ISSN 1003-8035 CN 11-2852/P

    融合EEMD算法和TimesNet时序模型的SBAS-InSAR数据分析及其在地面沉降预测中的应用以安徽太和县为例

    Data ananlysis of SBAS-InSAR using coupled EEMD and TimesNet time series model and its application in land subsidence prediction: A case study in Taihe county, Anhui province

    • 摘要: 地面沉降对城市发展建设和人类生命财产安全造成不利影响,精准捕捉地面沉降数据特征,实现准确预测对防灾减灾具有至关重要的意义。以安徽省太和县南部为研究区,基于175景Sentinel-1数据,利用以SBAS-InSAR为核心的Mintpy时序分析工具获取2018-2023年沉降时序数据;为有效捕捉数据中的非线性和非平稳性特征,研究采用集合经验模态分解算法对数据进行多尺度分解,有效分离出不同频段的沉降趋势。结合TimesNet时序模型,精准捕捉非平稳时序数据的特征与周期分布,实现地面沉降的高精度预测。结果表明,研究区地面基本稳定,但局部地区存在明显的地面沉降现象,沉降速率范围为5~50 mm·a−1。在短期预测任务中,拟合均方根误差和平均绝对误差分别为0.54 mm和0.31 mm,说明了模型在短期预测上具有良好的表现;在长期预测任务中,模型在验证集上平均绝对误差为0.83 mm,克服了长期预测任务中普遍存在的欠拟合现象,表明模型能够充分捕捉时序特征,较好地完成基于时序InSAR数据地面沉降预测。

       

      Abstract: Ground subsidence has a negative impact on urban development, public safety, and property. Accurate characterization and prediction of ground subsidence patterns are critical for effective disaster prevention and mitigation. This study focuses on the southern region of Taihe County, Anhui Province, utilizing 175 Sentinel-1 images and the Mintpy time-series analysis tool, with SBAS-InSAR as the core, to derive time-series subsidence data from 2018 to 2023. To effectively capture the non-linear and non-stationary features of the data, the study uses the ensemble empirical mode decomposition (EEMD) algorithm to perform multi-scale decomposition of the data, effectively isolating subsidence trends across different frequencies. The TimesNet time series model was then applied to capture the characteristics and periodic distributions of the non-stationary time series data, enabling high-precision land subsidence predictions.The results indicate that the study area is basically stable, though localized subsidence phenomena exist, with subsidence rates ranging from 5 to 50 mm/a. In short-term prediction task, the model achieved root mean square error (RMSE) and mean absolute error (MAE) values of 0.54 mm and 0.31 mm, respectively, demonstrating excellent performance in short-term prediction. For long-term predictions, the model achieved an MAE of 0.83 mm on the validation set, effectively addressing the common challenge of underfitting in long-term tasks. This indicates that the model successfully captures time-series characteristics and provide reliable predictions of land subsidence using time-series InSAR data.

       

    /

    返回文章
    返回