ISSN 1003-8035 CN 11-2852/P

    台风作用下植被对边坡稳定性的影响机制研究

    Impacts of trees on slope stability during typhoons

    • 摘要: 我国东南沿海地区台风暴雨型滑坡多发于植被覆盖边坡,坡面乔木植被发育、整体覆盖度高,探究台风作用下植被对边坡稳定性的影响机制对开展边坡稳定性分析和风险评价具有重要意义。文章选取典型台风触发浅层滑坡灾害点开挖剖面,统计分析植被根系发育规律,结合室内土工试验和现场染色示踪试验,明确了根系对土体物理力学性质和渗透特性的影响。研究表明:边坡覆盖的马尾松乔木植被以大直径粗根系为主,主根系发育深度可达2 m,根系在提供附加黏聚力加固边坡的同时,利用根-土间隙提供优势渗流通道,加速雨水入渗,林下边坡优势渗流所占比重可达坡面均匀入渗的2~3倍。植被根系力学加筋机制和根-土间隙优势渗流效应促使根系最大发育深度处存在力学和渗透特性差异,进而演化为潜在滑面。台风期间,在强风荷载、降雨优势入渗和植被联合作用下,易沿根系最大发育深度和边坡内部土-岩基覆界面诱发滑坡灾害。研究成果可为东南沿海地区台风暴雨型滑坡灾害风险评价提供依据。

       

      Abstract: Typhoon-induced landslides in southeast coastal China are clustered in trees-covered slopes, suggesting potential interactions between trees and slope stability. Investigate the impacts of trees is crucial for slope stability analysis during typhoons. With this purpose, we conduct field tests, laboratory tests and dye tracer tests to investigate the root distribution and impacts of roots on soil properties. Results indicate that trees covered on slopes have a taproot system with a maximum rooting depth of 2 m. Tree roots enhance slope stability by providing additional cohesion to the soil but simultaneously create preferential flow paths that facilitate rapid rainwater infiltration. The contribution of preferential flow arising from root-soil gaps reaches 2 to 3 times greater than uniform shallow infiltration. These dual effects of root reinforcement and preferential infiltration significantly alter the mechanical and hydrological properties of the soil at the maximum rooting depth. During a typhoon event, the strong wind load, rainfall infiltration and trees jointly trigger landslides. The maximum rooting depth and bed-soil interface are two potential sliding surfaces within the slope. Our works provide new insights into the risk assessment of typhoon-induced landslides.

       

    /

    返回文章
    返回