ISSN 1003-8035 CN 11-2852/P

    海底滑坡动力侵蚀机理研究:回顾与展望

    Research on dynamic erosion mechanism of submarine landslide: Review and prospects

    • 摘要: 海底滑坡会对海上风电、海底光缆、海洋平台等基础设施造成严重破坏,给“建设海洋强国”重大战略和保障海洋工程地质安全带来了严峻挑战。文章系统回顾了海底滑坡浊流地质灾害的研究历程,总结了国内外关于海底滑坡浊流链动特征、动力侵蚀类型、触发-演化-运移-侵蚀沉积机制、侵蚀理论模型及其对海底隆起、峡谷、盆地等复杂地貌的影响,提出了定量、多相、全过程、侵蚀-流态转化耦合的海底滑坡浊流动力侵蚀研究思路。最后,针对海上风电、海洋资源开发、海洋交通运输、海洋工程装备等重大工程的规划建设,展望了海底滑坡浊流基底易蚀结构地质模型和判识技术、滑坡-碎屑流-浊流灾害链复合、叠合及异构等全过程动力侵蚀力学模型及边界层动力侵蚀防控理论技术问题的研究方向。

       

      Abstract: The geological hazards of submarine landslides can cause serious damage to infrastructure such as offshore wind power, submarine optical cables, and marine platforms, posing a serious challenge to the major strategic task of building a maritime power and ensuring the geological safety of marine engineering. The article systematically reviews the research process of submarine landslide turbidity current geological hazards, summarizes the dynamic characteristics of submarine landslide-turbidity flow chain, dynamic erosion types, mechanisms of triggering, evolution, migration, erosion and sedimentation, theoretical models of erosion, and the influence of complex landforms such as uplift, canyons, and basins. A novel dynamic erosion approach is put forward of submarine landslide-turbidity flow chain, including quantitative, multiphase, whole process, erosion flow-state transformation. Finally, in view of the development of major projects such as offshore wind power, marine resource development, marine transportation, and marine engineering equipment, the geological model and identification technology are discussed of the erosion-prone structure of submarine landslide landslide-turbidity flow chain, as well as the composite, overlapping, and heterogeneous dynamic erosion mechanic model of the disaster chain, and the issues of prevention and control of boundary layer dynamic erosion.

       

    /

    返回文章
    返回