光纤传感技术在地质安全监测中的应用
Application of fiber optic sensing technology in geological safety monitoring
-
摘要:
全球气候变化带来的地质灾害风险不断加剧,有效的监测与预警是减轻地质灾害影响的关键。本文旨在探讨光纤传感技术在地质安全监测中的应用与发展。通过文献综述的方法,系统梳理了光纤传感技术的原理及其在滑坡灾害、隧道灾害和地震监测三个领域中的应用进展。综述表明,光纤传感技术能够实时监测应变、温度、振动、水、气等数据,为地质灾害的预警和防治提供重要支持。此外,该技术能够同时获取多种物理参数的耦合信息,增强了对复杂环境中地质体失稳机制的理解及防护结构安全性的评估。尽管光纤传感技术在监测中表现出色,但在光纤布设、数据处理和实时预警系统的优化方面仍面临挑战。未来的发展应着重提高光纤监测系统的耐用性及有效性,进一步结合人工智能技术进行数据分析,以提高地质灾害判识及预警模型的有效性及监测系统的智能化水平。
Abstract:The rapid development of global industrialization and urbanization, coupled with the dramatic impact of climate change, has significantly increased the risk of geological disasters. Effective monitoring and early warning systems are essential for mitigating the impact of these hazards. This paper explores the application and development of fiber optic sensing technology in geological safety monitoring. Through a systematic literature review, the principles of fiber optic sensing technology and its progress in the application within three areas—landslide disasters, tunnel disasters, and seismic monitoring—are examined. The review indicates that fiber optic sensing technology can monitor strain, temperature, vibration, fluid, and gas characteristics in real time, providing crucial support for the early warning and mitigation of geological hazards. Additionally, this technology can capture coupled information of various physical parameters simultaneously, enhancing the understanding of the destabilization mechanisms in geological bodies under complex environments and the assessment of protective structure safety. Despite its excellent performance in geological hazard monitoring, fiber optic sensing technology faces challenges in optimizing fiber optic layout, data processing, and real-time early warning systems. Future developments should focus on improving the durability and effectiveness of fiber optic monitoring systems and integrating artificial intelligence to enhance the accuracy of geological hazard identification and prediction models, as well as the intelligence level of monitoring systems.
-
Keywords:
- fiber optic sensing /
- geological hazards /
- landslide /
- earthquakes /
- geological hazards monitoring
-
0. 引言
由碎石土、尾矿砂等颗粒材料堆积而成的松散体在自然界和工业生产活动中广泛存在,普遍具有结构松散、孔隙度大、颗粒间结合力差等特点,有复杂的力学性质和相对较高的失稳风险。受自然条件和人类活动等影响,松散体在斜坡地形中更易发生地质灾害。因此如何有效预测斜坡地形松散体边坡滑移破坏的过程对于矿山的生产安全和实际工程项目的实施具有重大意义。目前松散体边坡的监测方式主要有位移监测和变形监测,包含光学遥感、三维激光扫描、GPS、RS等技术[1 − 5]。但以上技术都存在明显局限性,监测范围有限并且对边坡内部变形和滑坡孕育过程情况不能及时掌握。声发射(acoustic emission,AE)是基于声波的发射和检测,并且和检测对象内部结构的断裂或者变形息息相关。由于松散体滑移破坏过程中,其内部松散颗粒间的相互作用力也会产生弹性波,这使得AE技术能够识别其信号,及时发现和记录边坡破坏的发展过程,在滑坡灾害前做出有效的预警。因此,AE技术在近年来的边坡稳定性监测中逐渐得到更多关注。
近年来,针对松散体滑坡的研究重点从滑坡监测技术的相关话题逐渐转向滑坡变形的监测预警和边坡稳定性的相关评估研究[6 − 9]。Codeglia等[10]提出一种利用AE监测边坡稳定性的思路,认为AE趋势与内部应力、外部斜坡载荷等有关。Berg等[11]在前人研究基础上在加拿大的和平河地区进行了声发射实地试验。Hu等[12]提出了用声发射和微震联合监测的方法,并获得了更准确的预测结果。此外,不少学者一直以来针对松散体边坡的组成物质开展室内试验,探寻其在不同试验过程中声发射信号特征,Chen等[13]对BFRP混凝土粘结滑移破坏过程特征进行了研究。Deng等[14]尝试搭建用于滑坡监测的声发射阵列系统,并进行了相关试验。李文彪等[15]将声发射用于松散颗粒介质边坡或路堤稳定性研究。胡训健等[16]模拟了单轴压缩实验中细观结构的非均质性对岩石颗粒的声发射特性的影响。吴鑫等[17]研究了不同剪切速率下松散颗粒的声发射信号特征。
综上所述,目前关于松散体边坡监测相关研究已取得一定进展,但是其滑移过程的声学规律研究仍不充分。因此本研究将搭建斜坡试验平台,开展松散体模拟滑坡试验,并考虑连续改变装置倾角,监测松散体静止、蠕变到滑移整个过程的声发射信号演化规律,为松散体边坡稳定性监测提供研究思路和数据支撑。
1. 试验设计
采用中国ISO标准砂(GSB08-
1337 )作为试验材料,利用高频振筛机筛分出0.5~1 mm的砂粒作为试验原材料,试件尺寸Φ61.8×40 mm。试验装置如图1—2所示,主要由升降装置、滑坡装置和声发射数据采集系统3个部分组成。升降装置由滑轮、固定物和绳子组成,滑轮采用不锈钢材质,长度为85 mm,滑轮轮直径为25 mm。滑坡装置由2个透明的0.3 m×0.3 m×0.8 m的空心长方体模型箱组成。滑坡装置的滑道分为2层,底层作为表面层,将试验砂均匀地粘在倾斜滑道上来模拟自然条件下的坡面;上层为堆积层,将试验砂均匀堆放在底层上形成堆积层来模拟松散体。
声发射系统为北京软岛DS5-16B多通道声发射仪,采样频率为3MHz,默认触发阈值为100 mV,频率范围为100~400 kHz,模拟滤波器信号设为直通,储存设置为波形。在滑坡装置安装3个陶瓷压电传感器全程记录声发射信号参数与波形信息。传感器型号是RS-2A,尺寸为Φ18.8×15 mm,接口类型为M5-KY,放大器为40 dB。该声发射仪能够实现声发射信号的采集、回放、波形处理和声源定位,并基于阈值法获取时差,进而采用穷举算法进行定位。同时安装2个30 fps、分辨率为
1080 p的高清摄像头记录试验过程。如图1所示传感器设置在倾斜箱体的300,600 mm处的底部背面和水平箱体位置200 mm处。摄像头和倾斜箱体的传感器位置相互对应,在其上方300 mm处。试验开始前将倾斜滑道与水平面的初始高度设置为450 mm,并将400 g粒径分布为0.5~1 mm的标准砂均匀堆积在倾斜滑道上,以模拟自然条件斜坡地形上的松散体。在堆放标准砂时要保持滑道上的堆积层不会发生滑移现象。试验装置起始角度为34°,试验过程倾角变化范围在34°~39°。试验开始后,保持0.75 mm/s的速度启动升降装置,在上升过程中由于倾角不断地发生变化使得松散体经历静止,蠕变到滑移整个过程。当松散体滑移过程结束后即停止试验同时停止采集相关数据,通过声发射传感器和高清摄像头分别采集得到松散体的整个滑移过程的信号数据和视频图像。通过多组重复试验研究松散体滑移的启动机制、速度变化、变形特征以及滑移前兆。
本试验进行了3组重复试验,结合布置的2个位置互相对应的声发射探头和高清摄像头一共得到了6组速度数据。各组速度均值分别为0.018,0.013,0.012,0.026,0.011,0.015 m/s,标准差为
0.0056 ,平均误差为0.0041 ,最大误差为0.0102 ,变异系数为0.35。变异系数的大小与数据稳定性有着密切的关系。通常情况下,变异系数越小,表示数据集中的观测值越稳定,波动性较小。因此,本试验误差较小,结果较为稳定。2. 数据分析
2.1 数据预处理
为研究松散体滑移过程中的AE信号规律,选择了2个关键时间节点,如图3所示将整个滑移过程分为3个阶段。时间节点选取为视频观察到的颗粒滑动点和滑移点。I阶段为平稳阶段,对应滑坡过程中的平稳阶段,该阶段无滑动现象;II阶段为蠕变阶段,对应滑坡过程中的滑动阶段和滑移前阶段,该阶段能观察到个别及少数颗粒滑动;III阶段为滑移阶段,对应滑坡中的滑坡阶段,该阶段能观察到较多颗粒滑动甚至宏观滑坡现象。
2.2 振铃计数及AE能量阶段分析
松散体在滑移过程中的AE信号特征是:振铃计数和能量随滑移过程呈现先逐渐增大后衰减,最终趋于稳定。具体表现如图4所示:I阶段时,振铃计数保持不变;在II阶段时,振铃计数逐渐上升,达到较高点后保持平稳,此时颗粒间的相互作用力在不断增加,松散体自身的状态逐渐不稳定,滑移门槛值为
5000 次,当振铃计数达到门槛值后发生滑移现象。在III阶段振铃计数逐渐衰减。此时松散颗粒重新排列或沉降,从而导致松散体内部结构和稳定性得到改善,使得振铃计数逐渐减小。若发生二次滑移,则振铃计数会有波动变化。在滑移结束时,振铃计数变化逐渐稳定。滑移过程中AE能量释放规律与振铃计数演化规律类似。如图4所示,相比振铃计数,能量的滑移门槛值并不固定,当能量大于
1500 mV·ms后,易发生滑移现象。试验发生二次滑移的原因是由于松散颗粒之间的相互作用产生的,遵循Omori定律。其反映的是大的断裂声发射信号引发的次生断裂信号行为。在本试验中是随着滑移过程的进行,松散体内部结构重新发生变化,使得松散体出现新的不稳定状态进而发生二次滑移现象。2.3 b值分析
b值(b-value)是小事件数与大事件数的比值,b值常作为判定裂隙发展情况的参数[17]。b值的计算公式可表示为:
$$ b=\frac{20\times\mathrm{lge}}{(A-A_{\mathrm{min}})} $$ (1) 式中:e——自然常数;
A、$ {A}_{{\mathrm{min}}} $——平均幅值和最小幅值/mV。
b值在计算时将其门槛值设为0.004;频率设置为3 MHz,将原始数据划分为900组,每组数据集样本数为
100000 。b值随时间的演化规律如图5所示,具体表现为:b值在滑移过程中逐渐减小,这是由于滑移过程引起的颗粒间的摩擦和力链重排等事件越来越频繁和显著,即大事件比例不断增加。随着滑移过程的进行,b值减小趋势逐渐放缓。b值门槛值为0.2,当b值达到门槛值后易发生滑移现象;在III阶段b值逐渐回升。在滑移结束时,b值变化逐渐稳定。2.4 频谱分析
采用快速傅里叶变换(fast Fourier transform,FFT)对松散体滑移试验AE信号数据进行处理得到功率谱,进一步获得主频、频谱重心等信息。主频即峰值频率,频谱重心计算公式如下:
$$ FC=\frac{{\displaystyle\int }_{0}^{+\infty }fP\left(f\right){\mathrm{d}}f}{{\displaystyle\int }_{0}^{+\infty }P\left(f\right){\mathrm{d}}f} $$ (2) 式中:FC——频谱重心/Hz;
f——频谱重心的横坐标;
(f)——信号的功率谱。
频谱重心随时间的演化规律如图5所示,在I阶段时,频谱重心保持在400 kHz左右,此时松散体内部结构相对稳定,没有明显的内部位移或结构变化。外部应力达到了一个稳定状态,松散体正处于相对静止或受均衡的应力状态。在II阶段,频谱重心在临滑移前期已经有30~50 kHz的降幅,说明在该时期松散体已经开始发生微观结构变化或应力分布变化,从而导致越来越多的颗粒开始出现滑动情况。在此之后频谱重心在350~450 kHz之间进行波动变化,这种波动变化预示着松散体内部结构正在不断发生变化,一般与松散体内部微观裂缝扩展、颗粒重新排列或颗粒间压力变化相关,最终导致了宏观滑坡现象的发生。
具体表现为:在I阶段时无论是振铃计数、能量、b值、频谱重心还是PIV分析得到的颗粒速度图像曲线均保持相对稳定。在II阶段,振铃计数和能量呈不断上升的趋势,b值不断减小,频谱重心在临滑移前期有30~50 kHz的降幅,而后过程中频谱重心在350~450 kHz之间进行波动变化。频谱重心的震荡时间区域正好对应振铃计数和能量数值相对较高及b值相对较低的时间区域。临近滑移点时,颗粒图像测速法(particle image velocimetry,PIV)速度图像曲线开始缓慢增长。其中,b值变化最早,对松散体的状态变化的更敏感。在III阶段,PIV速度图像曲线先增后减,随着滑移过程结束,各参数变化逐渐归于稳定(图6—7)。
此外,还注意到在II阶段时,AE信号变化出现在PIV速度变化之前。当松散体发生滑动或滑移行为前,声发射(AE)参数就已经发生了相应的变化。这段AE参数变化的时间视为松散体滑坡发生前的“窗口期”,并可能将其用于松散体滑坡预测和预警[18 − 20]。
3. 滑移阶段预测
AE试验数据提供了关于松散体的状态变化的声学信号,这些信号可以识别松散体滑坡前的“窗口期”,并作为预测依据。考虑选取AE信号参数为预测指标,根据不同阶段AE信号参数对应的规律变化来预测松散体滑移过程的不同阶段[21]。由于b值对松散体状态变化较为敏感,所以选取b值为基本参数,结合各试验组b值演化情况,基于此将松散体滑移过程分为5个阶段。划分依据和计算过程如下:
$$ {R}_{b}=\left\{\begin{split} &{R}_{b}5 \quad\quad b\leqslant 1\\ &{R}_{b}4 \quad\quad 1 < b\leqslant 3\\ &{R}_{b}3 \quad\quad 3 < b < 4\\ &{R}_{b}2 \quad\quad 4\leqslant b < 5\\ &{R}_{b}1 \quad\quad b\geqslant 5 \end{split}\right. $$ (3) 式中:$ {R}_{b} $——基于b值的预测阶段;
$ {R}_{b}1 $~$ {R}_{b}5$——滑移阶段($ {R}_{b}5$),滑移预警阶段II (${R}_{b}4 $),滑移预警阶段I(${R}_{b}3 $),滑动 阶段(${R}_{b}2 $)和平稳阶段(${R}_{b}1 $),$ {R}_{b} $等 级越高表示阶段越危险;
b——小事件数与大事件数的比值,与滑坡危险程 度成反比,b值越小表示阶段越危险。
预测情况如表1所示,滑移点为图3右侧竖线,提前时间为b值第一次到达(3,4)间的时间点。结果表明预警点(${R}_{b}3 $对应的滑移预警所致)出现在实际滑移发生之前,预测的滑移阶段包含了实际滑移阶段,且所有试验组均符合规律。当达到$ {R}_{b}5 $后,即使后面阶段发生变化,仍需警惕后续滑坡现象的发生。说明了Rb预测模型能提前预测松散体滑移现象的发生,考虑到b值门槛值的变化性和不确定性,未来可以建立多种声发射参数预测模型,并与各类机器学习的方法相结合,建立新的模型来预测松散体滑移过程,从而提高预测模型的准确性和可靠性。
表 1 各试验组预测时刻表Table 1. Predicted timetable for each test group编号 实际滑移点 滑移预警点 提前时间/帧 SY1Z1T 510 439 71 SY1Z2T 700 486 214 SY2Z1T 650 565 85 SY2Z2T 660 586 74 SY3Z1T 720 672 48 SY3Z2T 738 558 180 注:SY1Z1T含义为试验1组第1通道,下同理。 尽管现阶段将声发射技术实际应用于松散体滑坡工程仍有一定的难度,但可以利用相关技术一些尝试,如利用有源波导技术,改进有源、普通波导杆或WEAD波导杆等,克服AE信号在非固结材料中的快速衰减,并将其应用于实际松散体边坡场景,如渣土场,尾矿库等,以开展边坡风险预测预警。
4. 结论
(1)通过连续改变装置倾角,模拟松散体在斜坡地形上经历从静止到蠕变再到滑移的整个过程,利用数据挖掘来揭示松散体滑动变形过程中声发射信号的演化规律以及捕捉滑移前兆,对松散体滑移过程相关研究进行了一定的补充和完善。
(2)试验数据揭示了松散体滑移前存在一个重要的“窗口期”,通过声发射技术更早监测到松散体内部的变化信号,延长预警时间来提高监测和预警系统的效率,说明AE技术具有识别松散体滑坡前兆的潜力。
(3)本研究可应用于监测由生产活动或开采资源后形成的松散体边坡稳定性,并在实际生产和工程中及时感知潜在的滑动风险,从而有助于在地质灾害事故发生前采取及时、有针对性的措施,最大程度地减少或避免潜在的生命财产损失。
-
图 1 FBG传感器原理示意图[16]
Figure 1. Schematic diagram of FBG sensor principle
表 1 常用的光纤传感技术总结
Table 1 Summary of common fiber optic sensing technologies
名称 基本原理 优点 缺点 FBG 布拉格衍射 可封装成不同传感器,直观显示变形和压力等信息。 仅能提供准分布式测量 BOCDA 受激布里渊散射光相关域分析 测量时间短,空间分辨率高,精度高,可测绝对温度和应变。 测量距离短,不可测断点,双端通路系统。 BOCDR 自发布里渊散射光相关域分析 单端测量,精度高,可测断点,可测绝对温度和应变。 测量时间长 BOFDA 受激布里渊散射光频域分析 精度高,空间分辨率高,可测绝对温度和应变。 光源相干性,不可测断点,双端通路系统。 BOTDA 受激布里渊散射光时域分析 动态范围大,测试时间短,高精度,高空间分辨率,
可测绝对温度和应变。不可测断点,双端通路系统。 BOTDR 自发布里渊散射光时域分析 单端测量,可测断点,可测绝对温度和应变。 测量时间长,空间分辨率低。 OFDR 瑞利散射频域分析 精度高,空间分辨率高。 测试距离相对受限。 OTDR 瑞利散射光时域分析 单端测量,便携,直观快速,可测断点。 间接方式测量光纤应变且误差大,不能用于测温。 COFDR 瑞利散射相干光频域反射分析 单端测量,可测断点,测试时间短,高精度,高空间分辨率。 测量距离短,仅测量相对变化值。 COTDR 瑞利散射相干光时域反射分析 单端测量,可测断点,测试时间短,高精度,高空间分辨率。 测量距离短,仅测量相对变化值。 DAS 瑞利散射光时域/频域分析 大范围监测,较高的空间分辨率 成本较高 ROTDR 拉曼散射光时域分析 单端检测,仅对温度敏感,测量距离长。 空间分辨率低,精度低。 ROFDR 拉曼散射光频域分析 单端检测,仅对温度敏感,精度高,空间分辨率高。 存在光源相干性问题。 -
[1] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract)] YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433 − 444. (in Chinese with English abstract)
[2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese)] DOI: 10.3321/j.issn:1000-6915.2007.03.001 HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese) DOI: 10.3321/j.issn:1000-6915.2007.03.001
[3] 许强,汤明高,徐开祥,等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报,2008,27(6):1104 − 1112. [XU Qiang,TANG Minggao,XU Kaixiang,et al. research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1104 − 1112. (in Chinese with English abstract)] XU Qiang, TANG Minggao, XU Kaixiang, et al. research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104 − 1112. (in Chinese with English abstract)
[4] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报,2009,28(6):1081 − 1090. [HE Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1081 − 1090. (in Chinese)] DOI: 10.3321/j.issn:1000-6915.2009.06.001 HE Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081 − 1090. (in Chinese) DOI: 10.3321/j.issn:1000-6915.2009.06.001
[5] 殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报,2004,15(2):1 − 8. [YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):1 − 8. (in Chinese with English abstract)] YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 1 − 8. (in Chinese with English abstract)
[6] 施斌. 论工程地质中的场及其多场耦合[J]. 工程地质学报,2013,21(5):673 − 680. [SHI Bin. On fields and their coupling in engineering geology[J]. Journal of Engineering Geology,2013,21(5):673 − 680. (in Chinese)] DOI: 10.3969/j.issn.1004-9665.2013.05.001 SHI Bin. On fields and their coupling in engineering geology[J]. Journal of Engineering Geology, 2013, 21(5): 673 − 680. (in Chinese) DOI: 10.3969/j.issn.1004-9665.2013.05.001
[7] 朱鸿鹄. 工程地质界面:从多元表征到演化机理[J]. 地质科技通报,2023,42(1):1 − 19. [ZHU H (G /H). Engineering geological interface:From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology,2023,42(1):1 − 19. (in Chinese)] ZHU H (G /H). Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1 − 19. (in Chinese)
[8] GIALLORENZI T G,BUCARO J A,DANDRIDGE A,et al. Optical fiber sensor technology[C]//IEEE Transactions on Microwave Theory and Techniques. April 30,1982,IEEE,1982:472 − 511.
[9] LEE B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology,2003,9(2):57 − 79. DOI: 10.1016/S1068-5200(02)00527-8
[10] PETERS K. Polymer optical fiber sensors—a review[J]. Smart Materials and Structures,2011,20(1):013002. DOI: 10.1088/0964-1726/20/1/013002
[11] 廖延彪,黎敏. 光纤传感器的今日与发展[J]. 传感器世界,2004,10(2):6 − 12. [LIAO Yanbiao,LI Min. The development of optical fiber sensors[J]. Sensor World,2004,10(2):6 − 12. (in Chinese with English abstract)] LIAO Yanbiao, LI Min. The development of optical fiber sensors[J]. Sensor World, 2004, 10(2): 6 − 12. (in Chinese with English abstract)
[12] 侯俊芳,裴丽,李卓轩,等. 光纤传感技术的研究进展及应用[J]. 光电技术应用,2012,27(1):49. [HOU Junfang,PEI Li,LI Zhuoxuan,et al. Development and application of optical fiber sensing technology[J]. Electro-Optic Technology Application,2012,27(1):49. (in Chinese with English abstract)] HOU Junfang, PEI Li, LI Zhuoxuan, et al. Development and application of optical fiber sensing technology[J]. Electro-Optic Technology Application, 2012, 27(1): 49. (in Chinese with English abstract)
[13] CULSHAW B. Optical fiber sensor technologies:Opportunities and-perhaps-pitfalls[J]. Journal of Lightwave Technology,2004,22(1):39 − 50. DOI: 10.1109/JLT.2003.822139
[14] Leung,Christopher KY,Kai Tai Wan,et al. Optical fiber sensors for civil engineering applications. Materials and Structures. 2015,48:871-906.
[15] DAKIN J,CULSHAW B. Optical fiber sensors:Principles and components. volume 1[*■■*]. ●●●●●,2024
[16] Rao,Y-J. Fiber Bragg grating sensors:principles and applications. In Optical fiber sensor technology:Devices and technology,355 − 379. Boston,MA:Springer US,1998.
[17] 饶云江. 长距离分布式光纤传感技术研究进展[J]. 物理学报,2017,66(7):158 − 176. [RAO Yunjiang. Recent progress in ultra-long distributed fiber-optic sensing[J]. Acta Physica Sinica,2017,66(7):158 − 176. (in Chinese with English abstract)] RAO Yunjiang. Recent progress in ultra-long distributed fiber-optic sensing[J]. Acta Physica Sinica, 2017, 66(7): 158 − 176. (in Chinese with English abstract)
[18] 朱鸿鹄,施斌,严珺凡,等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报,2013,32(4):821 − 828. [ZHU Honghu,SHI Bin,YAN Junfan,et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(4):821 − 828. (in Chinese with English abstract)] ZHU Honghu, SHI Bin, YAN Junfan, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 821 − 828. (in Chinese with English abstract)
[19] HILL K O,MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology,1997,15(8):1263 − 1276. DOI: 10.1109/50.618320
[20] Werneck,Marcelo,Bessie A,and Fábio VB de Nazaré. A guide to fiber Bragg grating sensors. Current trends in short-and long-period fiber gratings (2013):1 − 24.
[21] LI Tianliang,GUO Jinxiu,TAN Yuegang,et al. Recent advances and tendency in fiber Bragg grating-based vibration sensor:A review[J]. IEEE Sensors Journal,2020,20(20):12074 − 12087. DOI: 10.1109/JSEN.2020.3000257
[22] ZHU Honghu,SHI Bin,ZHANG Chengcheng. FBG-based monitoring of geohazards:Current status and trends[J]. Sensors,2017,17(3):452. DOI: 10.3390/s17030452
[23] LI Jinyi,ZHOU Feicong,ZHOU Ping,et al. A health monitoring system for inverted arch of salt rock tunnel based on laser level deformation monitor and wFBG[J]. Measurement,2021,184:109909. DOI: 10.1016/j.measurement.2021.109909
[24] Gan,WeiBing,Nian Liu,Yu Wang,et al. Two-parameter method for identification and location of leaks based on weak FBG for steam pipelines. Optical Fiber Technology 74 (2022):103095.
[25] KECHAVARZI C,SOGA K,BATTISTA N,et al. Distributed optic fibre sensing for monitoring civil infrastructure:A practical guide[*■■*]. ●●●●●,2009
[26] KING J,SMITH D,RICHARDS K,et al. Development of a coherent OTDR instrument[J]. Journal of Lightwave Technology,1987,5(4):616 − 624. DOI: 10.1109/JLT.1987.1075523
[27] TU Guojie,ZHANG Xuping,ZHANG Yixin,et al. The development of an $Φ $-OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters,2015,27(12):1349 − 1352.
[28] DALEY T M,FREIFELD B M,AJO-FRANKLIN J,et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge,2013,32(6):699 − 706. DOI: 10.1190/tle32060699.1
[29] HE Zuyuan,LIU Qingwen. Optical fiber distributed acoustic sensors:A review[J]. Journal of Lightwave Technology,2021,39(12):3671 − 3686. DOI: 10.1109/JLT.2021.3059771
[30] 宋牟平,范胜利,陈好,等. 基于光相干外差检测的布里渊散射DOFS的研究[J]. 光子学报,2005,34(2):233 − 236. [SONG M P,FAN Shengli,CHEN Hao,et al. Study on the technique of Brillouin scattering distributed optical fiber SensingBased on optical interferometric heterodyne detection[J]. Acta Photonica Sinica,2005,34(2):233 − 236. (in Chinese)] SONG M P, FAN Shengli, CHEN Hao, et al. Study on the technique of Brillouin scattering distributed optical fiber SensingBased on optical interferometric heterodyne detection[J]. Acta Photonica Sinica, 2005, 34(2): 233 − 236. (in Chinese)
[31] ZHU Wenhao,WU Haoting,CHEN Weixuan,et al. Submetric spatial resolution ROTDR temperature sensor assisted by Wiener deconvolution[J]. Sensors,2022,22(24):9942.
[32] Park,Hyung-Jun,Kwang-Nak Koh,and Il-Bum Kwon. Research on the security of infrastructures using fiber optic ROTDR sensor. Journal of the Korean Society for Nondestructive Testing 23,no. 2 (2003):140-147.
[33] DANG Yunli,ZHAO Zhiyong,WANG Xuefeng,et al. Simultaneous distributed vibration and temperature sensing using multicore fiber[J]. IEEE Access,2019,7:151818 − 151826. DOI: 10.1109/ACCESS.2019.2948213
[34] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报,2012,20(2):145 − 151. [XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology,2012,20(2):145 − 151. (in Chinese with English abstract)] XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145 − 151. (in Chinese with English abstract)
[35] 史彦新,张青,孟宪玮. 分布式光纤传感技术在滑坡监测中的应用[J]. 吉林大学学报(地球科学版),2008,38(5):820 − 824. [SHI Yanxin,ZHANG Qing,MENG Xianwei. The application of distributed optical fiber sensing technology in landslide monitoring[J]. Journal of Jilin University (Earth Science Edition),2008,38(5):820 − 824. (in Chinese with English abstract)] SHI Yanxin, ZHANG Qing, MENG Xianwei. The application of distributed optical fiber sensing technology in landslide monitoring[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(5): 820 − 824. (in Chinese with English abstract)
[36] 刘小丽,邓建辉,李广涛. 滑带土强度特性研究现状[J]. 岩土力学,2004,25(11):1849 − 1854. [LIU Xiaoli,DENG Jianhui,LI Guangtao. Shear strength properties of slip soils of landslides:An overview[J]. Rock and Soil Mechanics,2004,25(11):1849 − 1854. (in Chinese with English abstract)] LIU Xiaoli, DENG Jianhui, LI Guangtao. Shear strength properties of slip soils of landslides: An overview[J]. Rock and Soil Mechanics, 2004, 25(11): 1849 − 1854. (in Chinese with English abstract)
[37] 孙义杰,张丹,童恒金,等. 分布式光纤监测技术在三峡库区马家沟滑坡中的应用[J]. 中国地质灾害与防治学报,2013,24(4):97 − 102. [SUN Yijie,ZHANG Dan,TONG Hengjin,et al. Research of distributed fiber optic sensing technology in monitoring of Majiagou landslide of Three Gorges[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):97 − 102. (in Chinese with English abstract)] SUN Yijie, ZHANG Dan, TONG Hengjin, et al. Research of distributed fiber optic sensing technology in monitoring of Majiagou landslide of Three Gorges[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 97 − 102. (in Chinese with English abstract)
[38] ZHANG Chenyang,YIN Yueping,DAI Zhenwei,et al. Reactivation mechanism of a large-scale ancient landslide[J]. Landslides,2021,18(1):397 − 407. DOI: 10.1007/s10346-020-01538-9
[39] YE Xiao,ZHU Hong-Hu,CHENG Gang,et al. Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(3):1018 − 1032. DOI: 10.1016/j.jrmge.2023.04.004
[40] 张晨阳,张泰丽,张明,等. 东南沿海地区玄武岩残积土雨水运移特征及滑坡失稳数值模拟[J]. 水文地质工程地质,2019,46(4):42 − 50. [ZHANG Chenyang,ZHANG Taili,ZHANG Ming,et al. Rainfall infiltration characteristics and numerical simulation of slope instability in the basalt residual soil in the coastal area of SouthEast China[J]. Hydrogeology & Engineering Geology,2019,46(4):42 − 50. (in Chinese with English abstract)] ZHANG Chenyang, ZHANG Taili, ZHANG Ming, et al. Rainfall infiltration characteristics and numerical simulation of slope instability in the basalt residual soil in the coastal area of SouthEast China[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 42 − 50. (in Chinese with English abstract)
[41] ZHU Honghu,SHI Bin,YAN Junfan,et al. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage[J]. Smart Materials and Structures,2014,23(9):095027. DOI: 10.1088/0964-1726/23/9/095027
[42] 朱武,张勤,朱建军,黄观文,王彦平,朱鸿鹄,胡伟,胡俊. 特大滑坡实时监测预警与技术装备研发. 岩土工程学报. 2022,44(7):1341 − 1350. [ZHU Wu,ZHANG Qin,ZHU Jianjun,et al. Real-time monitoring and early warning of extremely large landslides and development of technical equipment. Chinese Journal of Geotechnical Engineering. 2022,44(7):1341 − 1350. (in Chinese with English abstract)] ZHU Wu, ZHANG Qin, ZHU Jianjun, et al. Real-time monitoring and early warning of extremely large landslides and development of technical equipment. Chinese Journal of Geotechnical Engineering. 2022, 44(7): 1341 − 1350. (in Chinese with English abstract)
[43] ZHANG Chenyang,DAI Zhenwei,TAN Weijia,et al. Multiscale study of the deterioration of sandstone in the Three Gorges Reservoir area subjected to cyclic wetting–cooling and drying–heating[J]. Rock Mechanics and Rock Engineering,2022,55(9):5619 − 5637. DOI: 10.1007/s00603-022-02929-1
[44] 朱赛楠,殷跃平,王文沛,等. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报,2019,40(2):339 − 349. [ZHU Sainan,YIN Yueping,WANG Wenpei,et al. Mechanism of freeze-thaw loess landslide in Yili River valley,Xinjiang[J]. Acta Geoscientica Sinica,2019,40(2):339 − 349. (in Chinese with English abstract)] ZHU Sainan, YIN Yueping, WANG Wenpei, et al. Mechanism of freeze-thaw loess landslide in Yili River valley, Xinjiang[J]. Acta Geoscientica Sinica, 2019, 40(2): 339 − 349. (in Chinese with English abstract)
[45] 程秀娟,张茂省,朱立峰,等. 季节性冻融作用及其对斜坡土体强度的影响——以甘肃永靖黑方台地区为例[J]. 地质通报,2013,32(6):904 − 909. [CHENG Xiujuan,ZHANG Maosheng,ZHU Lifeng,et al. Seasonal freeze-thaw action and its effect on the slope soil strength in Heifangtai area,Gansu Province[J]. Geological Bulletin of China,2013,32(6):904 − 909. (in Chinese with English abstract)] CHENG Xiujuan, ZHANG Maosheng, ZHU Lifeng, et al. Seasonal freeze-thaw action and its effect on the slope soil strength in Heifangtai area, Gansu Province[J]. Geological Bulletin of China, 2013, 32(6): 904 − 909. (in Chinese with English abstract)
[46] 詹良通,李鹤,陈云敏,等. 东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J]. 岩土力学,2012,33(3):872 − 880. [ZHAN Liangtong,LI He,CHEN Yunmin,et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China[J]. Rock and Soil Mechanics,2012,33(3):872 − 880. (in Chinese)] DOI: 10.3969/j.issn.1000-7598.2012.03.035 ZHAN Liangtong, LI He, CHEN Yunmin, et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012, 33(3): 872 − 880. (in Chinese) DOI: 10.3969/j.issn.1000-7598.2012.03.035
[47] 贺可强,周敦云,王思敬. 降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J]. 岩石力学与工程学报,2004,23(16):2665 − 2670. [HE Keqiang,ZHOU Dunyun,WANG Sijing. Features of load-unload response ratio and its significance in predication of colluvial landslide induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(16):2665 − 2670. (in Chinese)] DOI: 10.3321/j.issn:1000-6915.2004.16.001 HE Keqiang, ZHOU Dunyun, WANG Sijing. Features of load-unload response ratio and its significance in predication of colluvial landslide induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2665 − 2670. (in Chinese) DOI: 10.3321/j.issn:1000-6915.2004.16.001
[48] 兰恒星,周成虎,伍法权,王苓涓. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报,2003(5):507 − 512. [LAN Hengxing,ZHOU Chenghu,WU Faquan,WANG Lingjuan. Spatial analysis and prediction of rainfall-induced landslide hazard based on GIS[J]. Chinese Science Bulletin,2003(5):507 − 512. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0023-074X.2003.05.021 LAN Hengxing, ZHOU Chenghu, WU Faquan, WANG Lingjuan. Spatial analysis and prediction of rainfall-induced landslide hazard based on GIS[J]. Chinese Science Bulletin, 2003(5): 507 − 512. (in Chinese with English abstract) DOI: 10.3321/j.issn:0023-074X.2003.05.021
[49] YAN Junfan,SHI Bin,ZHU Honghu,et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology,2015,186:100 − 104. DOI: 10.1016/j.enggeo.2015.01.001
[50] CAO D F,SHI B,ZHU H H,et al. A distributed measurement methodforin-situ soil moisture content by using carbon-fiber heatedcable[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(6):700 − 707. DOI: 10.1016/j.jrmge.2015.08.003
[51] QIN Yue,WANG Qiankun,XU Dongsheng,et al. A fiber Bragg grating based earth and water pressures transducer with three-dimensional fused deposition modeling for soil mass[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(2):663 − 669. DOI: 10.1016/j.jrmge.2021.07.009
[52] 李聪,朱杰兵,汪斌,等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报,2016,35(7):1407 − 1414. [LI Cong,ZHU Jiebing,WANG Bin,et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1407 − 1414. (in Chinese with English abstract)] LI Cong, ZHU Jiebing, WANG Bin, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407 − 1414. (in Chinese with English abstract)
[53] 许强,汤明高,徐开祥,等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报,2008,27(6):1104 − 1112. [XU Qiang,TANG Minggao,XU Kaixiang,et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1104 − 1112. (in Chinese with English abstract)] XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104 − 1112. (in Chinese with English abstract)
[54] YE Xiao,ZHU Honghu,WANG Jia,et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters,2022,49(11):e2022GL098211. DOI: 10.1029/2022GL098211
[55] HO Y T,HUANG Anbin,LEE J T. Development of a fibre Bragg grating sensored ground movement monitoring system[J]. Measurement Science and Technology,2006,17(7):1733 − 1740. DOI: 10.1088/0957-0233/17/7/011
[56] PEI Huafu,CUI Peng,YIN Jianhua,et al. Monitoring and warning of landslides and debris flows using an optical fiber sensor technology[J]. Journal of Mountain Science,2011,8(5):728 − 738. DOI: 10.1007/s11629-011-2038-2
[57] 隋海波,施斌,张丹,等. 地质和岩土工程光纤传感监测技术综述[J]. 工程地质学报,2008,16(1):135 − 143. [SUI Haibo,SHI Bin,ZHANG Dan,et al. Review on fiber optic sensor-based monitoring techniques for geological and geotechnical engineering[J]. Journal of Engineering Geology,2008,16(1):135 − 143. (in Chinese with English abstract)] SUI Haibo, SHI Bin, ZHANG Dan, et al. Review on fiber optic sensor-based monitoring techniques for geological and geotechnical engineering[J]. Journal of Engineering Geology, 2008, 16(1): 135 − 143. (in Chinese with English abstract)
[58] 王宝军,李科,施斌,等. 边坡变形的分布式光纤监测模拟试验研究[J]. 工程地质学报,2010,18(3):325 − 332. [WANG Baojun,LI Ke,SHI Bin,et al. Simulation experiment for distributed fiber monitoring on deformation of soil slope[J]. Journal of Engineering Geology,2010,18(3):325 − 332. (in Chinese)] DOI: 10.3969/j.issn.1004-9665.2010.03.006 WANG Baojun, LI Ke, SHI Bin, et al. Simulation experiment for distributed fiber monitoring on deformation of soil slope[J]. Journal of Engineering Geology, 2010, 18(3): 325 − 332. (in Chinese) DOI: 10.3969/j.issn.1004-9665.2010.03.006
[59] KATO S,KOHASHI H. Study on the monitoring system of slope failure using optical fiber sensors[C]//GeoCongress 2006. Atlanta,Georgia,USA. American Society of Civil Engineers,2006:1-6.
[60] SUN Yankun,LI Qi,YANG Duoxing,et al. Investigation of the dynamic strain responses of sandstone using multichannel fiber-optic sensor arrays[J]. Engineering Geology,2016,213:1 − 10. DOI: 10.1016/j.enggeo.2016.08.008
[61] 刘永莉. 分布式光纤传感技术在边坡工程监测中的应用研究[D]. 杭州:浙江大学,2011. [LIU Yongli. Research on application of distributed optical fiber sensing technology in slope engineering monitoring[D]. Hangzhou:Zhejiang University,2011. (in Chinese with English abstract)] LIU Yongli. Research on application of distributed optical fiber sensing technology in slope engineering monitoring[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)
[62] 刘虹霖. 光纤布拉格光栅应变传感器在滑坡监测中的适宜性研究[D]. 重庆大学[LIU Honglin. Study on the suitability of fiber Bragg grating strain sensor in landslide monitoring[D]. Chongqing University (in Chinese with English abstract)]. [63] 张磊. 基于 DFOS 的库岸边坡变形机理及预测研究[D]. 南京大学. [ZHANG Lei. Research on deformation mechanism and prediction of reservoir bank slope based on DFOS[D]. Nanjing University. (in Chinese with English abstract)] ZHANG Lei. Research on deformation mechanism and prediction of reservoir bank slope based on DFOS[D]. Nanjing University. (in Chinese with English abstract)
[64] 孙义杰,张丹,童恒金,施斌. 分布式光纤监测技术在三峡库区马家沟滑坡中的应用. 中国地质灾害与防治学报. 2013(4):97 − 102. [SUN Yijie,ZHANG Dan,TONG Hengjin,et al. Application of distributed optical fiber monitoring technology in the Majiagou landslide in the Three Gorges Reservoir area. Chinese Journal of Geological Hazard and Control. 2013(4):97 − 102. (in Chinese with English abstract)] SUN Yijie, ZHANG Dan, TONG Hengjin, et al. Application of distributed optical fiber monitoring technology in the Majiagou landslide in the Three Gorges Reservoir area. Chinese Journal of Geological Hazard and Control. 2013(4): 97 − 102. (in Chinese with English abstract)
[65] 叶为民,孔令伟,胡瑞林,等. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报,2022,44(7):1295 − 1309. [YE Weimin,KONG Lingwei,HU Ruilin,et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering,2022,44(7):1295 − 1309. (in Chinese)] DOI: 10.11779/CJGE202207009 YE Weimin, KONG Lingwei, HU Ruilin, et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295 − 1309. (in Chinese) DOI: 10.11779/CJGE202207009
[66] 张磊,施斌,张丹,等. 基于BOTDR的滑坡抗滑桩工作状态评价及分析[J]. 工程地质学报,2019,27(6):1464 − 1472. [ZHANG Lei,SHI Bin,ZHANG Dan,et al. Evaluation and analysis of working state of anti-slide pile with botdr technology[J]. Journal of Engineering Geology,2019,27(6):1464 − 1472. (in Chinese with English abstract)] ZHANG Lei, SHI Bin, ZHANG Dan, et al. Evaluation and analysis of working state of anti-slide pile with botdr technology[J]. Journal of Engineering Geology, 2019, 27(6): 1464 − 1472. (in Chinese with English abstract)
[67] HUNTLEY D,BOBROWSKY P,ZHANG Q,et al. Fibre Bragg grating and Brillouin optical time domain reflectometry monitoring manual for the Ripley Landslide,near Ashcroft,British Columbia[*■■*]. Natural Resources Canada,Geological Survey of Canada,2017.
[68] 丁勇,王平,何宁,赵维炳,王国立. (2011). 基于 BOTDA 光纤传感技术的 SMW 工法桩分布式测量研究. 岩土工程学报,33(5),719. [DING Yong,WANG Ping,HE Ning et al. (2011). Research on distributed measurement of SMW piles based on BOTDA fiber optic sensing technology. Chinese Journal of Geotechnical Engineering,33(5),719 (in Chinese with English abstract)] DING Yong, WANG Ping, HE Ning et al. (2011). Research on distributed measurement of SMW piles based on BOTDA fiber optic sensing technology. Chinese Journal of Geotechnical Engineering, 33(5), 719 (in Chinese with English abstract)
[69] GLISIC B,INAUDI D,NAN C. Pile monitoring with fiber optic sensors during axial compression,pullout,and flexure tests[J]. Transportation Research Record:Journal of the Transportation Research Board,2002,1808(1):11 − 20.
[70] ZHU Honghu,HO A N L,YIN Jianhua,et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope[J]. Smart Structures and Systems,2012,9(5):393 − 410.
[71] 房倩,粟威,张顶立,等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报,2016,35(9):1884 − 1897. [FANG Qian,SU Wei,ZHANG Dingli,et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(9):1884 − 1897. (in Chinese with English abstract)] FANG Qian, SU Wei, ZHANG Dingli, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884 − 1897. (in Chinese with English abstract)
[72] 靳晓光,王兰生,卫宏. 公路隧道围岩变形监测及其应用[J]. 中国地质灾害与防治学报,2000,11(1):19 − 23. [JIN Xiaoguang,WANG Lansheng,WEI Hong. Surrounding rock deformation monitor and application in highway tunnel[J]. The Chinese Journal of Geological Hazard and Control,2000,11(1):19 − 23. (in Chinese with English abstract)] JIN Xiaoguang, WANG Lansheng, WEI Hong. Surrounding rock deformation monitor and application in highway tunnel[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 19 − 23. (in Chinese with English abstract)
[73] 吴静红,叶少敏,张继清,等. 基于光纤光栅监测技术的京雄高铁大断面隧道结构健康监测[J]. 激光与光电子学进展,2020,57(21):210603. [WU Jinghong,YE Shaomin,ZHANG Jiqing,et al. Structural health monitoring of large-section tunnel of jingxiong high-speed railway based on fiber Bragg grating monitoring technology[J]. Laser & Optoelectronics Progress,2020,57(21):210603. (in Chinese with English abstract)] WU Jinghong, YE Shaomin, ZHANG Jiqing, et al. Structural health monitoring of large-section tunnel of jingxiong high-speed railway based on fiber Bragg grating monitoring technology[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210603. (in Chinese with English abstract)
[74] 侯公羽,谢冰冰,江玉生,等. 基于BOTDR的光纤应变与顶板沉降变形关系的模型构建与试验研究[J]. 岩土力学,2017,38(5):1298 − 1304. [HOU Gongyu,XIE Bingbing,JIANG Yusheng,et al. Theoretical and experimental study of the relationship between optical fiber strain and settlement of roof based on BOTDR technology[J]. Rock and Soil Mechanics,2017,38(5):1298 − 1304. (in Chinese with English abstract)] HOU Gongyu, XIE Bingbing, JIANG Yusheng, et al. Theoretical and experimental study of the relationship between optical fiber strain and settlement of roof based on BOTDR technology[J]. Rock and Soil Mechanics, 2017, 38(5): 1298 − 1304. (in Chinese with English abstract)
[75] 沈圣,吴智深,杨才千,等. 基于分布式光纤应变传感技术的盾构隧道横截面收敛变形监测方法[J]. 土木工程学报,2013,46(9):104 − 116. [SHEN Sheng,WU Zhishen,YANG Caiqian,et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal,2013,46(9):104 − 116. (in Chinese with English abstract)] SHEN Sheng, WU Zhishen, YANG Caiqian, et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal, 2013, 46(9): 104 − 116. (in Chinese with English abstract)
[76] 徐强,朱永全,雷升祥,等. 隧道下穿施工引起既有隧道及地层变形预测的改进随机介质理论模型[J]. 岩土工程学报,2023,45(2):301 − 309. [XU Qiang,ZHU Yongquan,LEI Shengxiang,et al. Improved stochastic medium theoretical model for predicting deformation of existing tunnels and strata caused by excavation of new undercrossing tunnels[J]. Chinese Journal of Geotechnical Engineering,2023,45(2):301 − 309. (in Chinese)] DOI: 10.11779/CJGE20211447 XU Qiang, ZHU Yongquan, LEI Shengxiang, et al. Improved stochastic medium theoretical model for predicting deformation of existing tunnels and strata caused by excavation of new undercrossing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 301 − 309. (in Chinese) DOI: 10.11779/CJGE20211447
[77] SHEN Sheng,WU Zhishen,LIN Meijin. Distributed settlement and lateral displacement monitoring for shield tunnel based on an improved conjugated beam method[J]. Advances in Structural Engineering,2013,16(8):1411 − 1425. DOI: 10.1260/1369-4332.16.8.1411
[78] MOFFAT R,SOTOMAYOR J,BELTRÁN J F. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus[J]. International Journal of Rock Mechanics and Mining Sciences,2015,75:233 − 243. DOI: 10.1016/j.ijrmms.2014.10.013
[79] 侯公羽,谢冰冰,江玉生,殷姝雅,& 韩育琛. (2017). 基于 BOTDR 的光纤应变与顶板沉降变形关系的模型构建与试验研究. 岩土力学,38(5),1298 − 1304. [HOU Gongyu,XIE Bingbing,JIANG Yusheng et al. (2017). Model construction and experimental study on the relationship between optical fiber strain and roof settlement deformation based on BOTDR. Rock and Soil Mechanics,38(5),1298 − 1304. (in Chinese with English abstract)] HOU Gongyu, XIE Bingbing, JIANG Yusheng et al. (2017). Model construction and experimental study on the relationship between optical fiber strain and roof settlement deformation based on BOTDR. Rock and Soil Mechanics, 38(5), 1298 − 1304. (in Chinese with English abstract)
[80] HOU Gongyu,LI Zixiang,HU Zhiyu,et al. Method for tunnel cross-section deformation monitoring based on distributed fiber optic sensing and neural network[J]. Optical Fiber Technology,2021,67:102704. DOI: 10.1016/j.yofte.2021.102704
[81] ZHENG,T. Method for shield tunnel cross-section curve reconstruction based on FBG sensors and neural network[J]. Academic Journal of Computing & Information Science,2022,5(12):15 − 21.
[82] WAGNER L,KLUCKNER A,MONSBERGER C M,et al. Direct and distributed strain measurements inside a shotcrete lining:Concept and realisation[J]. Rock Mechanics and Rock Engineering,2020,53(2):641 − 652. DOI: 10.1007/s00603-019-01923-4
[83] HRUBY D,KEPAK S,MEC P,et al. Distributed fibre-optic technology for security monitoring of a structural load of road and motorway tunnels[C]//International Conference on Civil,Structural and Transportation Engineering. June 11-12,2019. Avestia Publishing,2019:■-■.
[84] XUE Xiaohui,XIE Yongli,ZHOU Xinxing. Study on the life-cycle health monitoring technology of water-rich loess tunnel[J]. Advances in Materials Science and Engineering,2019,2019:9461890.
[85] LI Zixiang,HOU Gongyu,HU Tao,et al. A study on the application of the distributed optical fiber sensing monitoring technology in the process of dismantling temporary tunnel shoring[J]. Arabian Journal of Geosciences,2020,13(19):1036. DOI: 10.1007/s12517-020-06069-0
[86] MINARDO A,CATALANO E,COSCETTA A,et al. Long-term monitoring of a tunnel in a landslide prone area by Brillouin-based distributed optical fiber sensors[J]. Sensors,2021,21(21):7032. DOI: 10.3390/s21217032
[87] 李锦辉,张俊齐,魏强,贾大鹏,郭东,白石,欧进萍. 基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别. 西南交通大学学报 59,1 (2022):11 − 19. [LI Jinhui,ZHANG Junqi,WEI Qiang,et al. Identification of loose zone of tunnel surrounding rock based on self-sensing fiber reinforced composite anchor. Journal of Southwest Jiaotong University 59,1 (2022):11 − 19. (in Chinese with English abstract)] LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Identification of loose zone of tunnel surrounding rock based on self-sensing fiber reinforced composite anchor. Journal of Southwest Jiaotong University 59, 1 (2022): 11 − 19. (in Chinese with English abstract)
[88] 郑体鹏,2023,基于FBG传感阵列的盾构隧道结构形态重构优化方法研究[D],重庆交通大学. [ZHENG Tipeng,2023,Research on Optimization Method of Shield Tunnel Structure Morphology Reconstruction Based on FBG Sensor Array[D],Chongqing Jiaotong University. (in Chinese with English abstract)] ZHENG Tipeng, 2023, Research on Optimization Method of Shield Tunnel Structure Morphology Reconstruction Based on FBG Sensor Array[D], Chongqing Jiaotong University. (in Chinese with English abstract)
[89] 黄润秋,王贤能,唐胜传,王士天. 深埋长隧道工程开挖的主要地质灾害问题研究[J]. 地质灾害与环境保护,1997(1):51 − 69. [HUANG Runqiu,WANG Xianneng,TANG Shengchuan,et al. Research on the main geological hazards in the excavation of deep buried long tunnel engineering[J]. Geological Hazards and Environmental Protection,1997(1):51 − 69. (in Chinese with English abstract)] HUANG Runqiu, WANG Xianneng, TANG Shengchuan, et al. Research on the main geological hazards in the excavation of deep buried long tunnel engineering[J]. Geological Hazards and Environmental Protection, 1997(1): 51 − 69. (in Chinese with English abstract)
[90] SUN Yankun,LIU Jinquan,XUE Ziqiu,et al. A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration[J]. Journal of Natural Gas Science and Engineering,2021,88:103751. DOI: 10.1016/j.jngse.2020.103751
[91] SHARMA J,CUNY T,OGUNSANWO O,et al. Low-frequency distributed acoustic sensing for early gas detection in a wellbore[J]. IEEE Sensors Journal,2021,21(5):6158 − 6169. DOI: 10.1109/JSEN.2020.3038738
[92] KHIJWANIA S K,GUPTA B D. Fiber optic evanescent field absorption sensor:Effect of fiber parameters and geometry of the probe[J]. Optical and Quantum Electronics,1999,31(8):625 − 636. DOI: 10.1023/A:1006956824722
[93] O¨ZSOY S. Simple equation to estimate the output power of an evanescent field absorption-based fiber sensor[J]. Optical Engineering,2002,41(3):598. DOI: 10.1117/1.1431254
[94] LIU Hai,WU Bo,ZHANG Xu,et al. A highly sensitive sensor of methane and hydrogen in tellurite photonic crystal fiber based on four-wave mixing[J]. Optical and Quantum Electronics,2022,54(4):215. DOI: 10.1007/s11082-022-03587-x
[95] LIU Hai,WANG Haoran,ZHANG Wen,et al. High sensitive methane sensor with temperature compensation based on selectively liquid-infiltrated photonic crystal fibers[J]. Photonic Sensors,2019,9(3):213 − 222. DOI: 10.1007/s13320-019-0536-y
[96] YANG Jianchun,ZHOU Lang,HUANG Jing,et al. Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition[J]. Sensors and Actuators B:Chemical,2015,207:477 − 480. DOI: 10.1016/j.snb.2014.10.013
[97] YANG Jianchun,CHE Xin,SHEN Rui,et al. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm[J]. Optics Express,2017,25(17):20258 − 20267. DOI: 10.1364/OE.25.020258
[98] 陈鹏宇,钟年丙,何雪丰,解泉华,万波,贺媛媛,赖东. (2024). 壳聚糖/聚乙烯醇/纳米碳粉复合物涂覆光纤布拉格光栅湿度传感器. Acta Optica Sinica,44(4),0428003. [CHEN Pengyu,ZHONG Nianbing,HE Xuefeng. (2024). Chitosan/polyvinyl alcohol/nanocarbon powder composite coated fiber Bragg grating humidity sensor. Acta Optica Sinica,44(4),0428003. (in Chinese with English abstract)] CHEN Pengyu, ZHONG Nianbing, HE Xuefeng. (2024). Chitosan/polyvinyl alcohol/nanocarbon powder composite coated fiber Bragg grating humidity sensor. Acta Optica Sinica, 44(4), 0428003. (in Chinese with English abstract)
[99] CAO Rongtao,DING Hangjun,KIM K J,et al. Metal-organic framework functionalized polymer coating for fiber optical methane sensors[J]. Sensors and Actuators B:Chemical,2020,324:128627. DOI: 10.1016/j.snb.2020.128627
[100] ZHANG,Y. (2018). Recent Advances in Fiber Optic Sensors for Gas Detection. Sensors,18(3),763.
[101] HUANG,Y. (2019). Fiber Optic Sensors for Environmental Monitoring:A Review. Sensors and Actuators B:Chemical,284,1 − 14.
[102] CAO,Y. (2020). Functional Polymer Coatings for Optical Fiber Sensors:A Review. Journal of Materials Chemistry C,8(12),3991 − 4007.
[103] DAKIN J P,PRATT D J,BIBBY G W,et al. Temperature distribution measurement using Raman ratio thermometry[C]//Fiber Optic and Laser Sensors III. San Diego,USA. SPIE,1986:249 − 256.
[104] MEACHAM B J. International developments in fire sensor technology[J]. Journal of Fire Protection Engineering,1994,6(2):89 − 98. DOI: 10.1177/104239159400600203
[105] 黄尚廉,梁大巍,刘龚. 分布式光纤温度传感器系统的研究. 仪器仪表学报. 1991,12(4):359 − 364. [HUANG Shanglian,LIANG Dawei,LIU Gong. Research on distributed optical fiber temperature sensor system. Chinese Journal of Scientific Instruments. 1991,12(4):359 − 364. (in Chinese with English abstract)] HUANG Shanglian, LIANG Dawei, LIU Gong. Research on distributed optical fiber temperature sensor system. Chinese Journal of Scientific Instruments. 1991, 12(4): 359 − 364. (in Chinese with English abstract)
[106] YAN Baoqiang,LI Jian,ZHANG Mingjiang,et al. Temperature accuracy and resolution improvement for a Raman distributed fiber-optics sensor by using the Rayleigh noise suppression method. Applied Optics 59,no. 1 (2019):22 − 27.
[107] TOBIAS V. What We Can Learn from a Full-Scale Demonstration Experiment after 4 Years of DTS Monitoring —The FE Experiment. In Proceedings of the 2nd International Conference on Monitoring in Geological Disposal of Radioactive Waste,Paris,France,9 − 11 April 2019
[108] SUN Miao,TANG Yuquan,YANG Shuang,et al. Fiber optic distributed temperature sensing for fire source localization[J]. Measurement Science and Technology,2017,28(8):085102. DOI: 10.1088/1361-6501/aa7436
[109] WANG Jiaqi,LI Zhengying,FU Xuelei,et al. Distributed temperature sensing system based on a densely spaced FBG array for small fire recognition[J]. Measurement,2021,179:109406. DOI: 10.1016/j.measurement.2021.109406
[110] 张嵩,王剑. 光纤光栅传感技术在隧道火灾监控中的应用[J]. 激光与红外,2010,40(2):178 − 180. [ZHANG Song,WANG Jian. Application in the tunnel fire monitoring of fiber Bragg grating sensor technology[J]. Laser & Infrared,2010,40(2):178 − 180. (in Chinese)] DOI: 10.3969/j.issn.1001-5078.2010.02.016 ZHANG Song, WANG Jian. Application in the tunnel fire monitoring of fiber Bragg grating sensor technology[J]. Laser & Infrared, 2010, 40(2): 178 − 180. (in Chinese) DOI: 10.3969/j.issn.1001-5078.2010.02.016
[111] 张智源,林鎏堃,郑志鹏. 厦蓉高速公路隧道光栅火灾监测系统升级改造设计[J]. 交通企业管理,2023,38(4):62 − 64. [ZHANG Zhiyuan,LIN Liukun,ZHENG Zhipeng. Upgrade and Reconstruction Design of Tunnel Grating Fire Monitoring System of Xiarong Expressway[J]. Transportation Enterprise Management,2023,38(4):62 − 64. (in Chinese)] DOI: 10.3963/j.issn.1006-8864.2023.04.021 ZHANG Zhiyuan, LIN Liukun, ZHENG Zhipeng. Upgrade and Reconstruction Design of Tunnel Grating Fire Monitoring System of Xiarong Expressway[J]. Transportation Enterprise Management, 2023, 38(4): 62 − 64. (in Chinese) DOI: 10.3963/j.issn.1006-8864.2023.04.021
[112] YEO T L,SUN T,GRATTAN K T V. Fibre-optic sensor technologies for humidity and moisture measurement[J]. Sensors and Actuators A:Physical,2008,144(2):280 − 295. DOI: 10.1016/j.sna.2008.01.017
[113] ALWIS L,SUN T,GRATTAN K T V. Optical fibre-based sensor technology for humidity and moisture measurement:Review of recent progress[J]. Measurement,2013,46(10):4052 − 4074. DOI: 10.1016/j.measurement.2013.07.030
[114] YEO T L,SUN Tong,GRATTAN K T V,et al. Polymer-coated fiber Bragg grating for relative humidity sensing[J]. IEEE Sensors Journal,2005,5(5):1082 − 1089. DOI: 10.1109/JSEN.2005.847935
[115] SUN Tong,GRATTAN K T V,SRINIVASAN S,et al. Building stone condition monitoring using specially designed compensated optical fiber humidity sensors[J]. IEEE Sensors Journal,2012,12(5):1011 − 1017. DOI: 10.1109/JSEN.2011.2163504
[116] VENUGOPALAN T,SUN T,GRATTAN K T V. Long period grating-based humidity sensor for potential structural health monitoring[J]. Sensors and Actuators A:Physical,2008,148(1):57 − 62. DOI: 10.1016/j.sna.2008.07.015
[117] ALVAREZ-HERRERO A,GUERRERO H,LEVY D. High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers[C]//SENSORS,2002 IEEE. June 12-14,2002,Orlando,FL,USA. IEEE,2002:490-494.
[118] MICHIE W,CULSHAW B,MCKENZIE I,et al. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric system,Opt. Lett. 20 (1995) 103 − 105.
[119] MCLEAN A. ,MORGAN C. ,JOHNSTONE W. ,et al. Detection of hydrocarbon fuel spills using distributed fibre optic sensor,Sens. Actuators A 109 (2003) 60–67.
[120] BELTRÁN-PÉREZ G,KUZIN E A,CAMAS-ANZUETO J,et al. Fiber bend losses produced by soft and swellable materials for hydrocarbon detection[J]. Optics Communications,2002,204(1/2/3/4/5/6):145 − 150.
[121] LÓPEZ R M,SPIRIN V V,MIRIDONOV S V,et al. Fiber optic distributed sensor for hydrocarbon leak localization based on transmission/reflection measurement[J]. Optics & Laser Technology,2002,34(6):465 − 469.
[122] 隧道网. 隧道渗水监测&火灾预警新工具——隧道工程中的光纤传感器[J]. 隧道建设(中英文),2023,43(11):1852. [SUI Daowang. New tool for tunnel water seepage monitoring & fire warning:fiber optic sensors in tunnel engineering[J]. Tunnel Construction,2023,43(11):1852. (in Chinese)] SUI Daowang. New tool for tunnel water seepage monitoring & fire warning: fiber optic sensors in tunnel engineering[J]. Tunnel Construction, 2023, 43(11): 1852. (in Chinese)
[123] 江在森,邵志刚,刘晓霞,等. 中国大陆强震孕育过程关联的地壳形变及孕震晚期逼近发震过程识别问题[J]. 武汉大学学报(信息科学版),2022,47(6):807 − 819. [JIANG Zaisen,SHAO Zhigang,LIU Xiaoxia,et al. Crustal deformation associated with seismogenic process of Chinese mainland strong earthquakes and identification of approximation to seismogenic process in the late seismogenic stage[J]. Geomatics and Information Science of Wuhan University,2022,47(6):807 − 819. (in Chinese)] JIANG Zaisen, SHAO Zhigang, LIU Xiaoxia, et al. Crustal deformation associated with seismogenic process of Chinese mainland strong earthquakes and identification of approximation to seismogenic process in the late seismogenic stage[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 807 − 819. (in Chinese)
[124] 何祖源,刘庆文,陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统[J]. 物理学报,2017,66(7):178 − 189. [HE Zuyuan,LIU Qingwen,CHEN Jiageng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica,2017,66(7):178 − 189. (in Chinese with English abstract)] HE Zuyuan, LIU Qingwen, CHEN Jiageng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica, 2017, 66(7): 178 − 189. (in Chinese with English abstract)
[125] ZUMBERGE M A,WYATT F K,YU D X,et al. Optical fibers for measurement of earth strain[J]. Applied Optics,1988,27(19):4131. DOI: 10.1364/AO.27.004131
[126] 刘文义,张文涛,李丽,等. 光纤传感技术——未来地震监测的发展方向[J]. 地震,2012,32(4):92 − 102. [LIU Wenyi,ZHANG Wentao,LI Li,et al. Optical fiber sensory technology:Future direction for earthquake precursor monitoring[J]. Earthquake,2012,32(4):92 − 102. (in Chinese with English abstract)] LIU Wenyi, ZHANG Wentao, LI Li, et al. Optical fiber sensory technology: Future direction for earthquake precursor monitoring[J]. Earthquake, 2012, 32(4): 92 − 102. (in Chinese with English abstract)
[127] LIU Qingwen,HE Zuyuan,TOKUNAGA T. Sensing the Earth crustal deformation with nano-strain resolution fiber-optic sensors[J]. Optics Express,2015,23(11):A428 − A436.
[128] JOUSSET P,REINSCH T,RYBERG T,et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications,2018,9:2509. DOI: 10.1038/s41467-018-04860-y
[129] YU Chunquan,ZHAN Zhongwen,LINDSEY N J,et al. The potential of DAS in teleseismic studies:Insights from the goldstone experiment[J]. Geophysical Research Letters,2019,46(3):1320 − 1328.
[130] BIONDI E,WANG Xin,WILLIAMS E F,et al. Geolocalization of large-scale DAS channels using a GPS-tracked moving vehicle[J]. Seismological Research Letters,2023,94(1):318 − 330.
[131] LINDSEY N J,MARTIN E R,DREGER D S,et al. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters,2017,44(23):11 − 792.
[132] LI Zefeng,ZHAN Zhongwen. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching:A case study at the Brady geothermal field[J]. Geophysical Journal International,2018,215(3):1583 − 1593. DOI: 10.1093/gji/ggy359
[133] 庄茁,柳占立,王涛,等. 页岩水力压裂的关键力学问题[J]. 科学通报,2016,61(1):72 − 81. [ZHUANG Zhuo,LIU Zhanli,WANG Tao,et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Science Bulletin,2016,61(1):72 − 81. (in Chinese with English abstract)] ZHUANG Zhuo, LIU Zhanli, WANG Tao, et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Science Bulletin, 2016, 61(1): 72 − 81. (in Chinese with English abstract)
[134] 韩强,屈展,叶正寅. 页岩多尺度力学特性研究现状[J]. 应用力学学报,2018,35(3):564 − 570. [HAN Qiang,QU Zhan,YE Zhengyin. Research status of shale multi-scale mechanical properties[J]. Chinese Journal of Applied Mechanics,2018,35(3):564 − 570. (in Chinese with English abstract)] HAN Qiang, QU Zhan, YE Zhengyin. Research status of shale multi-scale mechanical properties[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 564 − 570. (in Chinese with English abstract)
[135] 隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87 − 103. [SUI Weibo,WEN Changyun,SUN Wenchang,et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry,2023,43(2):87 − 103. (in Chinese)] DOI: 10.3787/j.issn.1000-0976.2023.02.009 SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87 − 103. (in Chinese) DOI: 10.3787/j.issn.1000-0976.2023.02.009
[136] SIERRA J,KAURA J,GUALTIERI D,et al. DTS monitoring of hydraulic fracturing:Experiences and lessons learned[C]//SPE Annual Technical Conference and Exhibition. September 21-24,2008. Denver,Colorado,USA. SPE,2008:SPE-116182-MS.
[137] LI Xinyang,ZHANG J,GRUBERT M,et al. Distributed acoustic and temperature sensing applications for hydraulic fracture diagnostics[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. February 4-6,2020. The Woodlands,Texas,USA. SPE,2020:D021S004R003.
[138] 刘平,刘东明,姬程伟,等. 水力压裂监测与诊断技术进展与组合应用[J]. 测井技术,2024,48(5):721 − 730. [LIU Ping,LIU Dongming,JI Chengwei,et al. Advances and combined applications in hydraulic fracturing monitoring and diagnostic technology[J]. Well Logging Technology,2024,48(5):721 − 730. (in Chinese with English abstract)] LIU Ping, LIU Dongming, JI Chengwei, et al. Advances and combined applications in hydraulic fracturing monitoring and diagnostic technology[J]. Well Logging Technology, 2024, 48(5): 721 − 730. (in Chinese with English abstract)
[139] 卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展[J]. 油气藏评价与开发,2024,14(4):618 − 628. [LU Cong,LI Qiuyue,GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing[J]. Petroleum Reservoir Evaluation and Development,2024,14(4):618 − 628. (in Chinese)] LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618 − 628. (in Chinese)
[140] 王溯,陈勉,吕嘉昕,郝亚龙,初京义. 水平井水力压裂裂缝扩展诱发垂直邻井光纤应变演化特征[J]. 东北石油大学学报,2024,48(4):100 − 110+141. [Wang Su,Chen Mian,Lü Jiaxin,Hao Yalong,Chu Jingyi. Characteristics of optical fiber strain evolution in vertical adjacent wells induced by hydraulic fracturing crack expansion in horizontal wells[J]. Journal of Northeast Petroleum University,2024,48(4):100 − 110+141. (in Chinese with English abstract)] Wang Su, Chen Mian, Lü Jiaxin, Hao Yalong, Chu Jingyi. Characteristics of optical fiber strain evolution in vertical adjacent wells induced by hydraulic fracturing crack expansion in horizontal wells[J]. Journal of Northeast Petroleum University, 2024, 48(4): 100 − 110+141. (in Chinese with English abstract)
[141] Maxwell,S. (2014). Microseismic imaging of hydraulic fracturing:Improved engineering of unconventional shale reservoirs Society of Exploration Geophysicists
[142] 隋微波,刘荣全,崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进展[J]. 中国科学:技术科学,2021,51(4):371 − 387. [SUI Weibo,LIU Rongquan,CUI Kai. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. Scientia Sinica (Technologica),2021,51(4):371 − 387. (in Chinese with English abstract)] SUI Weibo, LIU Rongquan, CUI Kai. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. Scientia Sinica (Technologica), 2021, 51(4): 371 − 387. (in Chinese with English abstract)
[143] Data Acquisition and processing of carbon Rod Conveyed DTS and DAS in very Long Horizontal Wells:First Trial in Borth Sea Danish Sector.
[144] MOLENAAR M M,HILL D J,WEBSTER P,et al. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics[J]. SPE Drilling & Completion,2012,27(1):32 − 38.
[145] LELLOUCH A,SCHULTZ R,LINDSEY N J,et al. Low-magnitude seismicity with a downhole distributed acoustic sensing array—Examples from the FORGE geothermal experiment[J]. Journal of Geophysical Research:Solid Earth,2021,126(1):e2020JB020462. DOI: 10.1029/2020JB020462
[146] LELLOUCH A,LINDSEY N J,ELLSWORTH W L,et al. Comparison between distributed acoustic sensing and geophones:Downhole microseismic monitoring of the FORGE geothermal experiment[J]. Seismological Research Letters,2020,91(6):3256 − 3268. DOI: 10.1785/0220200149
[147] 李彦鹏,刘学刚,王大兴,等. DAS井地联合勘探实例分析——以长庆油田环县三维井地联采为例[J]. 石油物探,2022,61(1):112 − 121. [LI Yanpeng,LIU Xuegang,WANG Daxing,et al. DAS joint VSP and 3D surface seismic:A case study on HX3D in the Changqing oilfield[J]. Geophysical Prospecting for Petroleum,2022,61(1):112 − 121. (in Chinese)] DOI: 10.3969/j.issn.1000-1441.2022.01.012 LI Yanpeng, LIU Xuegang, WANG Daxing, et al. DAS joint VSP and 3D surface seismic: A case study on HX3D in the Changqing oilfield[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 112 − 121. (in Chinese) DOI: 10.3969/j.issn.1000-1441.2022.01.012
[148] 梁兴,王一博,武绍江,等. 基于分布式光纤同井微振动监测数据的页岩气水平井压裂微地震震源位置成像[J]. 地球物理学报,2022,65(12):4846 − 4857. [Liang Xing,Wang Yibo,Wu Shaojiang,et al. Imaging of microseismic source locations of shale gas horizontal well fracturing based on distributed optical fiber microvibration monitoring data in the same well[J]. Chinese Journal of Geophysics,2022,65(12):4846 − 4857. (in Chinese with English abstract)] DOI: 10.6038/cjg2022Q0002 Liang Xing, Wang Yibo, Wu Shaojiang, et al. Imaging of microseismic source locations of shale gas horizontal well fracturing based on distributed optical fiber microvibration monitoring data in the same well[J]. Chinese Journal of Geophysics, 2022, 65(12): 4846 − 4857. (in Chinese with English abstract) DOI: 10.6038/cjg2022Q0002