坡-泥石流成灾机制与演化过程[J]. 中国地质灾害与防治学报,2025,36(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202408013
WU Fengtao,YANG Zhiquan,HU Guisheng,et al. Disaster mechanism and evolutionary process of landslide-debris flow in Zhangjiaheba Gully, Jiuzhaigou County[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202408013
Citation: WU Fengtao,YANG Zhiquan,HU Guisheng,et al. Disaster mechanism and evolutionary process of landslide-debris flow in Zhangjiaheba Gully, Jiuzhaigou County[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202408013

九寨沟县张家河坝沟滑坡-泥石流成灾机制与演化过程

基金项目: 国家自然科学基金项目(42471095);国家自然科学基金项目(41861134008);四川省自然科学基金项目(2023NSFSC2086);云南省基础研究计划总计划项目(202001AT070043)
详细信息
    作者简介:

    吴逢涛(2000—),男,云南临沧人,硕士研究生,主要从事地质灾害形成机制方面研究。E-mail:635399281@qq.com

    通讯作者:

    胡桂胜(1983—),男,江西九江人,博士,副研究员,主要从事地质灾害形成机制方面研究。E-mail:huguisheng@imde.ac.cn

  • 中图分类号: P642.2

Disaster mechanism and evolutionary process of landslide-debris flow in Zhangjiaheba Gully, Jiuzhaigou County

  • 摘要:

    四川省九寨沟县保华乡张家河坝沟2022年至今先后暴发了规模不等的泥石流灾害10余次,2024年7月24日,该沟再次暴发泥石流,对当地居民、道路及基础设施等造成了极大的损失。流域内发育的黄土滑坡是致使泥石流反复多次暴发的主要因素。通过现场调查、水文模型计算、地震模型计算和长短尺度的降雨分析对张家河坝沟“7•24”滑坡-泥石流灾害链进行研究。研究结果表明:张家河坝沟“7•24”滑坡-泥石流容重为2.116 g/cm3,属于黏性泥石流,平均流速为4.87 m/s,平均冲压力为5.29 Kpa。其成灾机制是受地震和降雨共同影响,九寨沟7.0级地震在张家河坝沟处地震动峰值加速度为183.11 cm/s2,远大于临界加速度98 cm/s2,对滑坡造成永久破坏,使滑坡结构松散,滑坡成灾;张家河坝沟泥石流爆发降雨临界量为13.52 mm,7月24日当天日降雨量为45.8 mm,远超临界降雨值,激发了滑坡-泥石流灾害链的形成。灾害链演化过程表现为地震-降雨-滑坡-泥石流-往复再生的模式,成链过程由强震与降雨主导;受降雨影响,张家河坝沟内黄土滑坡不断滑出致使流域内泥石流和滑坡往复再生。研究成果为张家河坝沟滑坡-泥石流灾害链的工程治理及防灾减灾提供可靠依据。

    Abstract:

    Since 2022, Zhangjiaheba Gully in Baohua Township, Jiuzhaigou County, Sichuan Province, has experienced over 10 debris flow disasters of varying scales. On July 24, 2024, the gully was once again hit by a debris flow, causing significant damage to local residents, roads, and infrastructure. The development of loess landslides within the watershed is the primary factor contributing to the frequent occurrences of debris flows. The “7•24” landslide-debris flow disaster chain in Zhangjiaheba Gully was investigated through field surveys, hydrological model calculations, seismic model calculations, and rainfall analysis across varying timescales. The research findings reveal that the “7•24” landslide-debris flow in Zhangjiaheba Gully has a bulk density of 2.116 g/cm3, classifying it as a viscous debris flow with an average flow velocity of 4.87 m/s and an average impact pressure of 5.29 Kpa. Its disaster-causing mechanism is attributed to the combined effects of earthquakes and rainfall. The peak ground acceleration of the 7.0-magnitude Jiuzhaigou earthquake at the Zhangjiaheba Gully reached 183.11 cm/s2, far exceeding the critical acceleration of 98 cm/s2, causing permanent damage to the landslide, loosening its structure, and increasing its susceptibility to failure. The triggering rainfall threshold for debris flow in the Zhangjiaheba Gully was 13.52 mm. On July 24th, the daily rainfall reached 45.8 mm, significantly exceeding the threshold, which initiated the formation of the landslide-debris flow disaster chain. The evolution process of this disaster chain follows a pattern of earthquake-rainfall-landslide-debris flow-reciprocal regeneration, with the chain formation process primarily driven by strong earthquakes and rainfall. Influenced by rainfall, continuous loess landslides in Zhangjiaheba Gully result in the reciprocal regeneration of debris flows and landslides within the watershed. These research outcomes provide a reliable scientific basis for the engineering management and disaster prevention and mitigation of the landslide-debris flow disaster chain in Zhangjiaheba Gully.

  • 图  1   研究区概况图

    Figure  1.   Overview of the study area

    图  2   黄土滑坡遥感影像及无人机航拍图

    Figure  2.   The remote sensing images and UAV aerial photography of loess landslides

    图  3   泥石流历史灾害照片

    Figure  3.   Historical photos of debris flow disasters

    图  4   泥石流流体配制

    Figure  4.   Configuration of debris flow fluid

    图  5   断面调查及危害对象

    Figure  5.   Cross-sectional survey and vulnerable objects

    图  6   黄土剪切滑动

    Figure  6.   Loess shear sliding

    图  7   黄土滑坡演化过程

    Figure  7.   Evolution process of loess landslide

    图  8   九寨沟县张家河坝沟“7•24”泥石流发生前期的累计降雨量和当日降雨量数据

    Figure  8.   Previous cumulative and daily rainfall data of Zhangjiaheba gully“7•24”debris flow in Jiuzhaigou county

    图  9   临界降雨量拟合曲线

    Figure  9.   Fitted curve of critical rainfall

    图  10   滑坡-泥石流演化过程

    Figure  10.   Landslide-debris flow evolution process

    图  11   张家河坝沟滑坡-泥石流灾害链往复再生过程

    Figure  11.   The repetitive regeneration process of the Zhangjiaheba gully landslide-debris flow disaster chain

    表  1   泥石流运动特征参数计算模型

    Table  1   Calculation model of debris flow motion characteristic parameter

    运动特征参数 计算模型 参数说明
    容重 γc=GV γc为浆体的容重(g/cm3);G为样品的总质量(g);V为样品的体积(cm3)。
    流速 VC=1ncHc2/3Ic1/2 Vc为泥石流断面平均流速(m/s);Hc为泥石流水力半径(m)用泥石流平均泥深代替;Ic为泥石流水力坡度(%),
    用沟道纵坡率代替;nc为粘性泥石流糙率系数,按规范查表得到。
    冲压力 P=λγcgVc2sinα P为泥石流冲压力(Kpa);λ为建筑物形状系数,圆形建筑物λ=1.0,矩形建筑物λ=1.33,方形建筑物λ=1.47;
    g为重力加速度(m/s2,g取9.8m/s2)α为建筑物受力面与泥石流冲压力方向的夹角(°)
    下载: 导出CSV

    表  2   现场调查试验法计算

    Table  2   Calculation by field investigation and experimental method

    试验
    位置
    配制泥浆重量
    G(kg)
    配置浆体深度
    H(cm)
    配制泥浆体积
    V(cm3
    泥石流容重
    γc(g/cm3
    平均容重
    γc(g/cm3
    堆积区 20.5 18.5 9733 2.106 2.116
    22.1 19.5 10298 2.146
    19.8 18 9452 2.095
    下载: 导出CSV

    表  3   张家坝沟泥石流运动参数计算结果

    Table  3   Calculation results of debris flow motion parameters in Zhangjiaba gully

    计算断面 平均泥深Hc/m 沟道纵坡率Ic 糙率系数(1/nc) 断面流速vc/(m·s-1 平均流速vc/(m·s-1 泥石流流体冲压力(Kpa) 平均冲压力(Kpa)
    Asc1 1.2 0.105 15 3.50 4.87 2.65 5.29
    Asc2 2.0 0.105 15 4.66 4.69
    Asc3 2.8 0.105 15 5.39 6.27
    Asc4 3.4 0.105 15 5.91 7.54
    下载: 导出CSV

    表  4   2008年至2024年影响张家河坝沟5.0级及以上地震

    Table  4   Earthquakes of magnitude 5.0 or greater affecting Zhangjiaheba gully from 2008 to 2024

    序号 发震时间 经度
    /(°)
    纬度
    /(°)
    震级
    /Ms
    震中距
    /km
    地震动峰值
    加速度(gal)
    1 2008-05-12 103.322 31.002 8.0 259.2 22.55
    2 2017-08-08 103.8552 33.1926 7.0 36.24 161.43
    3 2013-04-20 102.888 30.308 6.6 345.83 3.39
    4 2008-05-25 105.423 32.56 6.1 131.45 10.09
    5 2008-05-12 103.618 31.214 6.1 228.41 3.87
    6 2008-08-05 105.49 32.756 6.0 126.99 9.46
    7 2008-05-17 104.98 32.24 5.8 127.35 7.30
    8 2008-08-01 104.722 32.033 5.7 137.39 5.62
    9 2008-07-24 105.542 32.747 5.7 131.52 6.06
    10 2008-05-27 105.54 32.71 5.7 133.01 5.94
    11 2008-05-12 104.032 31.586 5.7 180.52 3.48
    12 2008-07-23 105.498 32.752 5.5 127.51 4.88
    13 2020-10-22 104.235 31.9456 5.3 139.55 3.15
    14 2009-03-12 105.10 32.386 5.3 120.84 4.06
    15 2008-05-12 105.23 32.436 5.3 125.91 3.78
    16 2020-10-21 104.2275 31.9179 5.2 142.62 2.63
    17 2009-10-29 105.24 32.522 5.2 119.92 3.57
    18 2008-06-05 105.01 32.349 5.2 118.65 3.63
    19 2008-05-27 105.53 32.699 5.2 133.91 2.94
    20 2008-05-19 105.27 32.451 5.2 128.38 3.17
    21 2017-09-30 105.0428 32.2813 5.1 126.8 2.80
    22 2008-12-09 105.40 32.518 5.1 131.91 2.61
    23 2008-09-11 105.63 32.911 5.1 133.40 2.56
    24 2008-05-14 104.03 31.996 5.1 135.42 2.49
    25 2008-05-12 105.20 32.372 5.1 128.73 2.72
    26 2014-06-09 105.1835 32.4987 5.0 117.71 2.75
    27 2011-10-31 105.319 32.531 5.0 126.79 2.41
    28 2008-05-27 105.38 32.67 5.0 121.82 2.59
    29 2008-05-19 105.04 32.402 5.0 116.19 2.82
    30 2008-05-12 104.65 32.12 5.0 126.10 2.44
    下载: 导出CSV

    表  5   张家河坝沟历史泥石流暴发时间及降雨

    Table  5   Historical debris flow occurrences and rainfall in Zhangjiaheba gully

    泥石流暴发时间 累计降雨(mm) 当日降雨(mm) r1 r2 r3 r4 r5 r6 当日降雨(mm) ran
    2022.7.12 40.8 21.5 3 3.1 0.2 2.3 9.1 1.5 21.5 10.3
    2022.7.17 50.9 2 15 2.8 3.1 2.1 21.5 4.4 2 28.00
    2022.8.2 10.8 0 5.1 0.7 4.3 0 0.5 0.2 0 7.61
    2022.8.24 17.5 0 13.2 0 1 0 2 1.3 0 12.97
    2022.10.4 13 0.3 7.4 2 1.3 1.9 0.1 0 0.3 9.39
    2023.6.24 37.6 7.4 29.8 0.2 0.1 0 0 0.1 7.4 25.27
    2023.6.26 53.2 6.8 6 7.4 2.9 0 30.1 0 6.8 24.57
    2023.6.28 57.7 2.5 2 6.8 8.9 7.4 30.1 0 2.5 28.03
    2023.7.3 19.9 12.9 4.5 1 0.3 0.1 0 1.1 12.9 5.10
    2023.7.20 14.2 0.3 2.6 9.7 1 0 0 0.6 0.3 9.83
    2023.7.21 14.1 0.5 0.3 2.6 9.7 1 0 0 0.5 8.33
    2023.7.22 26.5 12.4 0.5 0.3 2.6 9.7 1 0 12.4 7.42
    2023.7.27 48.7 34.1 1.6 0 0 0.1 12.4 0.5 34.1 6.76
    2023.8.6 12.5 9.5 2.4 0.3 0.1 0.2 0 0 9.5 2.39
    2023.8.7 13.6 1.1 9.5 0.2 0 0.1 2.7 0 1.1 9.30
    下载: 导出CSV
  • [1] 种艳,陈冠,孟兴民,等. 高山峡谷区滑坡-泥石流灾害链成灾模式与危险性评价——以舟曲立节为例[J]. 兰州大学学报(自然科学版),2022,58(3):372 − 384. [CHONG Yan,CHEN Guan,MENG Xingmin,et al. Analysis of the transformation mechanism and prediction of a landslidedebris flow multi-hazards chain in an alpine canyon area:A case study in Zhouqu[J]. Journal of Lanzhou University (Natural Sciences),2022,58(3):372 − 384. (in Chinese with English abstract)]

    CHONG Yan, CHEN Guan, MENG Xingmin, et al. Analysis of the transformation mechanism and prediction of a landslidedebris flow multi-hazards chain in an alpine canyon area: A case study in Zhouqu[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(3): 372 − 384. (in Chinese with English abstract)

    [2] 崔鹏,郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术,2021,53(3):5 − 18. [CUI Peng,GUO Jian. Evolution models,risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences,2021,53(3):5 − 18. (in Chinese with English abstract)]

    CUI Peng, GUO Jian. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences, 2021, 53(3): 5 − 18. (in Chinese with English abstract)

    [3]

    FAN Xuanmei,SCARINGI G,KORUP O,et al. Earthquake-induced chains of geologic hazards:Patterns,mechanisms,and impacts[J]. Reviews of Geophysics,2019,57(2):421 − 503. DOI: 10.1029/2018RG000626

    [4] 郭剑,崔一飞. 滑坡-泥石流转化研究进展[J]. 工程地质学报,2023,31(3):762 − 779. [GUO Jian,CUI Yifei. An overview of landslide-induced debris flow[J]. Journal of Engineering Geology,2023,31(3):762 − 779. (in Chinese with English abstract)]

    GUO Jian, CUI Yifei. An overview of landslide-induced debris flow[J]. Journal of Engineering Geology, 2023, 31(3): 762 − 779. (in Chinese with English abstract)

    [5]

    SASSA K. Mechanisms of landslide triggered debris flows; proceedings of the Environmental Forest Science:Proceedings of the IUFRO Division 8 Conference Environmental Forest Science,held 19–23 October 1998,Kyoto University,Japan,F,1998[C]. Springer,1998.

    [6]

    NOTTI D,WRZESNIAK A,DEMATTEIS N,et al. A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event:A case study of the Monesi di Mendatica landslide,Ligurian Alps[J]. Landslides,2021,18(7):2341 − 2365. DOI: 10.1007/s10346-021-01651-3

    [7]

    WALTER F,AMANN F,KOS A,et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows[J]. Geomorphology,2020,351:106933. DOI: 10.1016/j.geomorph.2019.106933

    [8] 张永双,成余粮,姚鑫,等. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报,2013,32(12):1900 − 1910. [ZHANG Yongshuang,CHENG Yuliang,YAO Xin,et al. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geological Bulletin of China,2013,32(12):1900 − 1910. (in Chinese with English abstract)]

    ZHANG Yongshuang, CHENG Yuliang, YAO Xin, et al. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geological Bulletin of China, 2013, 32(12): 1900 − 1910. (in Chinese with English abstract)

    [9]

    HE Na,QU Xiangyang,YANG Zhiquan,et al. Disaster mechanism and evolution characteristics of landslide–debris-flow geohazard chain due to strong earthquake:A case study of Niumian gully[J]. Water,2023,15(6):1218. DOI: 10.3390/w15061218

    [10] 冯文凯,贾邦中,吴义鹰,等. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理[J]. 中国地质灾害与防治学报,2022,33(1):35 − 44. [FENG Wenkai,JIA Bangzhong,WU Yiying,et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):35 − 44. (in Chinese with English abstract)]

    FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35 − 44. (in Chinese with English abstract)

    [11] 魏学利,陈宝成,赵龙,等. 融雪诱发型黄土滑坡活动特征与应急响应模式——以新疆伊犁则克台滑坡为例[J]. 中国地质灾害与防治学报,2020,31(6):78 − 90. [WEI Xueli,CHEN Baocheng,ZHAO Long,et al. Kinematic characteristics and emergency response model of loess landslide drived by snowmelt:Take the Zeketai Landslide in Yili,Xinjiang as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):78 − 90. (in Chinese with English abstract)]

    WEI Xueli, CHEN Baocheng, ZHAO Long, et al. Kinematic characteristics and emergency response model of loess landslide drived by snowmelt: Take the Zeketai Landslide in Yili, Xinjiang as an example[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 78 − 90. (in Chinese with English abstract)

    [12]

    DERBYSHIRE E,MENG Xingmin,DIJKSTRA A T A. Landslides in the thick loess terrain of North-west China[M]. Chichester:John Wiley & Sons,2000.

    [13]

    CHEN Huie,JIANG Yaling,GAO Yue,et al. Structural characteristics and its influencing factors of typical loess[J]. Bulletin of Engineering Geology and the Environment,2019,78(7):4893 − 4905. DOI: 10.1007/s10064-018-1431-2

    [14] 徐敏,裴向军,张晓超. 强震触发石碑塬滑坡黄土动力特性[J]. 成都理工大学学报(自然科学版),2014,41(4):492 − 498. [XU Min,PEI Xiangjun,ZHANG Xiaochao. Dynamic characteristics of loess from Ningxia Shibeiyuan landslide triggered by Haiyuan earthquake[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(4):492 − 498. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2014.04.12

    XU Min, PEI Xiangjun, ZHANG Xiaochao. Dynamic characteristics of loess from Ningxia Shibeiyuan landslide triggered by Haiyuan earthquake[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(4): 492 − 498. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2014.04.12

    [15]

    SUN Ping,WANG Gang,WU L Z,et al. Physical model experiments for shallow failure in rainfall-triggered loess slope,Northwest China[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4363 − 4382. DOI: 10.1007/s10064-018-1420-5

    [16] 黄洪,胡桂胜,陈宁生,等. 大规模沟谷型泥石流成因与减灾启示——以黑水县谷汝沟“7•14” 泥石流为例[J]. 安全与环境工程,2024,31(1):172 − 181. [HUANG Hong,HU Guisheng,CHEN Ningsheng,et al. Causes of large-scale gully debris flow and enlightenment of disaster reduction:Taking the “7•14” debris flow in Guru Glluy of Hishui Ceounty as an example[J]. Safety and Environmental Engineering,2024,31(1):172 − 181. (in Chinese with English abstract)]

    HUANG Hong, HU Guisheng, CHEN Ningsheng, et al. Causes of large-scale gully debris flow and enlightenment of disaster reduction: Taking the “7•14” debris flow in Guru Glluy of Hishui Ceounty as an example[J]. Safety and Environmental Engineering, 2024, 31(1): 172 − 181. (in Chinese with English abstract)

    [17]

    IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics,1997,35(3):245 − 296. DOI: 10.1029/97RG00426

    [18] 施蕾蕾,陈宁生,杨成林. 四川省九龙县娃娃沟泥石流运动特征与堵河成灾机制分析[J]. 中国地质灾害与防治学报,2008,19(2):16 − 21. [SHI Leilei,CHEN Ningsheng,YANG Chenglin. Debris flow activity characteristics and blocking up river mechanism in Wawa Valley,Jiulong County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):16 − 21. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2008.02.004

    SHI Leilei, CHEN Ningsheng, YANG Chenglin. Debris flow activity characteristics and blocking up river mechanism in Wawa Valley, Jiulong County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(2): 16 − 21. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2008.02.004

    [19] 王兰民,柴少峰,薄景山,等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报,2023,45(8):1543 − 1554. [WANG Lanmin,CHAI Shaofeng,BO Jingshan,et al. Triggering types,characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering,2023,45(8):1543 − 1554. (in Chinese with English abstract)] DOI: 10.11779/CJGE20220531

    WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543 − 1554. (in Chinese with English abstract) DOI: 10.11779/CJGE20220531

    [20] 李欣蔚,张广伟,谢卓娟,等. 2021年四川泸县M6.0地震发震机理及地震活动时空演化特征[J]. 地球物理学报,2022,65(11):4284 − 4298. [LI Xinwei,ZHANG Guangwei,XIE Zhuojuan,et al. Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region[J]. Chinese Journal of Geophysics,2022,65(11):4284 − 4298. (in Chinese with English abstract)] DOI: 10.6038/cjg2022Q0045

    LI Xinwei, ZHANG Guangwei, XIE Zhuojuan, et al. Seismogenic mechanism of the 2021 M6.0 Luxian earthquake and seismicity spatio-temporal characteristics around the source region[J]. Chinese Journal of Geophysics, 2022, 65(11): 4284 − 4298. (in Chinese with English abstract) DOI: 10.6038/cjg2022Q0045

    [21]

    WANG J H. The source rupture duration of earthquakes synthesized from an one-dimensional dynamic lattice model[J]. Journal of Physics of the Earth,1993,41(6):391 − 404. DOI: 10.4294/jpe1952.41.391

    [22]

    YU Yanxiang,GAO Mengtan. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi),Taiwan Province,earthquake[J]. Province,earthquake[J]. Acta Seismologica Sinica,2001,14(6):654 − 659. DOI: 10.1007/BF02718076

    [23]

    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique,1965,15(2):139 − 160.

    [24]

    HE Na,GAO Xinhang,ZHONG Wei,et al. A method for rapidly assessing landslide hazard:Taking the landslide in Yongxing town,Mingshan area as an example[J]. Frontiers in Earth Science,2024,12:1429346. DOI: 10.3389/feart.2024.1429346

    [25] 王秀英. 地震滑坡灾害快速评估技术及对应急影响研究[J]. 国际地震动态,2011,41(7):44 − 45. [WANG Xiuying. Study of fast evaluation technique of earthquake-induced landslides and their effects on earthquake emergency rescue[J]. Recent Developments in World Seismology,2011,41(7):44 − 45. (in Chinese)] DOI: 10.3969/j.issn.0235-4975.2011.07.012

    WANG Xiuying. Study of fast evaluation technique of earthquake-induced landslides and their effects on earthquake emergency rescue[J]. Recent Developments in World Seismology, 2011, 41(7): 44 − 45. (in Chinese) DOI: 10.3969/j.issn.0235-4975.2011.07.012

    [26] 徐光兴,姚令侃,李朝红,等. 基于汶川地震强震动记录的边坡永久位移预测模型[J]. 岩土工程学报,2012,34(6):1131 − 1136. [XU Guangxing,YAO Lingkan,LI Chaohong,et al. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering,2012,34(6):1131 − 1136. (in Chinese with English abstract)]

    XU Guangxing, YAO Lingkan, LI Chaohong, et al. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1131 − 1136. (in Chinese with English abstract)

    [27] 贺拿,陈宁生,曾梅,等. 白鹤滩水电站坝址近场区泥石流临界雨量研究[J]. 水利学报,2015,46(2):239 − 247. [HE Na,CHEN Ningsheng,ZENG Mei,et al. Study on debris flow rainfall threshold of Baihetan Hydropower Station near-zone area[J]. Journal of Hydraulic Engineering,2015,46(2):239 − 247. (in Chinese with English abstract)]

    HE Na, CHEN Ningsheng, ZENG Mei, et al. Study on debris flow rainfall threshold of Baihetan Hydropower Station near-zone area[J]. Journal of Hydraulic Engineering, 2015, 46(2): 239 − 247. (in Chinese with English abstract)

    [28]

    LIU Shuang,WEI Li,HU Kaiheng. Topographical and geological variation of effective rainfall for debris-flow occurrence from a large-scale perspective[J]. Geomorphology,2020,358:107134. DOI: 10.1016/j.geomorph.2020.107134

    [29]

    LIU Shuang,HU Kaiheng,ZHANG Qun,et al. Quantitative analysis of the effects of an earthquake on rainfall thresholds for triggering debris-flow events[J]. Frontiers in Earth Science,2021,9:676470. DOI: 10.3389/feart.2021.676470

    [30] 文广超,苏林雪,谢洪波,等. “5•12” 汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报,2021,40(4):143 − 152. [WEN Guangchao,SU Linxue,XIE Hongbo,et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around “5•12” Wenchuan earthquake[J]. Bulletin of Geological Science and Technology,2021,40(4):143 − 152. (in Chinese with English abstract)]

    WEN Guangchao, SU Linxue, XIE Hongbo, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around “5•12” Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143 − 152. (in Chinese with English abstract)

  • 期刊类型引用(4)

    1. 白雪松,赵洲,杨泽. 基于数值方法的不稳定斜坡地震响应研究. 能源与环保. 2023(12): 204-210 . 百度学术
    2. 时幸幸,崔圣华,裴向军,朱凌,杨晴雯. 基于流固耦合的强震大型滑坡水力激发效应研究. 水文地质工程地质. 2022(02): 102-114 . 百度学术
    3. 雷津,崔圣华,裴向军,杨海龙,朱凌,杨晴雯. 基于射线理论的垂直P波入射过程滑坡滑带应力放大特征及成因分析. 地质科技通报. 2022(06): 149-161 . 百度学术
    4. 王茜,晏鄂川,杨凯,周京城. 考虑降雨工况下的顺向岩质边坡稳定性分析. 河南科学. 2021(04): 626-632 . 百度学术

    其他类型引用(1)

图(11)  /  表(5)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  14
  • PDF下载量:  30
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-08-10
  • 修回日期:  2025-01-20
  • 录用日期:  2025-03-02
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回