ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用

周小龙, 贾强, 石鹏卿, 何斌, 郭富赟, 胡文博, 李攀龙

周小龙,贾强,石鹏卿,等. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用[J]. 中国地质灾害与防治学报,2022,33(1): 107-116. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-13
引用本文: 周小龙,贾强,石鹏卿,等. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用[J]. 中国地质灾害与防治学报,2022,33(1): 107-116. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-13
ZHOU Xiaolong, JIA Qiang, SHI Pengqing, et al. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill,Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 107-116. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-13
Citation: ZHOU Xiaolong, JIA Qiang, SHI Pengqing, et al. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill,Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 107-116. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-13

免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用

基金项目: 甘肃省科技重大专项-社会发展类(19ZD2FA002)
详细信息
    作者简介:

    周小龙(1995-),男,甘肃漳县人,本科,遥感科学与技术专业,助理工程师,主要从事遥感技术在地质灾害防治方面的应用工作。E-mail: zhoulong_giser@163.com

    通讯作者:

    贾 强(1989-),男,甘肃定西人,地质工程专业,硕士,工程师,主要从事突发性地质灾害应急调查以及地质灾害治理工程勘查设计等相关工作。E-mail: 1174939889@qq.com

  • 中图分类号: P642; V279+2

Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill,Zhouqu County

  • 摘要: 近年来,无人机航测技术在地质灾害防治领域广泛应用,特别是在突发性地质灾害应急处置中优势显著。免像控无人机航测技术能够快速获取测绘数据,跟传统航测方法相比,极大的节约了时间和人力成本。文中利用大疆精灵Phantom 4 RTK无人机,对甘肃省舟曲县立节北山滑坡-泥石流灾害进行免像控航测数据获取和处理。根据航测成果快速获取了滑坡形态特征、泥石流沟道特征等相关参数, 分析了滑坡变形迹象,并应用实地测量数据进行免像控航测精度评价分析。研究结果表明:滑坡形态特征、泥石流沟道特征、变形迹象均与实地相符,检核点精度满足《低空数字航空摄影测量内业规范》(GH/Z 3003—2010)数据生产规范,成果数据可用于灾害体变形特征分析、几何参数快速提取,辅助分析评估险情、灾情。对突发性地质灾害应急处置中无人机测绘数据的快速获取工作具有一定的借鉴意义。
    Abstract: In recent years, UAV aerial survey technology has been widely used in the field of geological disaster prevention, especially in the emergency disposal of abrupt geological hazard. Image free UAV aerial survey technology can quickly obtain surveying and mapping data. Compared with traditional aerial survey methods, it greatly saves time cost and labor cost. In this paper, the DJI Phantom 4 RTK UAV is used to acquire and process the image free aerial survey data of landslide and debris flow disaster in Lijie North Hill landslide-debris flow disaster in Zhouqu County, Gansu Province. According to the aerial survey results, the relevant parameters such as landslide morphological characteristics and debris flow gully characteristics are quickly obtained, the signs of landslide deformation are analyzed, and the field survey data are used to evaluate and analyze the accuracy of image free aerial survey.The results show that the deformation signs, morphological characteristics and debris flow gully characteristics of landslide are consistent with the field, and the accuracy of verification points meets the data production specification of low altitude digital aerial photogrammetry (GH/Z 3003—2010). The result data can be used for the analysis of deformation characteristics of disaster body, rapid extraction of geometric parameters, and auxiliary analysis and evaluation of danger and disaster, It has a certain reference significance for the rapid acquisition of UAV mapping data in the emergency disposal of abrupt geological hazard.
  • 森林火灾过后,植被焚毁、土壤结构破坏,火烧迹地出现松散物源增多、土壤渗透系数下降、易蚀性增大等特征,泥石流暴发频率激增,即使是非泥石流地区也容易暴发泥石流灾害[13]。此类泥石流具有降雨阈值降低、暴发频率高、细颗粒含量增多等特征[45]。凉山地区地形条件复杂,森林覆盖率高,气候条件特殊,森林火灾频发,而后在降雨作用下,泥石流次生灾害屡次暴发,严重威胁下游居民生命财产安全。

    2020年3月28日,凉山州木里县项脚乡暴发森林火灾,严重破坏项脚沟流域中、上游植被,受森林火灾及山地地区短时强降雨共同激发作用,2020年6—7月,项脚沟各支沟多次暴发泥石流[6]。2021年7月5日,凉山州木里县项脚乡遭受暴雨袭击,导致项脚沟再次暴发大规模泥石流,泥石流固体冲出物规模达162×104 m3,造成186间房屋不同程度受损,173头牲畜死亡,毁损通乡路2 km。

    本文以“7•5”项脚沟特大型泥石流灾害为研究对象,通过野外调查、取样分析、参数计算等手段,分析本次泥石流形成条件、形成过程及运动特征,并提出了相应防灾减灾建议。

    项脚沟位于四川省木里县东南边缘,地处青藏高原东南缘,为小金河一级支流。流域类似“脚掌”形状,面积约为78.11 km2,主沟长约14 km,主沟纵长约7.85 km,平均纵坡降112 ‰,流域海拔1880~4180 m(图1)。项脚沟流域地势北高南低,属高山深切峡谷地貌。流域自上而下共发育10余条支沟,其中李子坪沟、甲尔沟等支沟较发育,断面呈“U”字型;宋家沟、香樟湾沟等支沟,沟道狭窄陡峭,为典型的“V”字型沟道。

    图  1  研究区域示意图
    Figure  1.  Schematic diagram of the study area

    项脚乡位于流域下游,该乡共有居民约3600人,主要沿主沟中下游分布,两岸居民的生产活动受泥石流灾害影响严重,主要通过沟道两侧防洪堤缓解泥石流灾害(图2)。

    图  2  项脚沟下游区域示意图
    Figure  2.  Schematic diagram of the downstream area of Xiangjiao gully

    项脚沟流域属典型亚热带西南季风和高原气候,呈现出冷热两季交替、干湿两季分明,年温差小、日温差大、辐射强烈、无四季区分等气候特征,多年平均气温14.0 °C,年均降雨量800~1000 mm,集中在7—9月。地层以三叠系西康群及二叠系中统地层为主,石炭系、志留系亦有分布,岩性主要为变质砂岩、砂板岩、硅质板岩、大理岩及结晶灰岩夹层、碳质板岩、碳板岩、变质玄武岩及少量千枚岩[5]

    通过对项脚沟泥石流形成条件的研究分析,发现本次泥石流灾害主要受森林火灾所控制,即在森林火灾作用的基础上,受陡峭地形及短时强降雨共同作用而导致了这场特大型泥石流的暴发。

    为研究本次降雨的降雨特征,本研究从中国气象数据网国家气象科学数据中心收集了相关降雨数据。图3为本次泥石流暴发前后最大降雨点的雨量统计图,从图3可见:影响本次泥石流的降雨是从7月4日19:00开始,到5日23:00结束;整个降雨过程可分为前后两场:第一场从4日19:00—5日06:00,共持续12 h,峰值降雨量为17.78 mm/h,累计降雨量达43.14 mm;第二场从5日16:00—23:00,共持续8 h ,降雨峰值出现在19:00左右,峰值降雨量达77.84 mm/h,累计降雨量达141.60 mm。从降雨强度分析,前场降雨强度小持续时间长,后场降雨强度大持续时间短,临界降雨强度达77.84 mm/h,因此,本次泥石流由前期降雨和短时强降雨共同作用下暴发。

    图  3  项脚沟泥石流累计降雨数据
    Figure  3.  The accumulated rainfall data of debris flow in Xiangjiao gully

    为探究此次森林火灾对项脚沟流域的破坏情况,文中选取了日期分别为2020-03-20和2020-05-07的两期Landsat8 多光谱遥感影像进行解译,通过计算火烧前后植被差异归一化燃烧指数(NBR),并通过现场调查校核植被燃烧情况,将研究区火烧烈度划分未过火、轻度过火、中度过火和重度过火4个等级 [79],计算公式为:

    NBR=(nirswir)(nir+swir) (1)
    dNBR=NBRpreNBRpost (2)

    式中:nir——近红外光波段所占面积/km2

    swir——短波红外光波段所占面积/km2

    NBRpre——火灾前的归一化燃烧指数;

    NBRpost——火灾后的归一化燃烧指数。

    遥感解译结果如图4所示,项脚沟流域受火灾破坏严重,过火面积达74.61%,其中轻度过火区面积占比约16.64%,中度过火区面积占比为27.63%,重度过火区面积占比为30.34%,即高烈度火烧区(中度过火区+重度过火区)面积达57.98%。从分布情况上看,流域未过火和轻度过火区域主要分布于沟道下游、流域沟道地带及流域边缘的高海拔区域,对泥石流的暴发影响轻微;高烈度过火区主要分布于流域上游汇水区,地表草本、灌木皆被焚毁,大片乔木被焚毁倒伏,仅少量残留。由于土壤结构遭到破坏,坡面表层出现明显裸露灰烬泥沙松散层,因而高烈度火烧区通常是火后泥石流坡面侵蚀物源的主要供给区域[1011]。此外,高烈度火烧区内残留大量烧毁树干,这些枯枝的增加导致泥石流堵溃效应明显,泥石流流量激增,侵蚀作用强烈。因此,森林火灾导致植被缺失、枯枝数量增加,为本次特大型泥石流奠定了物质基础。

    图  4  项脚沟流域火烧烈度分布情况
    Figure  4.  Fire intensity distribution map of debris flow at Xiangjiao gully

    项脚沟地形复杂,具有上陡下缓的特点。流域平均坡度为25.67°,陡峭坡面(15°~30°)占总面积57.69%,极陡坡面(>30°)占总面积的30.05%,主要分布各支沟上游形成−流通区,与高烈度火烧区基本重合。在耦合作用下,形成区坡面松散物质及烧毁倒伏树干极易在暴雨径流的冲刷下进入沟道,从而导致堵溃,扩大泥石流规模;同时,流通区沟床纵比降大、沟道狭窄,导致泥石流流速加快,侵蚀作用强烈,造成两岸失稳坍塌,进一步扩大泥石流规模。因此,流域陡峭地形为此次泥石流汇流、冲刷和侵蚀奠定了有利的动能基础。

    根据遥感解译和野外调查,本次泥石流的物源主要来自高烈度火烧区的灰烬泥沙松散层物质、早期崩滑堆积物源、历史泥石流沟道堆积物源及沟道侵蚀引发的岸坡崩滑物源等,物源类型:坡面侵蚀物源、崩滑型物源及沟道堆积型物源。如表1所示,项脚沟松散固体物质储量约为1351.39×104 m3,其中可直接参与泥石流活动的动储量约为349.58×104 m3,占总物源储量25.9%,坡面侵蚀型物源动储量约为146.68×104 m3,占总物源动储量42%,崩滑型物源动储量约为113.88×104 m3,占总物源动储量32.6%。因此,坡面侵蚀型物源、崩滑型物源是本次项脚沟泥石流的主要物源补给来源。

    表  1  项脚沟泥石流物源统计
    Table  1.  Statistical table of physical sources of debris flow in Xiangjiao gully
    物源类型总量/(104 m3动储量/(104 m3
    坡面侵蚀型物源520.92146.68
    崩滑型物源440.22113.88
    沟道堆积型物源390.2489.02
    合计1351.39349.58
    下载: 导出CSV 
    | 显示表格

    火后泥石流主要有两种启动方式:坡面径流冲刷和降雨入渗引起的浅层滑坡[24]。通过野外实地调查,本次泥石流具有坡面径流冲刷引发的火后泥石流特征,结合降雨过程,本次泥石流形成过程可以分为:雨水入渗阶段、坡面冲刷阶段、沟道侵蚀阶段和滑坡堵溃阶段。

    雨水入渗阶段:此阶段降雨强度小,持续时间长,雨水下渗,坡面土体趋于饱和,孔隙水压增大,土颗粒摩擦剪力降低,土体强度降低。

    坡面冲刷阶段:由于形成区地形陡峭,大量灰烬及松散物质分布,且前期降雨入渗导致土体结构性减弱,因此,此阶段暴雨径流冲刷坡面,裹挟坡面松散物质,并在低洼区域汇聚,侵蚀沟道,形成小冲沟(图1a)。

    沟道侵蚀阶段:此阶段暴雨径流继续冲蚀下切,裹挟冲沟两岸物质,逐渐形成泥石流。冲沟物质在主沟上游汇聚后,流量与侵蚀能力激增,沟道下切严重,造成岸坡坍塌,大量崩滑物源与烧毁树干进入沟道,引起沟道堵塞,在沟内形成多处不稳定堰塞体(图1b)。

    滑坡堵溃阶段:在强降雨作用下,沟内多处堵塞体溃决,泥石流流量激增,岸坡侵蚀效应加剧,更大规模的岸坡坍塌导致大量滑坡物源进入泥石流中,扩大泥石流规模(图1c)。

    本次泥石流灾害对下游村寨破坏严重,泥石流沟床侵蚀强烈,导致沟道两岸形成大量坍塌滑坡,冲毁公路桥梁,导致交通中断(图1d),主沟中下游沟道宽阔,坡度平缓,大量巨石、漂木散落分布(图1e)。造成沟道下切、河道拓宽(图1f)。泥石流堵塞中下游沟道,导致大量泥石流冲刷沟道两岸,冲毁下游大量房屋、农田(图1g)。

    在实地调查过程中发现,泥石流沉积区碎石块石含量较高(图1e),最大块石长3.5 m,宽2.7 m,高1.9 m,且大量烧焦树干、树枝散落分布,受火灾影响明显。从泥石流沉积区 (S1—S6)采集了6个泥石流样品(图2),土样经过烘干、称重后,在室内实验室进行筛分,这些样品中的粗颗粒(>2 mm)含量比较高,占65.3%~75.3%;细颗粒(<0.05 mm)占1.3%~4.2%(表2)。根据泥石流沉积样品的筛分试验结果,采用余斌[12]公式计算本次泥石流容重(γd),公式如下:

    表  2  泥石流颗粒分布及容重计算表
    Table  2.  Summary of particle distribution and bulk density of debris flow at Xiangjiao gully
    编号P2/%P0.05/%γd/(g·cm−3
    S175.31.31.831
    S268.42.31.864
    S370.51.81.848
    S475.02.01.880
    S565.34.21.930
    S673.82.61.913
    下载: 导出CSV 
    | 显示表格
    γd=γ0+γvP2(P0.05)0.35 (3)

    式中:γd——黏性泥石流的最小容重,2.0 g/cm3

    γ0——泥石流的最小容重,1.5 g/cm3

    P2——>2 mm的粗颗粒的质量占比/%;

    P0.05 ——<0.05 mm的细颗粒质量占比/%。

    结果表明,泥石流容重范围为1.831~1.930 g/cm3,属黏性泥石流。

    利用形态调查法实地调查中在下游沉积区测量了5个泥痕断面(图2),这些断面分布代表了主沟及下游4条主要支沟出口处的泥石流运动特征。采用黏性泥石流公式计算流速(Vc),形态调查法计算本次泥石流流量(Qc[1216]

    Vc=1nRc2/3Ic1/2 (4)
    Qc=VcSc (5)

    式中:Vc——泥石流断面平均流速/(m·s−1);

    1/n——粗糙度系数;

    Rc——计算断面水力半径/m;

    Ic——水力坡降;

    Qc——断面泥石流峰值流量/(m3·s−1);

    Sc——泥石流实测断面面积/m2

    利用雨洪法主要计算主沟下游出口处流量(断面D1),通常假定某一重现周期的泥石流洪峰流量(Qc)与暴雨洪水的重现周期一致,从而计算出相应的泥石流洪峰流量[17],相关公式如下:

    Qw=0.278ψiF=0.278ψstnF (6)
    Qcc=(1+φ)QwDw (7)

    式中,Qw ——清水流量/(m3·s−1);

    ψ——洪峰径流系数;

    i——最大平均暴雨强度/(mm·h−1);

    F——集水面积,取54.7 km2

    s——暴雨雨力/(mm·h−1);

    n——暴雨公式指数;

    t——流域汇水历时/h;

    Dw——堵塞系数,考虑到火灾扰动作用及岸坡崩塌 滑坡对沟道的堵塞情况,堵塞系数取值在 2.1~2.5。

    φ——泥石流泥沙修正系数,公式如下:

    φ=(γc'γw)/(γHγc') (8)

    式中:γc'——不同重现周期下的泥石流重度/(t·m−3);

    γw——清水容重,取1.0 t/m3

    γH——泥石流固体物质容重/(t·m−3)。

    计算结果如表3表4所示,根据形态调查法结果,各断面流速(Vc)较高,介于7.22~8.44 m/s,说明沟道上游地形为泥石流的暴发提供充足动能;峰值流量(Qc)为110.28~759.08 m3/s,说明在充足水动力作用下,泥石流侵蚀作用强烈,侵蚀坡面物质、造成沟岸坍塌,进而裹挟大量物质形成大型泥石流。结合形态调查法和雨洪法计算结果,主沟下游出口处流量(断面D1)的峰值流量对应重现周期为百年一遇。

    表  3  泥石流运动特征参数
    Table  3.  Summary of the movement characteristics parameters of debris flow
    名称Vc/(m·s−11/nRc/mIcSc/m2Qc/(m3·s−1
    D17.22132.100.115105.10759.08
    D28.17131.510.22913.50110.28
    D38.44131.530.23913.93117.64
    D47.34131.720.15522.02161.64
    D57.32131.700.15628.16206.09
    下载: 导出CSV 
    | 显示表格
    表  4  不同重现周期下断面1流量
    Table  4.  Flow rate at cross-section #1 under different recurrence frequencies
    参数频率/%
    0.5125
    t/h4.214.334.484.72
    n0.790.790.790.78
    s/(mm·h−152.3648.1843.7837.62
    ψ0.900.890.870.85
    Dw2.502.302.202.10
    γc'/(t·m−31.951.861.781.67
    φ1.351.100.900.68
    Qw/(m3·s−1176.49157.42137.72112.06
    Qc/(m3·s−11037.90760.07574.25395.28
    下载: 导出CSV 
    | 显示表格

    本次泥石流为火后由暴雨径流侵蚀沟道所引发的泥石流,此类泥石流常常在火灾过后2~3 a内,植被及土壤疏水性恢复到原来水平前暴发[1822]。在野外调查中发现,目前流域内地表植被正逐步恢复,考虑到地表植物对土壤具有固结能力,且火灾后暴发的多次泥石流灾害对灰烬层松散物质的消耗,可以推测未来流域土体结构将逐渐变强,坡面侵蚀效应逐渐减弱。此外,由于各次泥石流对沟道的强烈侵蚀作用,造成主沟上游及支沟沟道内出现大量崩滑型物源,同时为后续沟道两侧松散物源失稳滑坡提供了有利的临空条件。因此,结合项脚沟泥石流的发展趋势及发育特征,可以推测流域未来的主要物源补给方式将会从坡面侵蚀物源转化为崩滑型物源。考虑到主沟上游及支沟沟道内仍存在大量坡面侵蚀物源和沟岸崩滑物源残留,流域内物源动储量达349.58×104 m3,在一定的降水条件下,项脚沟仍有再次暴发大型泥石流的可能,对沟道下游居民的生命财产安全造成威胁。

    因此,为保证项脚乡下游居民生命财产安全,缓解项脚沟泥石流危害,结合项脚沟泥石流的发展趋势,建议采用综合减灾措施,在上游形成区通过撒播草种、修建生物谷坊工程等措施,控制坡面侵蚀、抑制泥石流启动;在主沟流通区通过修建透过型拦砂坝、挡土墙等工程措施,稳定河道和边坡,控制流水侵蚀,减少泥石流流量;在下游防护堤的基础上修建排导槽,提高下游沟道泥石流泄洪能力。

    (1)基于对此次泥石流形成条件的调查研究,此次泥石流的临界降雨强度为77.84 mm/h,森林火灾过火面积达74.61%,高烈度火烧区面积达57.98%,且与陡峭坡面相重合,因此本次泥石流主要由森林火灾、陡峭地形及强降雨共同作用下暴发。

    (2)结合降雨特征和野外调查结果,可判断此次泥石流为暴雨径流冲刷引发的火后泥石流,其形成过程可分为雨水入渗阶段、坡面冲刷阶段、沟道侵蚀阶段和滑坡堵溃阶段。

    (3)由于森林火灾的扰动,项脚沟泥石流发育,流域内存有大量松散物质,松散固体物质储量约为1351.39×104 m3,动储量约为349.58×104 m3,坡面侵蚀型物源动储量约为146.68×104 m3,占总物源动储量42%;说明森林火灾对泥石流的物源供给条件影响显著。

    (4)本次泥石流容重范围为1.831~1.930 g/cm3,为黏性泥石流,各断面流速在7.22~8.44 m/s,峰值流量在110.28~759.08 m3/s。结合雨洪法和形态调查法结果分析,本次泥石流重现周期为百年一遇。

    (5)基于对项脚沟泥石流的发展趋势及发育特征的研究,认为流域未来的主要物源补给方式将会从坡面侵蚀物源转化为崩滑型物源,且仍有可能暴发大型泥石流,结合流域现状,提出了上游固坡、中游调控、下游排导的防治建议。

  • 图  1   无人机数据采集流程

    Figure  1.   UAV data acquisition process

    图  2   无人机数据处理流程

    Figure  2.   UAV data processing flow

    图  3   研究区地理位置和高程分布图

    Figure  3.   Geographical location and elevation distribution map of the study area

    图  4   无人机飞行航线及检核点分布图

    Figure  4.   UAV flight route and distribution of check points

    图  5   平面及高程方向较差图

    Figure  5.   Plane and elevation direction difference diagram

    图  6   平面及高程坐标偏差折线图

    Figure  6.   Line chart of plane and elevation coordinate deviation

    图  7   较差核密度分布图

    Figure  7.   Distribution of poor nuclear density

    图  8   无人机航测成果数据

    Figure  8.   UAV aerial survey result data

    图  9   舟曲县立节北山滑坡调查平面图

    Figure  9.   Geological hazard survey in Lijie north hill landslide in Zhouqu County

  • [1] 陈文君, 陈锁忠, 张磊, 等. 突发性地质灾害应急处置系统的设计与实现[J]. 计算机应用与软件,2014,31(5):6 − 9. [CHEN Wenjun, CHEN Suozhong, ZHANG Lei, et al. Design and implementation of an emergency disposition system on sudden geological disasters[J]. Computer Applications and Software,2014,31(5):6 − 9. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-386x.2014.05.002
    [2] 刘传正. 重大突发地质灾害应急处置的基本问题[J]. 自然灾害学报,2006,15(3):24 − 30. [LIU Chuanzheng. Basic problem on emergency disposition of abrupt heavy geological disaster[J]. Journal of Natural Disasters,2006,15(3):24 − 30. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2006.03.005
    [3] 刘传正, 陈红旗, 韩冰, 等. 重大地质灾害应急响应技术支撑体系研究[J]. 地质通报,2010,29(1):147 − 156. [LIU Chuanzheng, CHEN Hongqi, HAN Bing, et al. Technical support system of emergency response for serious geo-hazards[J]. Geological Bulletin of China,2010,29(1):147 − 156. (in Chinese with English abstract)
    [4] 陈红旗, 徐永强, 庄茂国, 等. 地质灾害应急支撑体系建设基本问题分析[J]. 中国地质灾害与防治学报,2011,22(4):108 − 111. [CHEN Hongqi, XU Yongqiang, ZHUANG Maoguo, et al. Study on the construction of geological disaster emergency support system[J]. The Chinese Journal of Geological Hazard and Control,2011,22(4):108 − 111. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2011.04.023
    [5] 李俊峰, 张小趁, 刘红岩, 等. 突发地质灾害应急数值模拟浅析[J]. 中国地质灾害与防治学报,2016,27(2):154 − 161. [LI Junfeng, ZHANG Xiao chen, LIU Hongyan, et al. Numerical simulation technology analysis of geological disaster emergency[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):154 − 161. (in Chinese with English abstract)
    [6]

    CHOU T Y, YE M L, CHEN Y C, et al. Disaster monitoring and management by the unmanned aerial vehicle technology[J]. International archives of the photogrammetry, remote sensing and spatial information sciences,2010,38(7B):137 − 142.

    [7]

    DOMINICI, ALICANDRO, MASSIMI V. UAV photogrammetry in the post-earthquake scenario: Case studies in L'Aquila[J]. Geomatics Natural Hazards and Risk,2017,8(1):87 − 103.

    [8]

    SALVINI R, MASTROROCCO G, SEDDAIU M, et al. The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy): Photogrammetry and discrete fracture network modelling[J]. Geomatics Natural Hazards & Risk,2017,8(1):34 − 52.

    [9] 曾涛, 杨武年, 简季. 无人机低空遥感影像处理在汶川地震地质灾害信息快速勘测中的应用[J]. 测绘科学,2009,34(增刊 2):64 − 65. [ZENG Tao, YANG Wunian, JIAN Ji. Applications of remote sensing images processing of unmanned air vehicle on the low attitude in quick acquirement of geological disasters information in Wenchuan earthquake[J]. Science of Surveying and Mapping,2009,34(Sup 2):64 − 65. (in Chinese with English abstract)
    [10] 高姣姣, 颜宇森, 盛新蒲, 等. 无人机遥感在西气东输管道地质灾害调查中的应用[J]. 水文地质工程地质,2010,37(6):126 − 129. [GAO Jiaojiao, YAN Yusen, SHENG Xinpu, et al. Application of UAV remote sensing in Geologic hazards survey along the project of west-east gas transmission[J]. Hydrogeology & Engineering Geology,2010,37(6):126 − 129. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2010.06.025
    [11] 朱婵莲, 姜啸, 焦龙进. 无人机在地质灾害应急抢险调查中的应用[J]. 中国金属通报,2020(6):184 − 185. [ZHU Chanlian, JIANG Xiao, JIAO Longjin. Application of UAV in geological disaster emergency investigation[J]. China Metal Bulletin,2020(6):184 − 185. (in Chinese with English abstract)
    [12] 郭晨, 许强, 彭双麒, 等. 无人机摄影测量技术在金沙江白格滑坡应急抢险中的应用[J]. 灾害学,2020,35(1):203 − 210. [GUO Chen, XU Qiang, PENG Shuangqi, et al. Application research of UAV photogrammetry technology in the emergency rescue of Baige landslide[J]. Journal of Catastrophology,2020,35(1):203 − 210. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2020.01.038
    [13] 李晓俊, 朱钱洪, 胡勇, 等. 多旋翼无人机山区城市地质灾害应急响应能力评估[J]. 地理空间信息,2019,17(3):12 − 15. [LI Xiaojun, ZHU Qianhong, HU Yong, et al. Geological disaster emergency response capability assessment of multirotor UAV in mountain city[J]. Geospatial information,2019,17(3):12 − 15. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4623.2019.03.004
    [14] 叶伟林, 宿星, 魏万鸿, 等. 无人机航测系统在滑坡应急中的应用[J]. 测绘通报,2017(9):70 − 74. [YE Weilin, SU Xing, WEI Wanhong, et al. Application of UAV aerial photograph system in emergency rescue and relief for landslide[J]. Bulletin of Surveying and Mapping,2017(9):70 − 74. (in Chinese with English abstract)
    [15] 董秀军, 王栋, 冯涛. 无人机数字摄影测量技术在滑坡灾害调查中的应用研究[J]. 地质灾害与环境保护,2019,30(3):78 − 85. [DONG Xiujun, WANG Dong, FENG Tao. Research on the application of unmanned aerial vehicle digital photogrammetry in landslide disaster investigation[J]. Journal of Geological Hazards and Environment Preservation,2019,30(3):78 − 85. (in Chinese with English abstract)
    [16] 吴振宇, 马彦山. 无人机遥感技术在地质灾害调查中的应用[J]. 宁夏工程技术,2012,11(2):133 − 136. [WU Zhenyu, MA Yanshan. Application of remote sensing technology of UAV in the investigation of the geological disaster[J]. Ningxia Engineering Technology,2012,11(2):133 − 136. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-7244.2012.02.010
    [17] 崔红霞, 林宗坚, 孙杰. 无人机遥感监测系统研究[J]. 测绘通报,2005(5):11 − 14. [CUI Hongxia, LIN Zongjian, SUN Jie. Research on UAV remote sensing system[J]. Bulletin of Surveying and Mapping,2005(5):11 − 14. (in Chinese with English abstract) DOI: 10.3969/j.issn.0494-0911.2005.05.003
    [18] 晏磊, 吕书强, 赵红颖, 等. 无人机航空遥感系统关键技术研究[J]. 武汉大学学报(工学版),2004,37(6):67 − 70. [YAN Lei, LYU Shuqiang, ZHAO Hongying, et al. Research on key techniques of aerial remote sensing system for unmanned aerial vehicles[J]. Engineering Journal of Wuhan University,2004,37(6):67 − 70. (in Chinese with English abstract)
    [19] 雷添杰, 李长春, 何孝莹. 无人机航空遥感系统在灾害应急救援中的应用[J]. 自然灾害学报,2011,20(1):178 − 183. [LEI Tianjie, LI Changchun, HE Xiaoying. Application of aerial remote sensing of pilotless aircraft to disaster emergency rescue[J]. Journal of Natural Disasters,2011,20(1):178 − 183. (in Chinese with English abstract)
    [20] 马泽忠, 王福海, 刘智华, 等. 低空无人飞行器遥感技术在重庆城口滑坡堰塞湖灾害监测中的应用研究[J]. 水土保持学报,2011,25(1):253 − 256. [MA Zezhong, WANG Fuhai, LIU Zhihua, et al. Research of unmanned aerial vehicle remote sensing technique applied to monitor landslip and barrier lake hazard in Chengkou County of Chongqing[J]. Journal of Soil and Water Conservation,2011,25(1):253 − 256. (in Chinese with English abstract)
    [21] 尹鹏飞, 尹球, 陈兴峰, 等. 无人机航空遥感技术在震后灾情调查中的应用[J]. 激光与光电子学进展,2010,47(11):130 − 134. [YIN Pengfei, YIN Qiu, CHEN Xingfeng, et al. Unmanned aerial vehicle aerial remote sensing techniques and its application on post-earthquake disaster investigation[J]. Laser & Optoelectronics Progress,2010,47(11):130 − 134. (in Chinese with English abstract)
    [22] 韩文权, 任幼蓉, 赵少华. 无人机遥感在应对地质灾害中的主要应用[J]. 地理空间信息,2011,9(5):6 − 8. [HAN Wenquan, REN Yourong, ZHAO Shaohua. Primary usages of UAV remote sensing in geological disaster monitoring and rescuing[J]. Geoscience Information,2011,9(5):6 − 8. (in Chinese with English abstract)
    [23] 刘刚, 徐宏健, 马海涛, 等. 无人机航测系统在应急服务保障中的应用与前景[J]. 测绘与空间地理信息,2011,34(4):177 − 179. [LIU Gang, XU Hongjian, MA Haitao, et al. Unmanned aerial system applications and prospects in the protection of emergency services[J]. Geomatics & Spatial Information Technology,2011,34(4):177 − 179. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-5867.2011.04.057
    [24] 肖波, 朱兰艳, 黎剑, 等. 无人机低空摄影测量系统在地质灾害应急中的应用研究:以云南洱源特大山洪泥石流为例[J]. 价值工程,2013,32(4):281 − 282. [XIAO Bo, ZHU Lanyan, LI Jian, et al. Application of unmanned aerial vehicle photogram metric system in geological disaster: A case study in Er yuan devastating mudslides of Yunnan Province[J]. Value Engineering,2013,32(4):281 − 282. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4311.2013.04.155
    [25] 嵇沛, 胡一凡, 王晨. 无人机低空航拍遥感在应急测绘保障中的应用[J]. 科技资讯,2016,14(24):2 − 3. [JI Pei, HU Yifan, WANG Chen. Application of UAV low altitude aerial remote sensing in emergency surveying and mapping support[J]. Science & Technology Information,2016,14(24):2 − 3. (in Chinese with English abstract)
    [26] 田彦. 无人机遥感技术在地质环境灾害监测中的应用探讨[J]. 环境与发展,2019,31(4):102 − 104. [TIAN Yan. Application of UAV remote sensing technology in geological environmental disaster monitoring[J]. Environment and Development,2019,31(4):102 − 104. (in Chinese with English abstract)
    [27] 周嵩. 无人机技术在地质灾害防治中的应用[J]. 冶金管理,2020(21):87 − 88. [ZHOU Song. Application of UAV technology in geological disaster prevention and control[J]. Metallurgical Management,2020(21):87 − 88. (in Chinese with English abstract)
    [28] 郭晨, 许强, 董秀军, 等. 无人机在重大地质灾害应急调查中的应用[J]. 测绘通报,2020(10):6 − 11. [GUO Chen, XU Qiang, DONG Xiujun, et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping,2020(10):6 − 11. (in Chinese with English abstract)
    [29] 张允涛. 免相控无人机航摄系统在棚户区改造1∶500地形图中的应用[J]. 测绘通报,2019(增刊 1):295 − 297. [ZHANG Yuntao. Application of phase-free UAV aerial photography system in 1∶500 topographic map of shantytown reconstruction[J]. Bulletin of Surveying and Mapping,2019(Sup 1):295 − 297. (in Chinese with English abstract)
    [30] 石鼎. 免像控无人机在地形图测绘中的应用[J]. 北京测绘,2020,34(2):163 − 166. [SHI Ding. Application of UAV image free control in topographic map surveying[J]. Beijing Surveying and Mapping,2020,34(2):163 − 166. (in Chinese with English abstract)
    [31] 朱晓康, 魏景帅. 1∶500免像控无人机航测技术应用研究[J]. 地理空间信息,2019,17(2):22 − 26. [ZHU Xiaokang, WEI Jingshuai. Key technologies and application research on 1∶500 unmanned aerial vehicle photography without image control point[J]. Geospatial Information,2019,17(2):22 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4623.2019.02.006
    [32] 范秀庆. 无人机免像控技术在地形图测量中的应用研究[J]. 测绘通报,2017(增刊 1):66 − 68. [FAN Xiuqing. Application of UAV image free control technique in topographic map surveying[J]. Bulletin Surveying and Mapping,2017(Sup 1):66 − 68. (in Chinese with English abstract)
    [33] 相涛, 栾元重, 许章平, 等. 基于Pix4Dmapper的无人机低空摄影测量数据处理[J]. 测绘与空间地理信息,2019,42(3):75 − 78. [XIANG Tao, LUAN Yuanzhong, XU Zhangping, et al. Unmanned aerial vehicle with low-altitude aerial photogrammetry data processing flow and precision analysis based on Pix4Dmapper[J]. Geomatics & Spatial Information Technology,2019,42(3):75 − 78. (in Chinese with English abstract)
    [34] 戴嵩, 魏冠军, 梁斌. 控制点布设方案对无人机精度测量的影响及其应用[J]. 中国地质灾害与防治学报,2021,32(5):113 − 120. [DAI Song, WEI Guanjun, LIANG Bin. Influence of control point number on UAV low-altitude photogrammetry and its application: A case study in subsidence monitoring of a tailing dam area in northwestern China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):113 − 120. (in Chinese with English abstract)
    [35] 贾虎军, 王立娟, 范冬丽. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报,2021,32(2):60 − 65. [JIA Hujun, WANG Lijuan, FAN Dongli. The application of UAV LiDAR and tilt photography in the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):60 − 65. (in Chinese with English abstract)
    [36] 张欢, 巨能攀, 陆渊, 等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质,2021,48(6):171 − 179. [ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology,2021,48(6):171 − 179. (in Chinese with English abstract)
    [37] 文宝萍, 王凡. 1965年烂泥沟滑坡前兆、高速远程运动及后期演化特征[J]. 水文地质工程地质,2021,48(6):72 − 80. [WEN Baoping, WANG Fan. Precursors and motion characteristics of the 1965 Lannigou rockslides and the subsequent evolution[J]. Hydrogeology & Engineering Geology,2021,48(6):72 − 80. (in Chinese with English abstract)
  • 期刊类型引用(2)

    1. 李玲,陈宁生,杨溢,钟政,黄娜. 四川九绵高速平武段物源量对泥石流流体性质与致灾强度影响的差异性分析. 中国地质灾害与防治学报. 2024(05): 90-102 . 本站查看
    2. 程伟. 不同坡度下的溃决型泥石流破坏模式研究. 工程技术研究. 2024(19): 17-20 . 百度学术

    其他类型引用(2)

图(9)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  200
  • PDF下载量:  269
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-07-16
  • 录用日期:  2022-01-03
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-03-06

目录

/

返回文章
返回