Impacts of steady-state seepage and transient rainfall on the stability of landslide adjacent to impounding reservoir: A case study of the Yanxincun Landslide in Tongjiang County, Sichuan Province
-
摘要:
因人类工程活动导致的滑坡事件时常发生,但针对池塘水发生渗漏导致的滑坡研究较少。文章以四川省巴中市通江县沿新村滑坡为例,运用非饱和渗流理论对该滑坡开展天然、稳态渗流以及稳态渗流与瞬态降雨联合3种工况下的稳定性研究。通过定量与定性评价相结合的方式揭示此类池塘水渗漏型滑坡的失稳机理。研究结果显示:稳态渗流工况下,岩土体内部表现出强烈的各向异性,内部会形成优先流动通道,逐步劣化岩土体物理力学性质,加之瞬态降雨的影响增强了滑坡的下滑力,稳态渗流与瞬态降雨联合工况是沿新村滑坡失稳的直接原因,稳定性是一个随时间变化的动态过程。该研究能够为同类型滑坡的失稳机理提供参考,对山区农灌建设诱发的滑坡地质灾害防预工作具有重要的指导意义。
-
关键词:
- 池塘水渗漏 /
- 数值模拟 /
- 稳定性分析 /
- 失稳机理 /
- 稳态渗流联合瞬态降雨
Abstract:Landslides caused by human engineering activities occur frequently, yet studies specifically addressing those triggered by pond water seepage remain limited. In this paper, the Yanxincun landslide in Tongjiang County, Bazhong City, Sichuan Province, is taken as a case study. Based on unsaturated seepage theory, the slope stability is analyzed under three working conditions: natural conditions, steady-state seepage, and steady-state seepage combined with transient rainfall. By integrating quantitative and qualitative evaluations, the destabilization mechanism of this type of pond seepage-induced landslide is revealed. The results show that under steady-state seepage condition, the internal geotechnical body exhibits strong anisotropy, resulting in the formation of preferential flow channels within the body. This process gradually deteriorates the physical and mechanical properties of the geotechnical body, particularly when coupled with the influence of transient rainfall. Rainfall serves to augment the downward sliding force of the landslide. The combination of steady-state seepage and transient rainfall is identified as the direct cause of the landslide along the Xincun Village. Moreover, slope stability is shown to be a dynamic process that changes over time. This study provides a valuable reference for understanding the destabilization mechanisms of similar landslide types, particularly in the context of preventing landslide-related geohazards in mountainous regions with prevalent agricultural and irrigation activities.
-
0. 引言
近年来人类工程活动加剧,偏远山区斜坡地带频现灾害。由于缺乏专业治理知识,农耕灌溉与水塘修建不当,改变斜坡应力状态,增加滑坡风险,造成重大伤亡与经济损失。农业灌溉区降雨及水体渗漏更添威胁。
水体对滑坡地质灾害的影响是巨大的[1 − 2],一方面增加了土体的自重,且具有水致劣化作用[3 − 4],一些学者通过将岩土体进行长期浸泡软化试验,发现滑带土抗剪强度随浸泡时间呈指数性下降[5 − 6]。姜自华等[7]通过三轴力学试验分别建立了岩土体饱和度与黏聚力、内摩擦角的经验方程。另一方面,岩土体具有明显的各向异性,结构松散或具有裂隙通道的部位容易形成优先流[8 − 9],这种优先流作用容易造成深部岩土体孔隙水压力增大及滑动面抗剪强度降低[10]。对于水体的渗漏,主要研究方法与模型有Green-Ampt(G-A)模型以及基于G-A假设的Mein-Larson模型[11 − 13],利用级数表述的Philip模型[14],基于栅格的瞬态降水入渗(TRIGRS)边坡稳定性模型[15]。其中G-A模型具有明确的物理意义和运用参数少的优点,应用范围最广。这些模型的应用丰富了水体对滑坡地质灾害的作用,增加了滑坡灾害的科学认识。
此外,水与滑坡的相互作用是一个典型的流固耦合问题,如Cheng等[16]采用有限元法建立滑坡渗流应力耦合模型。Zhang等[17]利用FLAC和PFC耦合分析了关岭滑坡的稳定性及发展趋势。Zhang等[18]在研究永久冻土区时,建立了水热力学耦合模型来研究滑坡。纪佑军等[19]利用FLAC3D基于非饱和土流固耦合理论分析了降雨型滑坡稳定性。贺小黑等[20]考虑了地下水渗流对滑坡稳定性的影响。此类研究将极限平衡法与有限元法结合可对滑坡进行定性与定量的评价,能最大程度的评价滑坡的安全程度[21 − 22]。
综上所述,当前渗流型滑坡研究聚焦于库区水位变动及大型降雨引发的滑坡,而对于山区人工池塘渗漏联合降雨工况的研究尚显不足。此类滑坡的特点是:人类工程活动诱发池塘水渗漏,滑带土长期浸泡并受渗透作用,岩土体各向异性明显,加之降雨影响,滑坡变形失稳风险加剧。本文以四川巴中市通江县诺江镇沿新村滑坡为实例,结合现场调查、无人机高精度高程数据及岩土体各向异性考量,运用有限元与极限平衡法,分析了天然状态、稳态渗流及瞬态降雨联合稳态渗流工况下的滑坡稳定性,明确了滑坡失稳成因,探讨了山区水塘建设引发的地质灾害,并对山区农灌工程提出了针对性建议。
1. 基本原理
在对滑坡稳定性进行分析时,定性与定量结合分析为地质灾害防治工作提供了强有力的技术支持和决策依据[24 − 26]。定性评价方法往往依赖于专家的知识和经验,能够综合考虑多种因素与复杂工况,提供对滑坡地质灾害的详细描述和解释。定量评价具有更强的客观性,具有准确性高、可比性强以及可预测性等优点。
随着计算机技术的发展进步,定量评价在滑坡地质灾害稳定性评价中越发突出。尤其是在渗流型滑坡地质灾害的分析研究中,通常将渗流场和应力场进行耦合分析,能够更全面地了解滑坡失稳的机制和过程。这种方法能够考虑岩土体的非线性力学性质、孔隙水压力的动态变化等因素,为滑坡地质灾害的预防和防治提供更为准确和可靠的科学依据。
渗流方程考虑了水流速度、渗透系数、水头梯度等因素,能够模拟地下水在岩土体中的流动过程,以及由此产生的孔隙水压力和对滑坡稳定性的影响,基本原理为:
(1) 式中:H——水头;
kx、ky——水平和垂直方向的渗透系数;
t——时间;
Q——边界流量;
θ——体积含水率,与水土特征曲线有关,采用Fredlund 经验公式进行计算[23]:
(2) 式中:θs——饱和体积含水率;
ψ——基质吸力;
ψr——对应残余体积含水率的基质吸力;
a——进气值近似值;
n——控制水土特征曲线拐点处斜率的参数;
m——与残余含水率相关的土性参数。
非饱和渗透系数由水土特征曲线和饱和渗透系数推导出:
(3) 式中:k(ψ)——基质吸力为ψ时的渗透系数;
ks——饱和渗透系数,b=13.81;
ψave——水土特征曲线的进气值;
θ'——式(2)的导数。
有限元法通过建立精确的三维地质模型,考虑土体的非线性力学性质,如应变软化、屈服准则等,更真实地反映滑坡体在受力过程中的变形和破坏行为,深入灾害成因机理。其基本应力增量与应变增量存在如下关系:
(4) (5) (6) 式中:[D]——弹性矩阵;
[D]ep——弹塑性矩阵。
F与Q分别为塑性屈服函数和塑性势函数,对于关联流动,F=Q,对于理想的塑性材料,可设A=0。屈服函数F符合Mohr-Coulomb屈服准则:
(7) (8) (9) (10) (11) 式中:I1——第一应力不变量;
J2——第二应力偏量不变量;
J3——第三应力偏量不变量;
θ——Lode角;
c——黏聚力;
φ——内摩擦角。
2. 研究区地质条件及失稳原因
2.1 研究区地质背景及现状
研究区位于四川省巴中市通江县诺江镇沿新村(图1),属亚热带季风气候,多年平均降水量为
1157.8 mm,夏秋(5—9月)降水集中,月降水量在150 mm以上,是降水的高峰期,占全年总量的71.3%。地形地貌方面,属构造剥蚀中、低山地貌,地势东北低西南高,地形坡度约6°~15°,局部可达25°左右,海拔高度为410~460 m。此外,研究区除零星分布的第四系松散堆积层之外,出露夹灰色粉砂质泥岩,为中生界白垩系地层,区内新构造运动并不强烈,历史无5级以上地震记载,属地震活动稳定地区,地下水资源丰富,在补给区和排泄区以浅部裂隙潜水形式出现,在径流区或储水构造地段成为层间裂隙承压水。农业是研究区内的主要产业,当地居民修建了大量的农灌设施用于灌溉和蓄水养殖。这些农灌设施具有建设简陋、选址随意和缺乏专业性等特征,特别是在斜坡中上部修建水塘,当因年久失修,或修筑质量较差时,发生渗漏并诱发滑坡灾害的发生。
通过采用无人机正射投影测量方法获取研究区高分辨解译并构建模型,使用设备为大疆Phantom 4 RTK无人机,采用Agisoft Photoscan构建的数字图像序列,提取研究区内高精度DEM高程数据,获得详细工程地质调查平面图(图2)。现场勘查得出该区域内主要地层类型为
、 和K1b 3个地层类型,地层岩性以第四系含碎石的粉质黏土及少量砂泥岩为主,含碎石的粉质粘土厚度较大,广泛分布于滑坡的前、中、后缘,白垩纪下统砂泥岩则在滑坡前缘出露,透水性差,倾角近水平,现场调查产状为58°∠1°,据此绘制典型工程地质剖面图如图3。2.2 沿新村滑坡现状及失稳机理
研究区内人类工活动明显,顶部为半圆形人工水塘,长约100 m,宽约50 m,四周地势较为平缓,汇水面积约为0.011 km2,水塘需要定期补充水源以做养殖用途,蓄水高度约3 m。滑坡中部主要为耕植土,主要种植油麦等粮食作物,滑坡中下部区域零星种植少量树木,为滑坡的稳定性提供了有利条件。
据调查,研究区近年来未有大规模切坡建房活动,部分切坡区域具有切坡高度不高、对斜坡稳定性影响程度不大的特点,且坡顶尚未建立水塘前,并无强烈变形迹象,在池塘修建后不久,该滑坡出现明显滑动迹象。如图2所示,后缘呈现弧形裂缝并伴随塌陷,塌陷高度约15 cm(图2b),滑坡整体坡度处于10°~25°,坡面可观察到一些细小的裂缝,图2c处电线杆变形倾倒,滑坡滑动迹象明显。坡脚处可见明显串珠状泉水出露,约0.5~1.0 m3/d(图2d),图2e可见明显坡舌隆起,这些变形迹象威胁房屋建筑并给当地居民带来恐慌。综上所述,沿新村滑坡失稳机理为:
(1)顶部修建的池塘水发生渗漏,水沿着顶部拉张裂缝渗入,滑带土长期处于浸泡状态,降低了岩土体的物理力学性质,增加孔隙水压力。
(2)水体在渗漏过程中冲刷带走细小颗粒物质,形成悬空的通道,加速了水体的渗漏,内部形成优先流动通道,表现出强烈的各向异性,岩土体抗滑性能持续下降。
(3)每年的5—9月研究区降雨丰富,雨水的下渗以及坡面的径流增加了滑体的下滑力,孔隙水压力持续增加,在池塘水长期渗漏联合强降雨天气下滑坡最终失稳破坏。
3. 沿新村滑坡稳定性分析
3.1 模型的建立及参数的选取
在分析天然工况下滑坡体内应力应变状态时,FLAC3D数值模拟具有极大的优越性,可进行三维地质建模和确定最不利滑动面的位置,分析时建立边坡模型如图4所示,长200 m,宽90 m,最大高差为31 m,利用hypermesh划分网格单元,创建
41261 个节点,划分出223054 个网格单元,划分3组地层,分别为耕植土、含碎块石的粉质黏土和砂泥岩。通过现场调查推测沿新村滑坡滑带土长期处于浸泡状态,参考中国三峡水库区域的边坡因常年受到水体浸泡影响发生失稳的一系列研究,考虑到滑带土的强度参数总体随含水量的增加而降低[27 − 29]。研究时岩土体的体积含水量采用Geostudio软件中SEEP/W模块进行样本函数估计。参照王剑等[30]对三峡库区同类型滑带土的物理力学性质研究,得到长期浸泡后滑带土抗剪强度变化关系及水土特征,根据摩尔库伦破坏准则反算出含碎石的粉质黏土黏聚力(c)和内摩擦角(φ)随浸泡天数的变化关系如表1所示,并选取浸泡40 d后的参数进行分析计算。
表 1 不同浸泡时间滑带土抗剪强度参数Table 1. Shear strength parameters of slip zone soils under different soaking durations浸泡时间(d) 黏聚力c(kPa) 内摩擦角φ(°) 0 25.1 18.3 1 24.8 18.2 3 24.6 17.9 5 24.3 17.5 7 24.2 17.1 10 23.7 16.4 20 22.9 16.2 30 22.4 16.1 40 22.1 16.0 参照同类型岩土体物理力学参数及渗透性[31 − 33],设置砂泥岩渗透系数为2.3 m/d,耕植土渗透系数为4.6 m/d,由于滑带土的剪切破坏作用有利于渗透性的增加,在建立分析模型时按照滑带土受剪切破坏程度,划分为无破坏区、弱破坏区、强破坏区,根据工程类比法分别设置渗透系数为5.6 m/d、11 m/d和16 m/d。岩土体物理力学参数综合取值见表2。
表 2 岩体力学参数取值表Table 2. Table of mechanical parameters of rock mass类型 黏聚力/kPa 内摩擦角/(°) 泊松比 弹性模量/GPa 重度/(kN∙m−3) 天然 饱和 天然 饱和 天然 饱和 天然 饱和 天然 饱和 耕植土 25.0 23.0 17.5 16.8 0.29 0.33 0.2 0.05 18.5 19.5 含碎石的粉质粘土 26.1 23.9 18.3 16.0 0.21 0.22 3.3 2.7 19.5 21.5 砂泥岩 110.00 95.00 37.00 34.00 0.21 0.22 8.5 6.4 21.0 21.5 3.2 天然工况
沿新村滑坡天然工况下,不考虑渗透力的作用,数值模拟结果如图5所示。
据图5显示,天然工况下,稳定性系数为2.31,滑坡处于稳定状态,图5(a)显示沿新村滑坡应变增量,根据应变增量划分为强变形区、弱变形区和无变形区,这些不同程度的应变增量直接影响着岩土体的渗透性[34 − 37],因此在建立分析模型时,应重点考虑到岩土体的各向异性。图5(b)显示坡顶受拉破坏集中于水塘内部,池塘水沿着拉张裂缝处贯通发生渗漏,产生的水压力和对滑带土的劣化作用加剧了滑体的变形,受到剪切塑性破坏区域易产生局部滑塌或坡脚隆起,岩层交界处的岩土体受到剪切破坏严重,为滑动面位置,数值模拟结果与现场调查结果基本一致。图5(c)显示,沿新村滑坡发生形变的位置主要位于中上部区域,最大变形位移为0.11 m,与现场测量结果基本一致,进一步验证了滑坡的失稳机理。
3.3 稳态渗流工况
一方面滑带土受到剪切破坏作用使得土体结构发生变化,原有固结土体发生剪切破坏,岩土体渗透性能增加[38]。另一方面,顶部池塘水长期处于渗漏状态,水体渗流不仅冲击带动细小的颗粒运移,形成孔隙通道,且随着孔隙水压力的增加,土颗粒间的有效应力减小,进一步加剧了底部岩土体渗透性能[39]。斜坡的剪切变形破坏使得含碎石的粉质黏土渗透性能增加,且在长期渗漏环境下,土体的结构和应力应变状态进一步变化,渗透性将进一步增强。根据A-A’剖面典型工程地质剖面图建立分析模型(图6),分析稳态渗流工况下滑坡的稳定性,结果如图7所示。
据图7显示,顶部池塘水主要沿着强破坏区发生渗漏,浸润面已完全超过滑移面位置,并在坡脚剪切塑性破坏区域出露,滑带土长期处于浸泡状态。此外,极限平衡法计算的潜在滑动面与天然工况下数值模拟结果一致,说明滑动面位于岩土层交界处。采用Morgenstern-Price、Jianbu和Bishop三种计算方法分析沿新村滑坡稳定性,结果分别为1.170、1.168和1.172(表3),相较于天然工况,滑坡的稳定性急剧下降,表明池塘水的持续渗漏对滑坡的稳定性影响巨大,但由于滑坡自身拥有高差不大、坡度不陡的地形,仍处于稳定状态。
表 3 持续渗漏工况下沿新村滑坡稳定性Table 3. Stability values of the Yanxincun landslide under continuous seepage conditions计算方法 Morgenstern-Price Jianbu Bishop 稳定性系数 1.170 1.168 1.172 3.4 稳态渗流与瞬态降雨联合工况
通过查阅研究区历年降雨资料,设置单位降雨强度为0.03 m/h(强降雨)、持续时长为10 h,在池塘水渗流与降雨联合作用下,沿新村滑坡位移及应力分析结果如图8所示。
结果显示,水塘周围最大变形位移达到1.8 m,最大剪应力达到200 kPa,远大于天然工况,此时地下水浸润线已接近地表,相较于稳态渗流工况,孔隙水压力进一步上升,同时降雨的下渗和地面的径流增加了下滑力,滑坡整体的抗滑性能随着降雨时间持续下降,滑坡将整体失稳发生推移式滑坡。通过采用极限平衡法对稳态渗流与降雨联合作用下沿新村滑坡进行稳定性计算,稳定性系数的变化如图9,结果显示在0~4 h的强降雨作用下,在未失稳前滑坡的稳定性系数近乎直线下降,直至4 h后缓慢下降并趋于稳定,进一步验证了此类滑坡的稳定性是一个动态变化的过程。
4. 结论
(1)沿新村滑坡失稳的原因是水塘的长期渗漏以及强降雨天气的联合作用,此类滑坡的稳定性是一个动态下降的过程,在天然工况下通常不具备发育滑坡地质灾害的条件,但在人类工程活动及地下水的影响下,滑带土长期处于浸泡状态,内部形成优先流动通道,加之降雨的入渗进一步增加了滑坡的下滑力和孔隙水压力,岩土体物理力学性质持续下降,直至滑坡失稳破坏。
(2)山区滑坡体的结构具有强烈的各向异性,尤其是在研究渗流型滑坡时更加明显,不同的岩土体类型与结构具有不同的渗透性能,应该着重研究不同浸泡与入渗条件下岩土体物理力学性质的变化,才能进一步提升分析模型精确度。
(3)必须高度重视农灌设施建设的科学性和有组织性,应该首先进行详细的地质勘察,并指派专门的地质从业人员进行建设指导,做好科学的选址、防渗、监测、预警措施,避免人类工程诱发滑坡地质灾害的发生。
(4)针对沿新村滑坡现状,应该首先进行详细的地质勘察,抽干顶部池塘水进行修补渗漏并设立警示牌,必要时进行人员疏散,然后采用支挡设施对边坡进行加固,以提高滑坡的稳定性,最后进行定期监测和设施维护,制定好应急措施。
-
表 1 不同浸泡时间滑带土抗剪强度参数
Table 1 Shear strength parameters of slip zone soils under different soaking durations
浸泡时间(d) 黏聚力c(kPa) 内摩擦角φ(°) 0 25.1 18.3 1 24.8 18.2 3 24.6 17.9 5 24.3 17.5 7 24.2 17.1 10 23.7 16.4 20 22.9 16.2 30 22.4 16.1 40 22.1 16.0 表 2 岩体力学参数取值表
Table 2 Table of mechanical parameters of rock mass
类型 黏聚力/kPa 内摩擦角/(°) 泊松比 弹性模量/GPa 重度/(kN∙m−3) 天然 饱和 天然 饱和 天然 饱和 天然 饱和 天然 饱和 耕植土 25.0 23.0 17.5 16.8 0.29 0.33 0.2 0.05 18.5 19.5 含碎石的粉质粘土 26.1 23.9 18.3 16.0 0.21 0.22 3.3 2.7 19.5 21.5 砂泥岩 110.00 95.00 37.00 34.00 0.21 0.22 8.5 6.4 21.0 21.5 表 3 持续渗漏工况下沿新村滑坡稳定性
Table 3 Stability values of the Yanxincun landslide under continuous seepage conditions
计算方法 Morgenstern-Price Jianbu Bishop 稳定性系数 1.170 1.168 1.172 -
[1] 殷跃平, 张晨阳, 闫慧, 等. 三峡水库蓄水运行滑坡渗流稳定和防治设计研究[J]. 岩石力学与工程学报, 2022, 41(4): 649 − 659. [YIN Yueping, ZHANG Chenyang, YAN Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 649 − 659. (in Chinese with English abstract)] YIN Yueping, ZHANG Chenyang, YAN Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 649 − 659. (in Chinese with English abstract)
[2] 冯谕, 涂鹏飞, 曾怀恩. 降雨及库水位共同作用下滑坡阶跃位移临界面的识别方法[J]. 岩石力学与工程学报, 2023, 42(11): 2788 − 2805. [FENG Yu, TU Pengfei, ZENG Huaien. A method for identifying critical displacement threshold of landslide step under combined effects of rainfall and reservoir water level[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2788 − 2805. (in Chinese with English abstract)] FENG Yu, TU Pengfei, ZENG Huaien. A method for identifying critical displacement threshold of landslide step under combined effects of rainfall and reservoir water level[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2788 − 2805. (in Chinese with English abstract)
[3] WANG Sijing, MA Fengshan. On the rock-water interaction in reservoir areas and its geoenvironmental effect[J]. Journal of Engineering Geology, 1996: 4(3): 1 − 9.
[4] 徐卫亚, 周伟杰, 闫龙. 降雨型堆积体滑坡渗流稳定性研究进展[J]. 水利水电科技进展, 2020, 40(4): 87 − 94. [XU Weiya, ZHOU Weijie, YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 87 − 94. (in Chinese with English abstract)] DOI: 10.3880/j.issn.1006-7647.2020.04.014 XU Weiya, ZHOU Weijie, YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 87 − 94. (in Chinese with English abstract) DOI: 10.3880/j.issn.1006-7647.2020.04.014
[5] 吴恒, 张信贵, 易念平, 等. 城市环境下的水土作用对土强度的影响[J]. 岩土力学, 1999, 20(4): 25 − 30. [WU Heng, ZHANG Xingui, YI Nianping, et al. Influence of water-soil interaction on soil strength in urban areas[J]. Rock and Soil Mechanics, 1999, 20(4): 25 − 30. (in Chinese with English abstract)] WU Heng, ZHANG Xingui, YI Nianping, et al. Influence of water-soil interaction on soil strength in urban areas[J]. Rock and Soil Mechanics, 1999, 20(4): 25 − 30. (in Chinese with English abstract)
[6] 张迪, 李岚星, 胡新丽, 等. 长期静水浸泡对三峡库区滑带土物理-化学-力学性质的影响[J]. 地质科技通报, 2021, 40(5): 281 − 289. [ZHANG Di, LI Lanxing, HU Xinli, et al. Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 281 − 289. (in Chinese with English abstract)] ZHANG Di, LI Lanxing, HU Xinli, et al. Effect of long-term immersion in static water on the physical, chemical, and mechanical properties of sliding zone soil in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 281 − 289. (in Chinese with English abstract)
[7] 姜自华, 王环玲. 考虑水致劣化效应的库岸滑坡非饱和渗流应力耦合分析[J]. 地质科技通报, 2022, 41(6): 113 − 122. [JIANG Zihua, WANG Huanling. Unsaturated seepage and stress coupling of reservoir landslides considering the water-induced deterioration effect[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 113 − 122. (in Chinese with English abstract)] JIANG Zihua, WANG Huanling. Unsaturated seepage and stress coupling of reservoir landslides considering the water-induced deterioration effect[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 113 − 122. (in Chinese with English abstract)
[8] 尹升华, 王雷鸣, 陈勋, 等. 不同堆体结构下矿岩散体内溶液渗流规律[J]. 中南大学学报(自然科学版), 2018, 49(4): 949 − 956. [YIN Shenghua, WANG Leiming, CHEN Xun, et al. Seepage law of solution inside ore granular under condition of different heap constructions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 949 − 956. (in Chinese with English abstract)] DOI: 10.11817/j.issn.1672-7207.2018.04.024 YIN Shenghua, WANG Leiming, CHEN Xun, et al. Seepage law of solution inside ore granular under condition of different heap constructions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 949 − 956. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2018.04.024
[9] 潘网生, 赵恬茵, 李鑫. 黄土微观结构优先连通模型及其对优先渗流的意义[J]. 岩土力学, 2024, 45(6): 1709 − 1719. [PAN Wangsheng, ZHAO Tianyin, LI Xin. Priority connectivity model of loess microstructure and its significance for preferential flow[J]. Rock and Soil Mechanics, 2024, 45(6): 1709 − 1719. (in Chinese with English abstract)] PAN Wangsheng, ZHAO Tianyin, LI Xin. Priority connectivity model of loess microstructure and its significance for preferential flow[J]. Rock and Soil Mechanics, 2024, 45(6): 1709 − 1719. (in Chinese with English abstract)
[10] 潘网生, 许玉凤, 卢玉东, 等. 基于非均匀性和分形维数的黄土优先流特征定量分析[J]. 农业工程学报, 2017, 33(3): 140 − 147. [PAN Wangsheng, XU Yufeng, LU Yudong, et al. Quantitative determination of preferential flow characteristics of loess based on nonuniformity and fractional dimension[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 140 − 147. (in Chinese with English abstract)] DOI: 10.11975/j.issn.1002-6819.2017.03.019 PAN Wangsheng, XU Yufeng, LU Yudong, et al. Quantitative determination of preferential flow characteristics of loess based on nonuniformity and fractional dimension[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 140 − 147. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2017.03.019
[11] 于宁宇, 范文, 魏婷婷. 基于Mein–Larson模型的非饱和锐利浸润锋模型[J]. 岩土工程学报, 2018, 40(9): 1668 − 1675. [YU Ningyu, FAN Wen, WEI Tingting. Unsaturated sharp wetting front model based on Mein–Larson saturated infiltration model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1668 − 1675. (in Chinese with English abstract)] DOI: 10.11779/CJGE201809013 YU Ningyu, FAN Wen, WEI Tingting. Unsaturated sharp wetting front model based on Mein–Larson saturated infiltration model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1668 − 1675. (in Chinese with English abstract) DOI: 10.11779/CJGE201809013
[12] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389 − 398. [SU Yonghua, LI Chengcheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall[J]. Rock and Soil Mechanics, 2020, 41(2): 389 − 398. (in Chinese with English abstract)] SU Yonghua, LI Chengcheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall[J]. Rock and Soil Mechanics, 2020, 41(2): 389 − 398. (in Chinese with English abstract)
[13] 杨校辉, 张志伟, 郭楠, 等. 持续降雨作用下折线型滑裂面堆积体滑坡稳定性分析[J]. 岩土工程学报, 2022, 44(增刊1): 195 − 200. [YANG Xiaohui, ZHANG Zhiwei, GUO Nan, et al. Stability analysis of accumulation landslide with broken-line slip surface under continuous rainfall[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(Sup 1): 195 − 200.] YANG Xiaohui, ZHANG Zhiwei, GUO Nan, et al. Stability analysis of accumulation landslide with broken-line slip surface under continuous rainfall[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(Sup 1): 195 − 200.
[14] PHILIP J R. The theory of infiltration[J]. Soil Science, 1957: 83(5): 345 − 358.
[15] MA Siyuan, SHAO Xiaoyi, XU Chong, et al. MAT. TRIGRS (V1.0): A new open-source tool for predicting spatiotemporal distribution of rainfall-induced landslides[J]. Natural Hazards Research, 2021, 1(4): 161 − 170. DOI: 10.1016/j.nhres.2021.11.001
[16] CHEN Liping. RETRACTED ARTICLE: Coupling analysis of seepage and deformation of slope based on symmetric finite element model[J]. Arabian Journal of Geosciences, 2021, 14(11): 952. CHEN Liping. RETRACTED ARTICLE: Coupling analysis of seepage and deformation of slope based on symmetric finite element model[J]. Arabian Journal of Geosciences, 2021, 14(11): 952.
[17] ZHANG Shunbo, SHI Wenbing, WANG Yong, et al. Numerical evaluation of the deformation and failure mechanisms and movement processes of the Guanling landslide in Guizhou, China[J]. Landslides, 2023, 20(8): 1747 − 1762. DOI: 10.1007/s10346-023-02059-x
[18] ZHANG Chengcheng, MA Min, SHAN Wei, et al. Process and numerical simulation of landslide sliding caused by permafrost degradation and seasonal precipitation[J]. Natural Hazards, 2024, 120(6): 5429 − 5458. DOI: 10.1007/s11069-024-06433-3
[19] 纪佑军, 熊军, 蒋国斌, 等. 考虑应变软化的鸡场镇降雨型滑坡数值分析[J]. 水文地质工程地质, 2024, 51(4): 178 − 188. [JI Youjun, XIONG Jun, JIANG Guobin, et al. Numerical analysis of rainfall type landslide in Jichang Town considering strain-softening[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 178 − 188. (in Chinese with English abstract)] JI Youjun, XIONG Jun, JIANG Guobin, et al. Numerical analysis of rainfall type landslide in Jichang Town considering strain-softening[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 178 − 188. (in Chinese with English abstract)
[20] 贺小黑, 彭鑫, 谭建民, 等. 地下水渗流对崩坡积滑坡稳定性和变形的影响——以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报, 2020, 31(6): 96 − 103. [HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: Taking Chunfeng landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 96 − 103. (in Chinese with English abstract)] HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: Taking Chunfeng landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 96 − 103. (in Chinese with English abstract)
[21] 徐卫亚, 周家文, 邓俊晔, 等. 基于Dijkstra算法的边坡极限平衡有限元分析[J]. 岩土工程学报, 2007, 29(8): 1159 − 1172. [XU Weiya, ZHOU Jiawen, DENG Junye, et al. Slope stability analysis of limit equilibrium finite element method based on the Dijkstra algorithm[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1159 − 1172. (in Chinese with English abstract)] XU Weiya, ZHOU Jiawen, DENG Junye, et al. Slope stability analysis of limit equilibrium finite element method based on the Dijkstra algorithm[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1159 − 1172. (in Chinese with English abstract)
[22] 刘耀儒, 杨强, 薛利军, 等. 基于三维非线性有限元的边坡稳定分析方法[J]. 岩土力学, 2007, 28(9): 1894 − 1898. [LIU Yaoru, YANG Qiang, XUE Lijun, et al. Slope stability analysis based on 3-D nonlinear finite element method[J]. Rock and Soil Mechanics, 2007, 28(9): 1894 − 1898. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.09.023 LIU Yaoru, YANG Qiang, XUE Lijun, et al. Slope stability analysis based on 3-D nonlinear finite element method[J]. Rock and Soil Mechanics, 2007, 28(9): 1894 − 1898. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.09.023
[23] 廖勇, 乐建, 胡力, 等. 基于Fredlund&Xing模型的渗流分析在川东红层梯田滑坡中的应用[J]. 水文地质工程地质, 2023, 50(3): 104 − 114. [LIAO Yong, LE Jian, HU Li, et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 104 − 114. (in Chinese with English abstract)] LIAO Yong, LE Jian, HU Li, et al. Application of seepage analyses based on Fredlund & Xing model in red beds terrace landslides in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 104 − 114. (in Chinese with English abstract)
[24] 曾亚武, 田伟明. 边坡稳定性分析的有限元法与极限平衡法的结合[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5355 − 5359. [ZENG Yawu, TIAN Weiming. Slope stability analysis by combining fem with limit equilibrium method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Sup 2): 5355 − 5359. (in Chinese with English abstract)] ZENG Yawu, TIAN Weiming. Slope stability analysis by combining fem with limit equilibrium method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Sup 2): 5355 − 5359. (in Chinese with English abstract)
[25] 任贺明, 王兴政, 罗刚. 四川炉霍县寿灵寺边坡失稳机理及工程治理[J]. 中国地质灾害与防治学报, 2025, 36(3): 108 − 117. [REN Heming, WANG Xingzheng, LUO Gang. Failure mechanism and controlling measures of cut slope instability at Shouling temple, Luhuo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 108 − 117. (in Chinese with English abstract)] REN Heming, WANG Xingzheng, LUO Gang. Failure mechanism and controlling measures of cut slope instability at Shouling temple, Luhuo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 108 − 117. (in Chinese with English abstract)
[26] SUN Tong, SUN Dongya, WANG Xiekang, et al. Numerical analysis of landslide-generated debris flow on July 3, 2021 in Izu Mountain area, Shizuoka County, Japan[J]. Journal of Mountain Science, 2022, 19(6): 1738 − 1747. DOI: 10.1007/s11629-022-7309-6
[27] 王立朝, 任三绍, 李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究[J]. 中国地质灾害与防治学报, 2024, 35(5): 21 − 31. [WANG Lichao, REN Sanshao, LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 21 − 31. (in Chinese with English abstract)] WANG Lichao, REN Sanshao, LI Jinqiu. Experimental study on physical simulation of reactivation mechanism of ancient landslides under rainfall condition[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 21 − 31. (in Chinese with English abstract)
[28] YAN Yiqiu, GUO Changbao, ZHANG Yanan, et al. Comprehensive evaluation and prediction of potential long-runout landslide in Songrong, Tibetan Plateau: Insights from remote sensing interpretation, SBAS-InSAR, and Massflow numerical simulation[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(5): 198. DOI: 10.1007/s10064-024-03682-1
[29] WEN Baoping, JI Boxun. Variation in residual strength of the large-scale landslides’ slip zones in the Three Gorges Reservoir of China[M]//IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 - Volume 1. Cham: Springer International Publishing, 2018: 11 − 18.
[30] 王剑, 应春业, 胡新丽, 等. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报, 2022, 41(6): 294 − 300. [WANG Jian, YING Chunye, HU Xinli, et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 294 − 300. (in Chinese with English abstract)] WANG Jian, YING Chunye, HU Xinli, et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 294 − 300. (in Chinese with English abstract)
[31] 魏进兵, 邓建辉, 谭国焕, 等. 泄滩滑坡碎块石土饱和与非饱和水力学参数的现场试验研究[J]. 岩土力学, 2007, 28(2): 327 − 330. [WEI Jinbing, DENG Jianhui, Tham L G, et al. Field tests of saturated and unsaturated hydraulic parameters of gravelly soil in Xietan landslide[J]. Rock and Soil Mechanics, 2007, 28(2): 327 − 330. (in Chinese with English abstract)] WEI Jinbing, DENG Jianhui, Tham L G, et al. Field tests of saturated and unsaturated hydraulic parameters of gravelly soil in Xietan landslide[J]. Rock and Soil Mechanics, 2007, 28(2): 327 − 330. (in Chinese with English abstract)
[32] 魏进兵, 邓建辉, 高春玉, 等. 三峡库区泄滩滑坡非饱和渗流分析及渗透系数反演[J]. 岩土力学, 2008, 29(8): 2262 − 2266. [WEI Jinbing, DENG Jianhui, GAO Chunyu, et al. Unsaturated seepage analysis and back analysis of permeability coefficient for Xietan landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2008, 29(8): 2262 − 2266. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.08.045 WEI Jinbing, DENG Jianhui, GAO Chunyu, et al. Unsaturated seepage analysis and back analysis of permeability coefficient for Xietan landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2008, 29(8): 2262 − 2266. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.08.045
[33] 张国栋, 廖爱明, 李泯蒂, 等. 碎石土渗透特性试验研究[J]. 水利水运工程学报, 2016(5): 91 − 95. [ZHANG Guodong, LIAO Aiming, LI Mindi, et al. Model test studies on permeability of gravel soil[J]. Hydro-Science and Engineering, 2016(5): 91 − 95. (in Chinese with English abstract)] ZHANG Guodong, LIAO Aiming, LI Mindi, et al. Model test studies on permeability of gravel soil[J]. Hydro-Science and Engineering, 2016(5): 91 − 95. (in Chinese with English abstract)
[34] 雷红军, 卞锋, 于玉贞, 等. 黏土大剪切变形中的渗透特性试验研究[J]. 岩土力学, 2010, 31(4): 1130 − 1133. [LEI Hongjun, BIAN Feng, YU Yuzhen, et al. Experimental study of permeability of clayey soil during process of large shear deformation[J]. Rock and Soil Mechanics, 2010, 31(4): 1130 − 1133. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2010.04.021 LEI Hongjun, BIAN Feng, YU Yuzhen, et al. Experimental study of permeability of clayey soil during process of large shear deformation[J]. Rock and Soil Mechanics, 2010, 31(4): 1130 − 1133. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2010.04.021
[35] 谈家诚, 沈振中, 张宏伟, 等. 考虑黏土–结构接触变形的剪切–渗流耦合试验[J]. 岩土工程学报, 2022, 44(9): 1679 − 1688. [TAN Jiacheng, SHEN Zhenzhong, ZHANG Hongwei, et al. Experiment study on shear-seepage coupling of clayey soil-structure interface considering contact deformation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1679 − 1688. (in Chinese with English abstract)] DOI: 10.11779/CJGE202209013 TAN Jiacheng, SHEN Zhenzhong, ZHANG Hongwei, et al. Experiment study on shear-seepage coupling of clayey soil-structure interface considering contact deformation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1679 − 1688. (in Chinese with English abstract) DOI: 10.11779/CJGE202209013
[36] 李剑平, 蒋水华, 黄发明, 等. 考虑渗透系数空间变异性的降雨作用下边坡大变形破坏特征[J]. 应用基础与工程科学学报, 2024, 32(1): 72 − 84. [LI Jianping, JIANG Shuihua, HUANG Faming, et al. Investigation of large deformation failure characteristics of slopes under rainfalls considering spatial variability of hydraulic conductivity[J]. Journal of Basic Science and Engineering, 2024, 32(1): 72 − 84. (in Chinese with English abstract)] LI Jianping, JIANG Shuihua, HUANG Faming, et al. Investigation of large deformation failure characteristics of slopes under rainfalls considering spatial variability of hydraulic conductivity[J]. Journal of Basic Science and Engineering, 2024, 32(1): 72 − 84. (in Chinese with English abstract)
[37] 赵成业, 梁正召, 张培森, 等. 不同围压与水压下红砂岩三轴剪切–渗流试验研究[J]. 岩石力学与工程学报, 2024, 43(4): 862 − 877. [ZHAO Chengye, LIANG Zhengzhao, ZHANG Peisen, et al. Experimental study on triaxial shear-seepage of red sandstone under different confining pressures and water pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(4): 862 − 877. (in Chinese with English abstract)] ZHAO Chengye, LIANG Zhengzhao, ZHANG Peisen, et al. Experimental study on triaxial shear-seepage of red sandstone under different confining pressures and water pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(4): 862 − 877. (in Chinese with English abstract)
[38] MIAO Fasheng, WU Yiping, XIE Yuanhua, et al. Influence of permeation effect on the microfabric of the slip zone soils: A case study from the Huangtupo landslide[J]. Journal of Mountain Science, 2019, 16(6): 1231 − 1243. DOI: 10.1007/s11629-018-5026-y
[39] 曹洪, 肖莹萍. 渗透变形过程中临空面表层土体渗透特性变化试验研究[J]. 岩土力学, 2017, 38(9): 2465 − 2472. [CAO Hong, XIAO Yingping. Experimental study of permeability characteristics of surface soil during seepage and deformation[J]. Rock and Soil Mechanics, 2017, 38(9): 2465 − 2472. (in Chinese with English abstract)] CAO Hong, XIAO Yingping. Experimental study of permeability characteristics of surface soil during seepage and deformation[J]. Rock and Soil Mechanics, 2017, 38(9): 2465 − 2472. (in Chinese with English abstract)