Development and evolution characteristics of debris flow and simulation of its catastrophic Dynamic process in Liandeng Gully, Lanping county, Yunnan Province
-
摘要:
练登沟历史上多次暴发泥石流灾害,频繁造成人员伤亡、阻断交通、堵塞河道等严重后果。通过野外实地调查和遥感解译,查明了练登沟流域沟道变化规律、物源变化特点及泥石流发育演化特征,运用数值模拟,分析了不同降雨频率下练登沟泥石流成灾动力学特征。结果表明,练登沟泥石流启动点位于主沟左侧的2号、4号、5号支沟源头,流域内沟道逐年扩宽,物源持续发育;在10年、20年、50年、100年一遇降雨频率下,泥石流沿途成灾过程相似,在沟口处最大流速分别为1.57 m/s、2.01 m/s、2.48 m/s、2.98 m/s,冲出规模分别为2.64万m3、5.17万m3、11.56万m3、18.76万m3;在10年一遇降雨频率下,其暴发泥石流就对沟口道路形成淤埋并堵塞河道,形成堰塞湖。针对练登沟泥石流成灾特点,建议沟域内采用固源固床、拦挡、排导等综合防治措施。结果可为高频泥石流发育演化特征研究及当地防灾减灾工程提供一定参考。
Abstract:Liandeng Gully has historically experienced frequent debris flow disasters that often causes casualties, traffic disruptions, and river blockages. Based on field investigations and remote sensing interpretation, this study investigates the morphological changes in the gully, the characteristics of sediment sources, and the evolution patterns of debris flow. Using numerical simulation, the dynamic behavior of debris flow under various rainfall return periods was analyzed. The results indicate that debris flow initiation zones are concentrated at tributaries No. 2, 4, and 5 on the left side of the main gully, where channels have widened over time and material sources continue to accumulate. Under the rainfall frequencies of once every 10, 20, 50, and 100 years, debris flow disasters exhibit similar progression, with peak flow velocities at the gully outlet reaching 1.57 m/s, 2.01 m/s, 2.48 m/s, and 2.98 m/s, and debris volumes of 26,400 m3, 51,700 m3, 115,600 m3, and 187,600 m3, respectively. Under the 10-year return period rainfall scenario, debris flows can bury roads and block rivers, forming dammed lakes. In view of the characteristics of debris flow in Liandeng Gully, comprehensive mitigation and control measures are recommended, including source stabilization, channel bed reinforcement, barriers, and diversion works. The findings provide scitific supoprt for the study of high-frequency debris flow development and evolution, and serves as a reference for local disaster prevention and mitigation projects.
-
0. 引言
对于内部不存在潜在滑移面和控制性结构面的厚层危岩体,其破坏机理十分复杂[1-2]。这种危岩体具有分布区域广、发生频率高、突发性强、破坏范围大等特点,是一类典型的山区地质灾害,对人民生命财产安全和城镇建设造成严重威胁[3-6]。对于涉水厚层危岩体,除了崩塌的直接危害以外,产生的涌浪次生灾害将进一步扩大威胁范围[7-9]。
自2008年三峡库区正式蓄水以来,由于三峡库区水位的周期性涨落,在库岸形成了高达30 m的劣化带[10-12]。库区涉水危岩体的基座部分位于劣化带区域,基座岩体长期处于上部岩体自重下,并在干湿循环作用下逐渐劣化,导致其变形破坏机理更为复杂,进一步加大了危岩体的防治难度[13-15]。
文章在现场调查、监测数据以及室内试验的基础上,分析了三峡库区箭穿洞危岩体的变形破坏特征,并对其破坏模式进行了判定。根据其变形破坏特征,提出了危岩体的治理方案,并采用数值模拟对治理方案进行了定量评价。该危岩体的防护理念对于岩质库岸的防治具有重要的参考价值。
1. 危岩体概况
箭穿洞危岩体位于重庆市巫山县望霞村。危岩体的上游侧边界为纵张裂缝(LF1: 150~226 m);下游侧边界裂缝在陡崖面上清晰可见,上宽下窄,充填或局部充填碎石土或溶蚀、残积碎石土,并向下逐渐收敛至153 m高程尖灭(LF2)。危岩体后缘边界为卸荷裂缝(LF3)张开度可达3.15 m,裂隙在高程226 m以下底部均被碎石所填充。箭穿洞危岩体的正视图见图1。
箭穿洞危岩体的三维切割边界清楚,其几何形态呈不规则的六面体,后缘高程为278~305 m,基座高程为155 m,平均高差为135 m,危岩体平均横宽约55 m,平均厚度约50 m,危岩体体积约36×104 m3,主崩方向为260°。箭穿洞危岩主要为三叠系下统大冶组第四段(T1d4)、高程280 m以上为嘉陵江组第一段(T1j1),基座以下为大冶组第三段(T1d3)。基座岩体位置处有一平硐,其中布有压力传感器。箭穿洞危岩体的典型剖面图见图2。
2. 危岩体的变形特征
由区域地质构造可知,箭穿洞危岩体是在斜坡岩体不断卸荷,长江不断侵蚀切割、构造应力释放等条件下形成的。三维边界基本形成后,重力成为主导危岩体变形的主要因素。另外,干湿循环作用下基座岩体的持续劣化进一步加速了危岩体的变形。根据现场监测资料可知(图3),危岩体的边界裂缝及基座压力随着库水位周期性升降次数的增加而持续增大。
针对基座的泥质条带灰岩,在室内完成了30次干湿循环试验,得到了初始状态、5次、15次、20次以及30次干湿循环后基座岩体的力学参数(表1)。
表 1 泥质条带灰岩力学参数Table 1. Mechanical parameters of marlstone under dry-wet cycles in the Three Gorges Reservoir area干湿循环次数 单轴抗压强度 抗拉强度 /MPa 抗剪强度 变形参数 天然状态/MPa 饱和状态/MPa 内摩擦角/(°) 黏聚力/MPa 弹性模量/(104 MPa) 泊松比μ 0 19.07 13.24 1.10 32.6 3.36 0.405 0.30 5 18.39 12.25 0.99 32.2 3.16 0.373 0.31 15 16.96 11.10 0.89 31.8 2.91 0.351 0.32 20 16.22 10.44 0.83 30.1 2.83 0.272 0.33 30 14.98 9.67 0.79 28.4 2.76 0.238 0.35 经过30次干湿循环后,基座岩体的单轴抗压强度下降约21%~26%,随着循环次数的增加,其强度的劣化率有所下降,但尚未收敛;抗拉强度和黏聚力下降约28%,随着循环次数增加,其劣化率有所下降,趋于收敛;岩石的内摩擦角下降约17%,在15次循环后劣化率有增大趋势,表明岩体的抗剪强度将持续降低;变形参数下降约40%,变形模量趋于减小,泊松比趋于增大,并且在15次循环后劣化率有增大趋势,表明岩体质量将持续降低。
3. 危岩体的失稳破坏模式
根据危岩体的变形特征可知,箭穿洞危岩体以基座的变形破坏为主导,内部不存在潜在的剪切面或导致倾倒变形的控制性结构面。对于这种类型的危岩体,其变形破坏发展一般有2种趋势,分别是基座压裂型崩塌和基座滑移型崩塌[1-2](图4)。
基座压裂型崩塌见图4(a)。如果缓坡岩体较坚硬,基座底部岩体受压集中,会导致基座岩体和接触岩体出现压致拉裂现象;基座破坏时,大量的拉裂缝和剪裂缝会出现,导致岩体整体失稳。基座滑移型崩塌见图4(b)。如果缓坡岩体较为软弱,在上部压力作用下,基座软弱岩体可能会出现剪切破坏,上覆岩体压力将软弱基座挤出,从而发生后靠滑移式的整体破坏。
基座碎裂型崩塌和基座滑移型崩塌的判定与基座岩体强度有关,根据HUNGR等[1]提出的判定方法[1],可采用应力比值(Ns)来界定危岩的破坏模式,Ns的建议值为0.25,其判定公式如下:
(1) 式中:
——危岩体重度,此处取27.2 kN/m3;H——上部危岩体的高度,此处取135 m;
——基座的抗压强度,此处取5.775 MPa;该抗压强度根据规范对室内试验数据进行了折减[16-17]。计算可知,Ns为0.63,大于0.25,因而确定箭穿洞危岩体将发生滑移破坏。
4. 危岩体的防护设计
基于箭穿洞危岩体的破坏模式,将危岩体的治理定为两部分,分别是基座软弱岩体的补强加固,以及危岩体中上部的锚索加固(图5)。其中,基座岩体的补强是为了阻断危岩体的滑移剪出;中上部锚索加固是为了控制危岩体的变形。防护治理所涉及的力学改善措施如下:
(1)基座软弱岩体补强加固工程
基座平硐采用C30钢筋混凝土键体充填支撑;基底设置3排锚桩,锚桩间距为1.75 m、2.25 m,锚桩孔径为150 mm,锚固段长度为6.00 m,基座涉水岩体的表面采用板肋式锚杆挡墙。
(2)防护工程(锚索、主动防护网、被动防护网、水下柔性防护垫)
在危岩体中上部布置6排2 000 kN级锚索,水平夹角为15°,水平及竖向间距均为6.00 m,锚索为16 φs15.2 mm,锚固段总长度为17.00 m(3.00,3.00,2.50,3.00,3.00,2.50 m分6段设置)。
5. 防护效果分析
针对防护方案,将提高岩体稳定性的防护措施进行简化后,进行有限元数值计算(所采用数值软件为MIDAS GTS),涵盖上部危岩的预应力锚索、消落带区域砂浆锚杆、板肋式锚杆挡墙及平硐充填。未进行防护加固时,平硐区域作隧洞处理;防护加固后,平硐区域采用C30钢筋混凝土的强度参数(参考值)进行分析。此外,砂浆锚杆、预应力锚杆及板肋式锚杆挡墙相关参数均为参照值[18-19],数值分析过程中的计算参数见表2。以初始状态下的危岩防护为例,对防护措施的有效性进行评价。根据相关规范要求[20-21],泥质条带灰岩的岩体黏聚力由岩石黏聚力乘以折减系数,取0.20;岩体内摩擦角由岩石内摩擦角乘以折减系数,取0.80;岩体变形参数由岩石变形参数乘以折减系数,取0.70。数值计算时,对数值模型右侧边界和左侧边界的水平方向进行了约束,底部边界采用固定约束,将危岩体的自重设定为诱发失稳的关键因素。
表 2 有限元数值计算岩体参数Table 2. Mechanical parameters of the marlstone used in the numerical simulation岩性 本构模型 弹性模量/MPa 泊松比 容重/(kN·m−3) 黏聚力/MPa 内摩擦角/(°) 灰岩(基岩) 摩尔库伦 47800 0.26 27.20 5.21 44.4 灰岩(消落带) 摩尔库伦 42000 0.24 24.50 4.82 40.2 泥质条带灰岩(消落带) 摩尔库伦 27200 0.33 26.50 1.79 37.6 泥质条带灰岩(水上基岩) 摩尔库伦 40500 0.30 26.60 2.36 37.6 水上灰岩(基岩) 摩尔库伦 50400 0.28 27.10 5.48 44.4 平硐(充填) 摩尔库伦 27000 0.20 24.20 3.18 48.6 砂浆锚杆 弹性 196000 0.28 78.50 − − 预应力锚杆 弹性 196000 0.28 78.50 − − 板肋式锚杆挡墙 弹性 27000 0.25 23.00 − − 通过对箭穿洞危岩典型剖面的有限元计算,得到该剖面加固前后的位移云图见图6。分析可知,上部岩体的锚索加固是控制危岩体变形的关键措施。危岩体的最大位移位于后缘部分,这是因为危岩体形状不规则,存在偏压应力,导致其具有沿基座滑移的变形趋势,与之前的破坏机制分析相符。在防护加固前,危岩体的最大位移为0.3235 m,综合防护加固后其最大位移为0.1313 m,降低了59.41%,危岩体的变形趋势得以控制。
箭穿洞剖面最大剪应力云图见图7,分析可知,岩体基座加固是控制剪切应力集中的关键措施。防护加固前,剪应力的最大值为38.085 MPa,且在裂隙尖端出现应力集中现象。综合防护加固后,裂隙尖端的最大剪应力为11.117 MPa,降幅可达70.81%。
对应力场及位移场进行分析可知,预应力锚索可有效控制危岩体由于偏压而引发的变形趋势,而基座加固在保证基座岩体完整性的同时,可以有效降低基座岩体的最大剪应力。
通过强度折减法对危岩体的稳定性进行了分析(图8)。根据防护前危岩体的塑性变形可知,其破坏模式为基座滑移式破坏,与前文滑移破坏模式的判定是一致的,其塑性变形区由后缘裂缝尖端向平硐位置延伸,此时危岩体稳定系数为1.04,处于临界失稳状态。在平硐充填的基础上,进行砂浆锚杆以及格构梁的支护,提升基座岩体的完整性之后,其塑性变形区下移见图8(b),危岩体的稳定性大幅度提升,稳定系数可达1.82,其提高幅度为75%。当上部岩体采用预应力锚索进行加固时,见图8(c),可有效控制危岩体的变形,与防护前的危岩体相比,其稳定性提高了17.78%。当完成综合支护后,见图8(d),其稳定性可达2.451,与防护前的稳定性相比提高了135.67%。在综合防护下,基座补强尤其是砂浆锚杆的施工阻断了塑性变形区的连续性,危岩体塑性变形区的剪出口下移到破碎带下方的消落带区域,且上部预应力锚索控制住了危岩体的整体变形,从而大幅提升了危岩体的稳定性。
通过数值模拟可知,在综合防护之后,危岩体的剪出口将下移至145 m高程处。根据原有设计方案,在145 m水位处会设置防水层以及竖向锚杆,因而,能够在之后的劣化中进一步提升危岩体的长期稳定性。由于145 m高程处的防护并非主体设计,本文在计算时并未考虑相关防护措施。箭穿洞危岩体的防护工程已经按照文中所陈述的措施完成了施工,相应的演化趋势将在之后做进一步的研究。
6. 结论
在现场调查、实时监测以及室内试验的基础上,本文采用公式判定和数值模拟等方法对三峡库区箭穿洞危岩体的破坏机理和防护效果进行了分析和研究,得到以下结论:
(1)由于箭穿洞危岩体为内部不存在潜在滑移面和控制性结构面的涉水厚层危岩体,其变形破坏机理较为复杂。箭穿洞危岩体基座部分的软弱岩层不仅承担着上覆岩层的自重,同时在库区水位的周期性升降下持续劣化,加速了危岩体的变形破坏。
(2)通过公式判定可知,在上部压力作用下,箭穿洞危岩的基座软弱岩体可能会出现剪切破坏,上覆岩体压力将软弱基座挤出,并最终发生基座滑移式的整体破坏。
(3)针对该危岩体的变形破坏模式,提出了基座加固及上部岩体固定的防护措施,其中,上部岩体的锚索加固用于控制危岩体的变形,基座加固用于控制危岩体的滑移。
(4)数值模拟结果表明,本文涉及的综合防护措施效果显著,能够有效的控制危岩体的变形,使得危岩体的塑性变形区域下移,并最终提高危岩体的整体稳定性。
-
图 6 雨季沟道典型影像图及照片[13]
Figure 6. Typical imagery and photos of the gully during rainy season
表 1 2000—2023年练登沟泥石流灾害史
Table 1 Debris flow disaster History of Liandeng Gully (2000—2023)
序号 暴发时间 灾害特征 1 2000年5月 暴发中型泥石流灾害,造成数人死亡、失踪 2 2002年7月 暴发小型泥石流灾害,损毁矿区矿坑 3 2003年6—10月 暴发十余次小型泥石流,损毁沟内道路,淹没农田 4 2005年7月 暴发小型泥石流灾害,造成轻微财产损失 5 2010年9月 暴发小型泥石流灾害,轻微堵塞河流,
影响交通道路安全6 2013年8月 暴发小型泥石流灾害,冲毁少量房屋和农田 7 2018年7月19日 暴发中型泥石流灾害,阻断交通,
堵塞河流,冲毁上百亩农田和8宅房屋8 2018年7月23日 暴发小型泥石流灾害,
加剧了“7•19”泥石流灾害程度9 2019年8月7日 暴发中型泥石流灾害,阻断交通,
堵塞河流,冲毁八十余亩农田和5宅房屋表 2 练登沟流域主要地形特征
Table 2 Main topographic features of the Liandeng Gully watershed
区域 面积
/(km2)主沟长
/(km)主沟纵
坡降形态特征 全流域 16.0 9.8 134‰ 整体呈树叶状,地势较陡峭,
汇水条件好形成区 14.2 7.6 224‰ 面积大,地形较陡,呈漏斗状 流通区 1.5 1.3 117‰ 沟道岸坡较陡,沟谷呈“U”型 堆积区 0.3 0.9 61‰ 地势平坦,沟口开阔,呈喇叭状 -
[1] 李玲,陈宁生,杨溢,等. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析[J]. 中国地质灾害与防治学报,2024,35(5):90 − 102. [LI Ling,CHEN Ningsheng,YANG Yi,et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5):90 − 102. (in Chinese with English abstract)] LI Ling, CHEN Ningsheng, YANG Yi, et al. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 90 − 102. (in Chinese with English abstract)
[2] 高路,赵松江,杨涛,等. 四川龙门山强震区特大泥石流综合防控技术体系研究[J]. 中国地质灾害与防治学报,2024,35(4):13 − 24. [GAO Lu,ZHAO Songjiang,YANG Tao,et al. Research on the comprehensive control technology system of large-scale debris flows in the area affected by strong earthquake in Longmenshan,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):13 − 24. (in Chinese with English abstract)] GAO Lu, ZHAO Songjiang, YANG Tao, et al. Research on the comprehensive control technology system of large-scale debris flows in the area affected by strong earthquake in Longmenshan, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 13 − 24. (in Chinese with English abstract)
[3] 张宪政,铁永波,宁志杰,等. 四川汶川县板子沟“6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment,Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)] ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)
[4] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing:A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)] DOI: 10.12097/gbc.2023.06.001 JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract) DOI: 10.12097/gbc.2023.06.001
[5] 钟磊. 强震区泥石流震后演化特征[D]. 绵阳:西南科技大学,2023. [ZHONG Lei. Post-earthquake evolutionary characteristics of mudslides in a strong earthquake zone[D]. Mianyang:Southwest University of Science and Technology,2023. (in Chinese with English abstract)] ZHONG Lei. Post-earthquake evolutionary characteristics of mudslides in a strong earthquake zone[D]. Mianyang: Southwest University of Science and Technology, 2023. (in Chinese with English abstract)
[6] WANG Yan,HU Xiewen,WU Lijun,et al. Evolutionary history of post-fire debris flows in Ren’e Yong valley in Sichuan Province of China[J]. Landslides,2022,19(6):1479 − 1490. DOI: 10.1007/s10346-022-01867-x
[7] ZHANG S,PENG J Y,ZHANG M P,et al. Evolution of debris flow activities in the epicentral area,10 years after the 2008 Wenchuan earthquake[J]. Engineering Geology,2023,319:107118. DOI: 10.1016/j.enggeo.2023.107118
[8] 赵蔓,孙俊,朱恺悦. 云南兰坪县啦井村泥石流模拟预测及风险评价[J]. 中国地质灾害与防治学报,2024,35(5):110 − 119. [ZHAO Man,SUN Jun,ZHU Kaiyue. Simulation prediction and risk evaluation of debris flow in gullyprone ditches of Lajing Village,Lanping County,Yunnan Province,China[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5):110 − 119. (in Chinese with English abstract)] ZHAO Man, SUN Jun, ZHU Kaiyue. Simulation prediction and risk evaluation of debris flow in gullyprone ditches of Lajing Village, Lanping County, Yunnan Province, China[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 110 − 119. (in Chinese with English abstract)
[9] 王俊豪,管建军,魏云杰,等. 德钦县城直溪河泥石流成灾模式及运动过程模拟[J]. 水文地质工程地质,2021,48(6):187 − 195. [WANG Junhao,GUAN Jianjun,WEI Yunjie,et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology,2021,48(6):187 − 195. (in Chinese with English abstract)] WANG Junhao, GUAN Jianjun, WEI Yunjie, et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 187 − 195. (in Chinese with English abstract)
[10] 罗超鹏,常鸣,武彬彬,等. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报,2022,33(6):53 − 62. [LUO Chaopeng,CHANG Ming,WU Binbin,et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):53 − 62. (in Chinese with English abstract)] LUO Chaopeng, CHANG Ming, WU Binbin, et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53 − 62. (in Chinese with English abstract)
[11] AHMAD N,SHAFIQUE M,HUSSAIN M L,et al. Integrated debris flow hazard and risk assessment using UAV data and RAMMS,a case study in northern Pakistan[J]. Natural Hazards,2025,121(2):1463 − 1487. DOI: 10.1007/s11069-024-06862-0
[12] DOS SANTOS CORRÊA C V,REIS F A G V,DO CARMO GIORDANO L,et al. Numerical modeling of a high magnitude debris-flow event occurred in Brazil[J]. Natural Hazards,2024,120(14):13077 − 13107. DOI: 10.1007/s11069-024-06728-5
[13] 姚应文. 云南省练登沟泥石流形成条件及治理分析[J]. 中国水运(下半月),2021(4):139 − 140. [YAO Yingwen. Formation conditions and treatment analysis of debris flow in Liandenggou,Yunnan Province[J]. China Water Transport,2021(4):139 − 140. (in Chinese)] YAO Yingwen. Formation conditions and treatment analysis of debris flow in Liandenggou, Yunnan Province[J]. China Water Transport, 2021(4): 139 − 140. (in Chinese)
[14] 张卫锋,杨文礼,曹瑾. 兰坪县七联村泥石流灾害特征及治理建议[J]. 云南地质,2020,39(2):288 − 294. [ZHANG Weifeng,YANG Wenli,CAO Jin. The disaster feature and control suggestion of debris flow at Qilian village,Lanping[J]. Yunnan Geology,2020,39(2):288 − 294. (in Chinese with English abstract)] ZHANG Weifeng, YANG Wenli, CAO Jin. The disaster feature and control suggestion of debris flow at Qilian village, Lanping[J]. Yunnan Geology, 2020, 39(2): 288 − 294. (in Chinese with English abstract)
[15] 苗晓岐. 多源遥感技术在藏东南艰险复杂山区泥石流物源识别中的应用[J]. 地质通报,2021,40(12):2052 − 2060. [MIAO Xiaoqi. Application of multi-source remote sensing technology in the identification of debris flow source within complex mountainous areas in southeast Tibet[J]. Geological Bulletin of China,2021,40(12):2052 − 2060. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2021.12.008 MIAO Xiaoqi. Application of multi-source remote sensing technology in the identification of debris flow source within complex mountainous areas in southeast Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2052 − 2060. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.12.008
[16] FRANK F,MCARDELL B W,OGGIER N,et al. Debris-flow modeling at meretschibach and bondasca catchments,Switzerland:Sensitivity testing of field-data-based entrainment model[J]. Natural Hazards and Earth System Sciences,2017,17(5):801 − 815. DOI: 10.5194/nhess-17-801-2017
[17] ABRAHAM M T,SATYAM N,REDDY S K P,et al. Runout modeling and calibration of friction parameters of Kurichermala debris flow,India[J]. Landslides,2021,18(2):737 − 754. DOI: 10.1007/s10346-020-01540-1
[18] LIU Bo,HU Xiewen,MA Guotao,et al. Back calculation and hazard prediction of a debris flow in Wenchuan meizoseismal area,China[J]. Bulletin of Engineering Geology and the Environment,2021,80(4):3457 − 3474. DOI: 10.1007/s10064-021-02127-3
[19] 孙靖宜,杨金,吴永宁,等. 藏南地区桑谷沟冰川泥石流形变历史分析和运动过程模拟[J/OL]. 地质科技通报. [SUN Jinyi,YANG Jin,WU Yongning,et al. Deformation history analysis and movement process simulation debris flow in Sanggu Valley Glacier debris flow in southern Tibet[J/OL]. Bulletin of Geological Science and Technology. (in Chinese with English abstract)] SUN Jinyi, YANG Jin, WU Yongning, et al. Deformation history analysis and movement process simulation debris flow in Sanggu Valley Glacier debris flow in southern Tibet[J/OL]. Bulletin of Geological Science and Technology. (in Chinese with English abstract)
[20] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)] TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)
[21] 陈德斌,韩庆洋,付晶,等. 排导困难区域的泥石流灾害防治模式研究——以新疆布尔津科克逊泥石流为例[J]. 工程地质学报,2023,31(4):1429 − 1437. [CHEN Debin,HAN Qingyang,FU Jing,et al. A study on the prevention and control model of debris flow disaster in difficult drainage area:A case study of kekexun debris flow in burqin,Xinjiang[J]. Journal of Engineering Geology,2023,31(4):1429 − 1437. (in Chinese with English abstract)] CHEN Debin, HAN Qingyang, FU Jing, et al. A study on the prevention and control model of debris flow disaster in difficult drainage area: A case study of kekexun debris flow in burqin, Xinjiang[J]. Journal of Engineering Geology, 2023, 31(4): 1429 − 1437. (in Chinese with English abstract)
[22] 宋国虎,杨桢贤,张继,等. 四川雅安市宝兴县和平沟泥石流防治工程成效考察[J]. 山地学报,2023,41(2):295 − 306. [SONG Guohu,YANG Zhenxian,ZHANG Ji,et al. Post-shock performance of a debris flow dam built at the Heping gully,Baoxing County,Sichuan Province,China[J]. Mountain Research,2023,41(2):295 − 306. (in Chinese with English abstract)] SONG Guohu, YANG Zhenxian, ZHANG Ji, et al. Post-shock performance of a debris flow dam built at the Heping gully, Baoxing County, Sichuan Province, China[J]. Mountain Research, 2023, 41(2): 295 − 306. (in Chinese with English abstract)
[23] 蒋学广. 新发展理念下的云南高原泥石流防治新方法[J]. 地质灾害与环境保护,2024,35(2):19 − 26. [JIANG Xueguang. New methods for preventing and controlling debris flow in Yunnan plateau under the new development concept[J]. Journal of Geological Hazards and Environment Preservation,2024,35(2):19 − 26. (in Chinese with English abstract)] JIANG Xueguang. New methods for preventing and controlling debris flow in Yunnan plateau under the new development concept[J]. Journal of Geological Hazards and Environment Preservation, 2024, 35(2): 19 − 26. (in Chinese with English abstract)
[24] 田士军. 崩塌滑坡-堰塞湖-溃决洪水-泥石流灾害链演化特征分析及防治对策研究[J]. 铁道标准设计,2024,68(2):15 − 23. [TIAN Shijun. Analysis on disaster chain evolution characteristics of the collapse of landslide-barrier lake-dam flood-debris flow and study on prevention and control countermeasures[J]. Railway Standard Design,2024,68(2):15 − 23. (in Chinese with English abstract)] TIAN Shijun. Analysis on disaster chain evolution characteristics of the collapse of landslide-barrier lake-dam flood-debris flow and study on prevention and control countermeasures[J]. Railway Standard Design, 2024, 68(2): 15 − 23. (in Chinese with English abstract)
-
期刊类型引用(11)
1. 杨皓,魏涛. 三峡库区米仓口危岩体稳定性分析. 科技与创新. 2025(09): 121-124 . 百度学术
2. 殷跃平. 新三峡库区长期地质安全战略研究. 中国水利. 2024(22): 26-35 . 百度学术
3. 李伟,董远峰,邓玖林,靳鹏,高玮阳,李海洋. 基于两期机载LiDAR数据的危岩变形识别方法研究. 人民长江. 2024(S2): 121-124 . 百度学术
4. 柴乃杰,周文梁. 基于优化组合权-模糊可变集的坝基岩体质量分级. 吉林大学学报(地球科学版). 2023(02): 514-525 . 百度学术
5. 张燕,王庆兵,邢文超,王元新,张君,于桑,张建芝,葛江琨. 新疆某山区公路边坡危岩体影响区划分及防治建议. 安全与环境工程. 2023(04): 149-158 . 百度学术
6. 江俊杰,刘东泽,卢应发. 库水位降落与降雨耦合作用下鸡脑壳包滑坡变形分析. 中国农村水利水电. 2023(09): 236-243 . 百度学术
7. 蒋明,李伟,黎景. 西部某水电站枢纽区边坡危岩体防治设计研究. 小水电. 2023(05): 43-47 . 百度学术
8. 檀梦皎,殷坤龙,付智勇,朱春芳,陶小虎,朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析. 中国地质灾害与防治学报. 2022(01): 45-57 . 本站查看
9. 陈佳亮. 引水隧洞进口上部危岩体稳定性研究. 水利科学与寒区工程. 2022(05): 70-73 . 百度学术
10. 杨光明,罗垚,张帆,陈也. 三峡库区生态环境三方协同治理演化博弈及系统仿真研究. 重庆理工大学学报(社会科学). 2021(12): 154-166 . 百度学术
11. 庄明水. 厦门岛内孤(滚)石破坏模式及分布规律研究. 地质灾害与环境保护. 2021(04): 34-38+44 . 百度学术
其他类型引用(5)