Development characteristics and mechanism of geological hazards in Mentougou District triggered by “23•7” torrential rain
-
摘要:
“23•7”特大暴雨引发了1963年以来海河流域最大的洪水灾害,同时诱发了大量地质灾害,造成了房屋损毁、交通中断、人员伤亡和巨大的经济财产损失,北京市门头沟区受灾严重。本文基于灾后详细的地质灾害调查,共统计门头沟区新增地质灾害点353处,类型包括崩塌、滑坡、泥石流、地面塌陷等。分析了形成地质灾害的主要原因,包括降雨量大、坡面冲刷强、排水不畅、切坡修建房屋、房屋修建挤占河(沟)道、坡面防护差、岩土体松散破碎、坡面堆放杂物等。提出了山区村镇建设中防灾减灾的建议,要尊重自然,还河(沟)道生态空间,充分发挥弯曲河道的缓冲和生态屏障作用;要重视建设场地的选址及灾害评估,提高地质灾害防治工程的设计质量和防护等级;在类似的山区流域中要加强对地质灾害的调查、识别、风险评估、预警和防治,避免暴雨引起的地质灾害在类似的流域中再次发生。
Abstract:The “23•7” torrential rain triggered the largest flood disaster in the Haihe River Basin since 1963, and led to numerous geological disasters, causing house damage, traffic disruption, and resulting in casualties and significant economic and property losses. The Mentougou District in Beijing has been severely affected by the disaster. Based on a detailed investigation of geological disasters after the torrential rain, this study counted a total of 353 new geological hazards in Mentougou District, including collapse, landslide, debris flow, and ground subsidence. The main contributing factors to the formation of geological hazards were analyzed, including heavy rainfall, intense slope erosion, inadequate drainage, slope cutting for construction, building on riverbanks or ditches, poor slope protection, loose and fractured rock and soil, and the accumulation of debris on slopes. Suggestions for hazards prevention and reduction in the construction of villages and towns have been proposed. These include following natural laws, restoring ecological space to rivers and ditches, and maximizing the buffering and ecological barrier functions of meandering rivers. Further emphasis should be placed on site selection and disaster risk assessment, along with improving the design quality and protective measures for geological disaster prevention projects. In similar Mountainous watersheds, it is necessary to strengthen the investigation, identification, risk assessment, early warning, and prevention of geological disasters to avoid the recurrence of such disasters in future rainstorm events.
-
Keywords:
- Mentougou /
- torrential rain /
- geological hazards /
- cause analysis /
- barrier
-
0. 引言
2020年2月英德市沙口镇某村发生3处岩溶地面塌陷[1]。2020年4月26日又连续发生3处岩溶地面塌陷,单个塌陷坑最大面积183 m2,深4.9 m,潜在危害该村61户227人生命财产安全。
岩溶地面塌陷的研究开展已久,形成了抽排地下水、暴雨、洪水及振动等主要成因机理[2-7]。针对本研究区岩溶地面塌陷灾害,前期已开展了多轮调查工作。2006年广东省地质环境监测总站完成了1∶10万英德市地质灾害调查与区划,2010年广东省工程勘察院编制了《广东省英德市地质灾害防治规划(2011—2020年)》,2018年广东省核工业地质调查院编制了《广东省英德市1∶5万地质灾害详细调查报告》,2013年广东省化工地质勘查院编制了《英德市望埠镇奖家洲村岩溶地面塌陷地质灾害初步勘查评价报告》等,分析研究了英德市岩溶地面塌陷地质灾害特点与规律。前人大量的岩溶地面塌陷地质灾害专项调查、区划、专项勘查为本文编写提供丰富的基础资料。
本次研究过程中,采用了工程测量、工程地质测绘、高密度电法、地震面波法、地质钻探验证、抽水试验、室内岩土水测试分析、地下水动态监测等综合勘查手段[8-10],查明场地地质环境条件、隐伏岩溶发育与分布状况及岩溶地面塌陷发育特征,对岩溶地面塌陷的形成机理进行分析。
1. 研究区地质环境条件
1.1 研究区基本情况
研究区位于北江右岸,地貌类型属河流堆积河漫滩地貌,地形平缓。东侧北江,西侧为山体,山体陡立,为典型灰岩峰林地形,北侧为碎屑岩风化剥蚀低丘,南侧由岩溶洼地逐渐向碎屑岩风化剥蚀低丘过渡(图1)。
北江干流自北东向南西流经本区,形成宽阔的纵向岩溶河谷,北江河床宽宽约400 m,自1978年以来研究区北江最高水位44.27 m,最低水位33.07 m。
1.2 地层岩性及水文地质特征
研究区地层为泥盆系上统天子岭组(D3t)灰岩、泥盆系上统帽子峰组(D3m)砂页岩和第四系更新统黄岗组粉质黏土、粉砂、卵石(Q2-3h)(图2)。研究区岩溶地面塌陷地段上覆松散盖层粉砂、卵石层中赋存丰富的松散岩类孔隙水,下覆基岩可溶性碳酸盐岩中赋存裂隙溶洞岩溶水。粉砂层富水性与透水性均中等,卵石层富水性与透水性强,岩溶水水量丰富,地下水位年变化幅度为4~6 m。
1.3 地质构造
研究区位于八里石背斜北西翼之次一级向斜核部。推断有WF1断裂经过WTK5及ZK2,走向大致呈北偏西45°展布,呈舒缓波状,切割泥盆系天子岭组灰岩,长度约1300 m,宽度不明,倾角较陡,带内主要由构造角砾岩、断层泥、大理岩化灰岩及灰岩组成,为逆断层。
2. 岩溶地面塌陷发育特征
研究区共发现8处塌陷,编号为T1~T8,塌陷统计见表1,分布位置见图2,照片见图3。塌陷发育主要有方向性、同步性等6个特征。
表 1 研究区岩溶地面塌陷统计表Table 1. Statistical table of karst ground collapse in the study area编号 发生时间 平面形态 地貌及第四系岩性 造成损失 T1 2020-04-26 呈16.45×14.03 m的椭圆形,深4.9m 河流阶地,粉质黏土、粉砂及卵石 毁田 T2 2020-04-26 呈直径9.5 m的近圆形,深3.8 m 河流阶地,粉质黏土、粉砂及卵石 毁田 T3 2020-04-26 呈12.1×10.03 m的椭圆形,深3.8 m 河流阶地,粉质黏土、粉砂及卵石 毁田 T4 2020-02-04 呈7.95×6.80 m的椭圆形,深6.5 m 河流阶地,粉质黏土、粉砂及卵石 毁田 T5 2020-02-05 呈7.7×4.4 m的椭圆形,深6.5 m 河流阶地,粉质黏土、粉砂及卵石 毁田 T6 2020-02-05 呈10.1×7.24 m的椭圆形,深5.2 m 丘陵坡地,粉质黏土 毁竹林 T7 2020-07-19 呈6.68 m的近圆形,深4.3 m 河流阶地,粉质黏土、粉砂及卵石 毁田 T8 1978年 呈5.0 m的近圆形,深5.0 m 河流阶地,粉质黏土、粉砂及卵石 毁田 (1)塌陷多分布在土层较薄、土颗粒较粗地段:塌陷为土层塌陷,土体主要由粉质黏土、粉砂、卵石层组成,卵石与下伏灰岩直接接触,覆盖层厚度与第一层溶洞顶板厚度处于12.4~15 m,厚度较薄[11]。如距T1~T3塌陷坑最近的ZK10钻孔覆盖层厚仅11.60 m,溶洞顶板厚0.8 m;距T4~T7塌陷坑最近的ZK19钻孔覆盖层厚仅10.80 m,溶洞顶板厚2.1 m。
(2)塌陷多分布在褶皱轴部[12]:塌陷区位于八里石背斜北西翼之次一级向斜核部地段,地下水集中,有利岩溶强发育。
(3)塌陷多分布在断层影响带:已发8个塌陷总体上位于WF1断裂影响带上,其中T1~T3位于断层上盘约80~100 m处,T4~T7总体位于断层带上,T8位于断层下盘约70 m处,断层破碎带处地下水富集,径流强,潜蚀作用下岩溶强发育,为塌陷提供良好的地下空间。
(4)塌陷分布于河床右岸:地貌为河流阶地,地形平缓,洪水期间被淹没,地下水动力条件改变快,易产生塌陷。
(5)方向性:T4—T6塌陷发生于2020年2月,轴线方向为NW300°;T1—T3发生于2020年4月,轴线方向为NW335°;T7发生于2020年7月,位于T4南侧约14m,塌陷坑长轴方向为NW300°。塌陷虽不在同一时间发生,但塌陷坑平面分布位置具有明显的线性特征。
(6)同步性和持续性:塌陷产生的时间快慢,主要受动力作用的强度和形成条件的差异影响。在两者共同影响下,可产生同步的塌陷群,如T1—T3、T4—T6;影响程度不同时,塌陷将陆续发生,在诱发因素消失作用前将持续发展,直至达到新的平衡。持续时间主要取决于诱发因素动力的强度,研究区塌陷始发于1978年,至今已长达40余年。
3. 深部岩溶发育状况
3.1 沿层面发育
地表溶蚀较强烈,沿层面、风化裂隙发育。溶洞可见洞径0.50~1.50 m,且相互贯通;溶蚀裂隙延伸长,呈0.1~0.2 m开口状;局部地段存在岩溶漏斗。地表岩溶特征见图4,照片位置见图2。
3.2 钻孔见洞率高
揭露灰岩的32个钻孔中有3个钻孔共揭露3个土洞,有24个钻孔共揭露36个溶洞,其中有1个钻孔仅揭露土洞未揭露溶洞,钻孔见洞率78.1%,钻孔线岩溶率3.57%~71.02%,平均32.61%。岩面下5 m范围内岩溶发育,在垂直方向一般发育2~3层溶洞,最多发育有4层溶洞[13]。钻孔揭露土洞、溶洞特征表见表2,土洞、溶洞大小、比例及充填特征见图5。
表 2 钻孔揭露土洞、溶洞特征表Table 2. Characteristics of cave and karst cave exposed by boreholes孔号 岩面埋深/m 溶洞顶板埋深/m 洞高/m 充填情况 溶洞层数 WTK1 19.2 19.2 1.1 全充填 1 WTK2 13.4 13.8 2.8 半充填 2 17.1 1.8 半充填 WTK3 33.1 30.8(土洞) 1.1 无充填 4 33.4 1.05 半充填 34.7 3.8 半充填 38.8 1.4 半充填 WTK6 11.6 12.2 0.2 无充填 1 WTK7 17.6 18.3 0.6 半充填 1 WTK8 12.8 14.4 1.2 半充填 1 WTK10 30.3 31.6 0.7 半充填 1 WTK11 19.7 22.1 0.5 半充填 1 ZK1 12.2 13.4 1.5 全充填 1 ZK2 19.7 18.2 1.3 半充填 1 ZK3 18.6 16.4(土洞) 2.2 无 2 18.7 1.6 全充填 ZK4 12.3 12.4 0.5 全充填 2 13.2 1.5 ZK5 16.1 16.3 1.6 半充填 1 ZK6 20.2 20.7 2.4 半充填 2 23.6 1.3 半充填 ZK7 12.3 13.1 1.1 全充填 2 15.1 1.8 ZK8 12.1 12.5 2.3 全充填 1 ZK10 11.6 12.4 0.4 全充填 1 ZK12 20.9 21.0 4.2 全充填 2 26.1 6.7 ZK14 13.6 17.3 1.8 全充填 1 ZK15 21.4 18.1(土洞) 3.3 半充填 1 ZK16 19.1 19.6 2.3 全充填 2 22.2 0.5 ZK18 11.2 11.8 0.4 全充填 4 13.7 2.6 16.4 2.0 18.8 3.6 ZK19 10.8 12.9 1.9 无充填 2 16.1 1.1 无充填 ZK21 20.4 21.6 0.7 半充填 1 ZK26 15.6 15.9 1.3 半充填 1 3.3 物探异常区密集
33条高密度电阻率法测线及10条地震面波法勘探测线,共发现异常点334处,物探解译为岩溶发育区,多表现为溶沟、溶槽及溶洞,岩面一带岩溶发育,位置相近的岩溶发育带有连通性。代表性电阻率断面图及推测剖面图见图6。
4. 岩溶地面塌陷机理
4.1 地层组成及岩溶发育强度
塌陷所在区域地层主要为第四系冲洪积层与泥盆系上统天子岭组组成。天子岭灰岩位于向斜核部地带,推测塌陷区有隐伏断裂经过,岩溶强发育,为地面塌陷形成具备空间条件。第四系土层主要由粉质黏土、粉砂及卵石组成,土体结构松散,孔隙大,透水性强,强烈的地下水活动作用对溶洞、洞隙通道中的松散充填物和上部第四系覆盖层产生潜蚀和淘蚀作用[14],有利于塌陷的产生。
4.2 长期地表水与地下水剧烈波动
40余年来,北江河道塌陷区记录最高水位有1994年6月18日43.67 m(高于房屋室外地面标高3.17 m),2006年7月16日44.27 m(高于房屋室外地面标高3.77 m),比勘查期间附近WTK5钻孔地下水位37.24 m高出7.03 m。洪水淹没与退去时,第四系冲积层中的潜水位和岩溶地下水位均随地表水位波动,由于两者渗透性的差异,在波动过程中不但可产生有利于渗透潜蚀作用的附加水头,而且还产生正、负压力的作用[15]。覆盖层中砂、卵石层较厚,卵石与下伏灰岩直接接触,卵石透水性强,与北江水力联系密切,因此洪水来临时地下水位迅速抬升,产生正压力作用,洪水退去时又产生负压力,加剧了土洞的形成(图7),给塌陷形成了空间条件。
4.3 地下水动力条件变化
11月至次年2月初为降雨量极少的冬季,地下水位为一年最低时期,地下水的浮托作用减少或者散失,引发T4—T6塌陷。4—7月降雨量集中,地表径流冲刷强烈,地下水位迅速上升,溶蚀作用与搬运作用强,改变了上覆土体物理力学性质,引发T1—T3、T7塌陷。
5. 结论
沙口镇某村主要受地质构造及地下水影响,隐伏岩溶发育,在长期地下水位波动、潜蚀及淘蚀等作用下,上部松散盖层土体颗粒不断流失,进而形成土洞。随着土洞规模不断扩大,北江水位急剧变化形成正负压力等作用,土洞上部盖层散失承载能力发生塌陷。
岩溶地面塌陷已严重威胁沙口镇某村居民生命财产安全,并对其造成一定的伤害,当地居民十分恐慌。当地政府可采用回填与搬迁避让相结合的防治方案[16],尽快解决当地居民生产生活问题。
-
图 9 完工后的拦挡坝和排导槽[20]
Figure 9. Retaining dam and guide groove after completion
表 1 门头沟区“23•7”暴雨前后地质灾害隐患点统计表
Table 1 Statistics of geological hazards before and after the “23•7” torrential rain in Mentougou District
乡镇 隐患点数 崩塌 滑坡 泥石流 地面塌陷 暴雨前 暴雨后新增 暴雨前 暴雨后新增 暴雨前 暴雨后新增 暴雨前 暴雨后新增 暴雨前 暴雨后新增 城子街道 3 1 1 1 2 大台街道 87 8 79 7 2 1 6 大峪街道 2 6 1 1 2 1 1 2 东辛房街道 12 2 5 1 1 7 军庄镇 13 4 10 2 1 2 1 1 龙泉镇 58 41 55 28 7 1 3 2 3 妙峰山镇 171 59 170 53 2 1 4 清水镇 213 40 195 34 2 16 4 2 潭柘寺镇 156 47 147 24 3 7 3 16 3 王平镇 126 38 111 29 1 2 8 12 1 雁翅镇 270 72 262 58 1 6 7 8 永定镇 19 8 15 2 2 6 1 1 斋堂镇 200 27 171 21 16 5 13 1 总计 1330 353 1222 260 7 33 51 53 50 7 表 2 暴雨前、后各类地质灾害统计表
Table 2 Statistics of various geological hazards before and after rainstorm
灾害类型 暴雨前潜在发育 暴雨后形成 触发比例/% 崩塌 1222 260 21.28 滑坡 7 33 471.43 泥石流 51 53 103.92 地面塌陷 50 7 14.00 合计 1330 353 26.54 -
[1] 邵月红,刘玲,刘俊杰,等. 海河流域近60 a降水极值的频率分析及时空分布特征[J]. 大气科学学报,2020,43(2):381 − 391. [SHAO Yuehong,LIU Ling,LIU Junjie,et al. Frequency analysis and its spatiotemporal characteristics of precipitation extremes in the Haihe River Basin during 1951—2010[J]. Transactions of Atmospheric Sciences,2020,43(2):381 − 391. (in Chinese with English abstract)] SHAO Yuehong, LIU Ling, LIU Junjie, et al. Frequency analysis and its spatiotemporal characteristics of precipitation extremes in the Haihe River Basin during 1951—2010[J]. Transactions of Atmospheric Sciences, 2020, 43(2): 381 − 391. (in Chinese with English abstract)
[2] 王晓欣,姜大膀,郎咸梅. CMIP5多模式预估的1.5 °C升温背景下中国气温和降水变化[J]. 大气科学,2019,43(5):1158 − 1170. [WANG Xiaoxin,JIANG Dabang,LANG Xianmei. Temperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences,2019,43(5):1158 − 1170. (in Chinese with English abstract)] WANG Xiaoxin, JIANG Dabang, LANG Xianmei. Temperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1158 − 1170. (in Chinese with English abstract)
[3] 张建云,王银堂,贺瑞敏,等. 中国城市洪涝问题及成因分析[J]. 水科学进展,2016,27(4):485 − 491. [ZHANG Jianyun,WANG Yintang,HE Ruimin,et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science,2016,27(4):485 − 491. (in Chinese with English abstract)] ZHANG Jianyun, WANG Yintang, HE Ruimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485 − 491. (in Chinese with English abstract)
[4] 陆婷婷,崔晓鹏. 北京两次特大暴雨过程观测对比[J]. 大气科学,2022,46(1):111 − 132. [LU Tingting,CUI Xiaopeng. Observational comparison of two torrential rainfall events in Beijing[J]. Chinese Journal of Atmospheric Sciences,2022,46(1):111 − 132. (in Chinese with English abstract)] LU Tingting, CUI Xiaopeng. Observational comparison of two torrential rainfall events in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 111 − 132. (in Chinese with English abstract)
[5] 余锡平,单楷越. 华北平原极端暴雨洪水事件共性机制探讨及对策建议[J]. 中国水利,2023(18):24 − 28. [YU Xiping,SHAN Kaiyue. Common mechanisms and disaster prevention strategies for catastrophic rainfall and flooding events in the North China Plain[J]. China Water Resources,2023(18):24 − 28. (in Chinese with English abstract)] YU Xiping, SHAN Kaiyue. Common mechanisms and disaster prevention strategies for catastrophic rainfall and flooding events in the North China Plain[J]. China Water Resources, 2023(18): 24 − 28. (in Chinese with English abstract)
[6] 李裕宏. 北京“63•8” 特大暴雨洪水回顾与启示[J]. 北京水务,2008(4):57 − 59. [LI Yuhong. Review and enlightenment of the “63•8” torrential rain and flood in Beijing[J]. Beijing Water,2008(4):57 − 59. (in Chinese)] LI Yuhong. Review and enlightenment of the “63•8” torrential rain and flood in Beijing[J]. Beijing Water, 2008(4): 57 − 59. (in Chinese)
[7] 王海芝,曾庆利,许冰,等. 北京“7•21” 特大暴雨诱发的地质灾害类型及其特征分析[J]. 中国地质灾害与防治学报,2022,33(2):125 − 132. [WANG Haizhi,ZENG Qingli,XU Bing,et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):125 − 132. (in Chinese with English abstract)] WANG Haizhi, ZENG Qingli, XU Bing, et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 125 − 132. (in Chinese with English abstract)
[8] 孙继松,何娜,王国荣,等. “7•21” 北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害,2012,31(3):218 − 225. [SUN Jisong,HE Na,WANG Guorong,et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters,2012,31(3):218 − 225. (in Chinese with English abstract)] SUN Jisong, HE Na, WANG Guorong, et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2012, 31(3): 218 − 225. (in Chinese with English abstract)
[9] 代文佳. 北京遭遇历史罕见特大暴雨,因灾死亡33人,18人失踪[EB/OL]. 北京:新京报,2023(2023-08-09)[2024-01-15]. [DAI Wenjia. Beijing suffered a rare torrential rain in history,and 33 people died and 18 people were missing due to the disaster[EB/OL]. Beijing:BJNEWS,2023(2023-08-09)[2024-01-15].] DAI Wenjia. Beijing suffered a rare torrential rain in history, and 33 people died and 18 people were missing due to the disaster[EB/OL]. Beijing: BJNEWS, 2023(2023-08-09)[2024-01-15].
[10] 孟生勇,江兴元,杨义,等. 降雨诱发堆积体滑坡水土响应与稳定性时空演化试验研究[J]. 水文地质工程地质,2023,50(1):104 − 112. [MENG Shengyong,JIANG Xingyuan,YANG Yi,et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology,2023,50(1):104 − 112. (in Chinese with English abstract)] MENG Shengyong, JIANG Xingyuan, YANG Yi, et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 104 − 112. (in Chinese with English abstract)
[11] 曲雪妍,李媛,房浩,等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)] QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137 − 145. (in Chinese with English abstract)
[12] 南赟,翟淑花,李岩,等. 北京地区“23•7” 特大暴雨型地质灾害特征及预警成效分析[J]. 中国地质灾害与防治学报,2024,35(2):66 − 73. [NAN Yun,ZHAI Shuhua,LI Yan,et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):66 − 73. (in Chinese with English abstract)] NAN Yun, ZHAI Shuhua, LI Yan, et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 66 − 73. (in Chinese with English abstract)
[13] 顾福计,钱龙,王梦洁,等. 太行山河北段 “23•7” 强降雨引发的地质灾害规律研究[J]. 中国地质灾害与防治学报,2024,35(2):55 − 65. [GU Fuji,QIAN Long,WANG Mengjie,et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):55 − 65. (in Chinese with English abstract)] GU Fuji, QIAN Long, WANG Mengjie, et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 55 − 65. (in Chinese with English abstract)
[14] 杜晓鹤,何秉顺,徐卫红,等. 海河“23•7” 流域性特大洪水蓄滞洪区运用复盘及系统治理绿色发展的思考[J]. 中国防汛抗旱,2023,33(9):31 − 38. [DU Xiaohe,HE Bingshun,XU Weihong,et al. Retrospective operation in the “23•7” extreme flood storage and detention area of the Haihe River Basin and reflection on systematic governance and green development[J]. China Flood & Drought Management,2023,33(9):31 − 38. (in Chinese with English abstract)] DU Xiaohe, HE Bingshun, XU Weihong, et al. Retrospective operation in the “23•7” extreme flood storage and detention area of the Haihe River Basin and reflection on systematic governance and green development[J]. China Flood & Drought Management, 2023, 33(9): 31 − 38. (in Chinese with English abstract)
[15] 刘家宏,梅超,王佳,等. 北京市门头沟流域“23•7” 特大暴雨洪水过程分析[J]. 中国防汛抗旱,2023,33(9):50 − 55. [LIU Jiahong,MEI Chao,WANG Jia,et al. Flood survey of“23 · 7” heavy rain in Mentougou Watershed of Beijing[J]. China Flood & Drought Management,2023,33(9):50 − 55. (in Chinese with English abstract)] LIU Jiahong, MEI Chao, WANG Jia, et al. Flood survey of“23 · 7” heavy rain in Mentougou Watershed of Beijing[J]. China Flood & Drought Management, 2023, 33(9): 50 − 55. (in Chinese with English abstract)
[16] 中华人民共和国水利部. 水利部召开海河“23•7”流域性特大洪水防御情况新闻发布会[EB/OL]. 北京,2023(2023-08-21) [2024-01-15]. [Ministry of Water Resources of the People’s Republic of China. The Ministry of Water Resources held a press conference on the prevention of the "23•7" catastrophic flood in the Haihe River basin[EB/OL]. Beijing,2023(2023-08-21) [2024-01-15].] Ministry of Water Resources of the People’s Republic of China. The Ministry of Water Resources held a press conference on the prevention of the "23•7" catastrophic flood in the Haihe River basin[EB/OL]. Beijing, 2023(2023-08-21) [2024-01-15].
[17] 冉淑红. 北京市门头沟区地质灾害隐患特征[J]. 城市地质,2013,8(3):30 − 34. [RAN Shuhong. The characteristics of geological disasters in Mentougou of Beijing[J]. Urban Geology,2013,8(3):30 − 34. (in Chinese with English abstract)] RAN Shuhong. The characteristics of geological disasters in Mentougou of Beijing[J]. Urban Geology, 2013, 8(3): 30 − 34. (in Chinese with English abstract)
[18] 郭英. 北京门头沟区斜坡类突发地质灾害特征及影响因素分析[J]. 城市地质,2023,18(3):1 − 8. [GUO Ying. Characteristics and impact factors of abrupt slope geological disasters in Mentougou District,Beijing[J]. Urban Geology,2023,18(3):1 − 8. (in Chinese with English abstract)] GUO Ying. Characteristics and impact factors of abrupt slope geological disasters in Mentougou District, Beijing[J]. Urban Geology, 2023, 18(3): 1 − 8. (in Chinese with English abstract)
[19] 北京市规划和自然资源委员会. 2023年门头沟区突发地质灾害隐患点统计表[EB/OL]. 北京,2023(2023-05-26)[2024-01-15]. [Beijing Municipal Commission of Planning and Natural Resources. Statistical table of sudden geological disasters in Mentougou District in 2023[EB/OL]. Beijing,2023(2023-05-26)[2024-01-15].] Beijing Municipal Commission of Planning and Natural Resources. Statistical table of sudden geological disasters in Mentougou District in 2023[EB/OL]. Beijing, 2023(2023-05-26)[2024-01-15].
[20] 马燊,安振宇,郭映虹. 保一方平安!门头沟王平镇这个特大型泥石流隐患治理工程完工[EB/OL]. 北京,2023(2020-08-04)[2024-01-15]. [MA Shen,AN Zhenyu,GUO Yinghong. Ensuring Safety:a control project of potential extra-large debris flow was completed in Wangping Town,Mentougou District,Beijing[EB/OL]. Beijing,2023(2020-08-04)[2024-01-15].] MA Shen, AN Zhenyu, GUO Yinghong. Ensuring Safety: a control project of potential extra-large debris flow was completed in Wangping Town, Mentougou District, Beijing[EB/OL]. Beijing, 2023(2020-08-04)[2024-01-15].
[21] 孔锋,王一飞,吕丽莉,等. 北京“7•21” 特大暴雨洪涝特征与成因及对策建议[J]. 人民长江,2018,49(增刊1):15 − 19. [KONG Feng,WANG Yifei,LYU Lili,et al. Characteristics,mechanism,and countermeasures of “July 21” torrential rain and flood in Beijing[J]. Yangtze River,2018,49(Sup 1):15 − 19. (in Chinese)] KONG Feng, WANG Yifei, LYU Lili, et al. Characteristics, mechanism, and countermeasures of “July 21” torrential rain and flood in Beijing[J]. Yangtze River, 2018, 49(Sup 1): 15 − 19. (in Chinese)
[22] 北京市规划和自然资源委员会. 市地勘院复盘总结汛期地质灾害应对工作[EB/OL]. 北京,2023(2023-09-15)[2024-01-15]. [Beijing Municipal Commission of Planning and Natural Resources. A review and summary of the geological disaster response during the flood season by the Municipal Geological Exploration Institute[EB/OL]. Beijing,2023(2023-09-15)[2024-01-15].] Beijing Municipal Commission of Planning and Natural Resources. A review and summary of the geological disaster response during the flood season by the Municipal Geological Exploration Institute[EB/OL]. Beijing, 2023(2023-09-15)[2024-01-15].
[23] 刁凡超. 张建云院士:要给洪水出路和空间,蓄滞洪区需加强排水设施建设[EB/OL]. 北京,2023(2023-08-19)[2024-01-15]. [DIAO Fanchao. Academician ZHANG Jianyun:Providing an Outlet and Space for Floods,Strengthening Drainage Facility Construction in Flood Storage and Discharge Areas[EB/OL]. Beijing,2023(2023-08-19)[2024-01-15].] DIAO Fanchao. Academician ZHANG Jianyun: Providing an Outlet and Space for Floods, Strengthening Drainage Facility Construction in Flood Storage and Discharge Areas[EB/OL]. Beijing, 2023(2023-08-19)[2024-01-15].