ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于不同统计模型的肯尼亚滑坡危险性评价

周苏华, 付宇航, 邢静康, 彭爱泉, 蒋明奕

周苏华,付宇航,邢静康,等. 基于不同统计模型的肯尼亚滑坡危险性评价[J]. 中国地质灾害与防治学报,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006
引用本文: 周苏华,付宇航,邢静康,等. 基于不同统计模型的肯尼亚滑坡危险性评价[J]. 中国地质灾害与防治学报,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006
ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006
Citation: ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006

基于不同统计模型的肯尼亚滑坡危险性评价

基金项目: 国家自然科学基金青年基金项目(51708199) ;贵州省科技支撑计划项目(2020-4Y047) ;贵州省交通运输厅科技项目(2017-143-054);福建省地质灾害重点实验室自主课题(KLGHZ202104);创新平台与人才计划-湖湘高层次人才聚集工程-创新团队(2019RS1030);长沙市自然科学基金项目(kq2208031);湖南省自然科学基金(2023JJ30135)
详细信息
    作者简介:

    周苏华(1987-),男,江苏盐城人,副教授,博士,从事岩土工程风险评价研究。E-mail:zhousuhua@hnu.edu.cn

  • 中图分类号: P642.22;

Assessment of landslide hazard risk in Kenya based on different statistical models

  • 摘要: 肯尼亚是我国“一带一路”倡议在东非重要支点。受高原裂谷地形和显著的雨旱季节影响,肯尼亚地质灾害频发。本文以肯尼亚的历史滑坡数据为样本,选取高度、坡度、坡向、地貌、平面曲率、土壤类型、年平均降雨量、水流强度指数、地形湿度指数及土地利用类型作为评价指标,分别基于信息量模型(IV)、逻辑回归模型(LR)和极限学习机模型(ELM)对肯尼亚滑坡灾害进行危险性区划,其中ELM分别考虑了sigmoid 函数、正弦函数和对称阈值型传输函数作为激活函数进行讨论。主要结论如下:(1)肯尼亚滑坡灾害高危险性及以上等级区域集中分布在西南部的高原和高原—裂谷过渡地带;(2)采用ROC曲线对模型精度进行评价,各模型的AUC值分别为0.977(IV)、0.965(LR)、0.859(ELM-SIG)、0.900(ELM-SIN)、0.941(ELM-HARDLIM),评价结果有效;(3)综合PR曲线结果判定,LR模型的召回率和精确率都处于较高的水平,优于其他模型;(4)肯尼亚内罗毕省(Nairobi)、中部省(Central)、尼扬扎省(Nyanza)和西部省(Western)四个省份高危险性区域占比较大。
    Abstract: Kenya is an important fulcrum of China's Belt and Road initiative in east Africa. However, due to its plateau rift terrain and aboriginal rain and drought season, geological disasters occur frequently in Kenya. The study used historical landslide data in Kenya as samples and selected several evaluation indexes, including elevation, slope, aspect, landform, plane curvature, soil type, annual average rainfall, stream power index, terrain witness index, and land use type. The landslide risk in Kenya was evaluated based on the information value model (IV), logistic regression model (LR), and extreme learning machine model (ELM), with the ELM model considering SIG, SIN, and HARDLIM functions as activation functions for discussion. The main findings are as follows: (1) The high-risk and above-grade areas of landslide disasters in Kenya are mainly concentrated in the plateau and plateau-rift transition zone in the southwest. (2) The ROC curve was used to evaluate the accuracy of the models, and the AUC values of the 0.977(IV), 0.965(LR), 0.859(ELM-SIG), 0.900(ELM-SIN), and 0.941(ELM-HARDLIM) models illustrate their validity. (3) Considering the PR curve results comprehensively, the recall rate and precision rate of the LR model are at a high level, marking it better than other models. (4) Nairobi, Central, Nyanza and Western provinces in Kenya account for a significant proportion of the high-risk and above-grade areas of landslide disasters.
  • 图  1   肯尼亚概况

    Figure  1.   Distribution map of geological hazards in Kenya

    图  2   评价因素

    Figure  2.   Classification chart of each evaluation factor in Kenya

    图  3   神经网络结构示意图

    Figure  3.   Schematic diagram of neural network structure

    图  4   评价流程

    Figure  4.   Evaluation process chart

    图  5   极限学习机模型评价结果

    Figure  5.   Risk mapping evaluation results of the ELM model

    图  6   不同模型ROC曲线和PR曲线

    Figure  6.   Comparison of the ROC curves and PR curves for different models

    图  7   肯尼亚省份危险性区划分布

    Figure  7.   Distribution of province hazard zone in Kenya

    表  1   信息量模型系数

    Table  1   Summary table for coefficients of the IV model

    因素因子分级信息量因素因子分级信息量
    高程
    /m
    0~50−1.341坡度/(°)0~5−2.212
    50~2000.0005~150.315
    200~500−1.94115~251.552
    500~1000−2.81325~353.671
    1000~20000.45235~454.889
    >20002.316>455.356
    坡向0.000地貌洼地1.547
    0.282山麓0.340
    东北0.322高原1.389
    东北0.183平原−2.277
    东南−0.032谷底0.000
    −0.215悬崖1.062
    西南−0.707丘陵0.913
    西−0.089山谷2.353
    西北0.052山脊1.476
    土壤
    类型
    黏土−0.124水体0.000
    壤土0.115年平均
    降雨量
    /mm
    <400−1.762
    砂土−1.948400~800−0.729
    高含量黏土0.450800~12000.850
    地形
    湿度
    指数
    7~121.6661200~16002.240
    12~14−1.4231600~20000.503
    14−16−2.0412000~24000.607
    16~20−1.785>24000.000
    20~32−2.319水流
    能力
    指数
    2~5−2.889
    土地
    利用
    类型
    农业用地0.8005~7−1.562
    荒地−1.3657~90.972
    灌木丛−1.5709~121.107
    林地2.04312~230.250
    草地0.000平面
    曲率
    −0.089
    沼泽0.000−1.026
    城镇2.1480.187
    下载: 导出CSV

    表  2   逻辑回归模型系数

    Table  2   Summary table for coefficients of the LR model

    因素系数因素系数
    高程1.683土壤类型−0.048
    坡度0.754地形湿度指数−1.125
    坡向−0.097水流能力指数1.481
    地貌0.229年平均降雨量1.466
    平面曲率0.047土地利用类型0.026
    下载: 导出CSV

    表  3   不同模型灾害分布统计结果

    Table  3   Statistical results of disasters distribution for different models

    危险性分区评估模型极低危险性低危险性中危险性高危险性极高危险性
    LR模型面积占比/%72.70011.9005.5004.4005.400
    数量占比/%2.5700.9301.17010.51084.810
    灾害比重0.0350.0780.2132.38915.705
    IV模型面积占比/%35.30029.80016.900011.0006.900
    数量占比/%0.9300.9302.800017.52077.800
    灾害比重0.0260.0310.16571.59311.275
    ELM-SIG面积占比/%1.30076.30019.4001.1001.900
    数量占比/%1.8708.41088.0801.1700.470
    灾害比重1.4380.1104.5401.0640.247
    ELM-SIN面积占比/%1.10038.30043.60012.8004.200
    数量占比/%0.7002.8009.11033.88053.500
    灾害比重0.6360.0730.2082.64712.738
    ELM-HARDLIM面积占比/%5.20034.30034.50018.0008.000
    数量占比/%0.9300.9302.80017.52077.800
    灾害比重0.1780.0270.0810.9739.725
    下载: 导出CSV
  • [1]

    BATALA L K,YU Wangxing,KHAN A,et al. Natural disasters' influence on industrial growth,foreign direct investment,and export performance in the South Asian region of Belt and road initiative[J]. Natural Hazards,2021,108(2):1853 − 1876. DOI: 10.1007/s11069-021-04759-w

    [2]

    BAI Yuanli,WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161(1):1 − 20. DOI: 10.1007/s10704-009-9422-8

    [3]

    ROGERS J D,CHUNG J. Applying Terzaghi’s method of slope characterization to the recognition of Holocene land slippage[J]. Geomorphology,2016,265:24 − 44. DOI: 10.1016/j.geomorph.2016.04.020

    [4]

    AHMED A,UGAI K,YANG Qing qing. Assessment of 3D slope stability analysis methods based on 3D simplified janbu and hovland methods[J]. International Journal of Geomechanics,2012,12(2):81 − 89. DOI: 10.1061/(ASCE)GM.1943-5622.0000117

    [5]

    WANG Chun ming,LIU Chun yuan,WU Mai,et al. Research on soil-like slope instability based on FEM strength reduction[J]. Applied Mechanics and Materials,2013,438/439:1244 − 1248. DOI: 10.4028/www.scientific.net/AMM.438-439.1244

    [6] 吴信才,白玉琪,郭玲玲. 地理信息系统(GIS)发展现状及展望[J]. 计算机工程与应用,2000,36(4):8 − 9. [WU Xincai,BAI Yuqi,GUO Lingling. Development and prospect of geographic information system[J]. Computer Engineering and Applications,2000,36(4):8 − 9. (in Chinese with English abstract)

    WU Xincai, BAI Yuqi, GUO Lingling. Development and prospect of geographic information system[J]. Computer Engineering and Applications, 2000, 36(4): 8-9. (in Chinese with English abstract)

    [7]

    SON J,SUH J,PARK H D. GIS-based landslide susceptibility assessment in Seoul,South Korea,applying the radius of influence to frequency ratio analysis[J]. Environmental Earth Sciences,2016,75(4):310. DOI: 10.1007/s12665-015-5149-1

    [8] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)

    TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)

    [9] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6)98-106(in Chinese with English abstract)

    [10]

    LIU Rui,LI Luyao,PIRASTEH S,et al. The performance quality of LR,SVM,and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery[J]. Arabian Journal of Geosciences,2021,14(4):1 − 15.

    [11]

    WANG Xi,WANG Shuangyin,QI Jiashuo. Open-channel landslide hazard assessment based on AHP and fuzzy comprehensive evaluation[J]. Water Supply,2020,20(8):3687 − 3696. DOI: 10.2166/ws.2020.176

    [12] 商冬凡,唐梦芸,苗雷强,等. 城市道路空洞隐患风险评估方法应用研究[J]. 市政技术,2022,40(11):37 − 42. [SHANG Dongfan,TANG Mengyun,MIAO Leiqiang,et al. Risk Assessment of Operation and Maintenance Stage of Utility Tunnel based on Combination Weighting-Improved Risk Matrix Method[J]. Journal of Municipal Technology,2022,40(11):37 − 42. (in Chinese with English abstract)

    [Shang Dongfan, Tang Mengyun, Miao Leiqiang, Shi Jiahao, Zhou Siqing. Risk Assessment of Operation and Maintenance Stage of Utility Tunnel based on Combination Weighting-Improved Risk Matrix Method [J]. Journal of Municipal Technology, 2022,40(11): 37-42. (in Chinese with English abstract)

    [13] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract)

    [14]

    CHEN Wei,LI Wenping,CHAI Huichan,et al. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City,China[J]. Environmental Earth Sciences,2016,75(1):63. DOI: 10.1007/s12665-015-4795-7

    [15] 刘璐瑶,高惠瑛,李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版),2021,51(10):121 − 129. [LIU Luyao,GAO Huiying,LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia County[J]. Periodical of Ocean University of China,2021,51(10):121 − 129. (in Chinese with English abstract)

    LIU Luyao, GAO Huiying, LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia County[J]. Periodical of Ocean University of China, 2021, 51(10)121-129(in Chinese with English abstract)

    [16] 国家市场监督管理总局, 国家标准化管理委员会. 地质灾害危险性评估规范: GB/T 40112—2021[S]. 北京: 中国标准出版社, 2021

    Standardization Administration of the People's Republic of China. Specifications for risk assessment of geological hazard: GB/T 40112—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)

    [17] 杨先全,周苏华,邢静康,等. 肯尼亚滑坡灾害分布特征及敏感性区划[J]. 中国地质灾害与防治学报,2019,30(5):65 − 74. [YANG Xianquan,ZHOU Suhua,XING Jingkang,et al. Distribution patterns and susceptibility mapping of landslides in Kenya[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):65 − 74. (in Chinese with English abstract)

    YANG Xianquan, ZHOU Suhua, XING Jingkang, et al. Distribution patterns and susceptibility mapping of landslides in Kenya[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5)65-74(in Chinese with English abstract)

    [18] 朱丛瑞. 肯尼亚建国后的环境问题研究[D]. 昆明: 云南师范大学, 2021

    ZHU Congrui. Research on environmental problems after the founding of Kenya[D]. Kunming: Yunnan Normal University, 2021. (in Chinese with English abstract)

    [19] 肯尼亚信息、通信和技术部.滑坡统计资料[M/OL]. [2015-5-18]. https://www.ict.go.ke/wp-content/uploadsKenya.

    Ministry of Information, Communication and Technology of Kenya. Landslide Statistics[M/OL]. [2015-5-18]. (in Chinese)

    [20] 全球毁灭性滑坡数据库.肯尼亚地区滑坡数据[M/OL]. [2019-6-18]. https://blogs.agu.org/landslideblog/.

    Global Database of Fatal Landslides.Kenya Historical Landslide Data[M/OL]. [2019-6-18]. (in Chinese)

    [21]

    BROECKX J,VANMAERCKE M,DUCHATEAU R,et al. A data-based landslide susceptibility map of Africa[J]. Earth-Science Reviews,2018,185:102 − 121. DOI: 10.1016/j.earscirev.2018.05.002

    [22] NASA 地球公开数据. ASTERGDEMV2卫星全球高程公开共享数据[M/OL]. [2013-11-30].https://visibleearth.nasa.gov/.

    NASA Earth Open Data. ASTERGDEMV2 satellite global elevation data[M/OL]. [2013-11-30]. (in Chinese)

    [23] 开放非洲数据库. 肯尼亚地区地表径流、地貌、年降雨量等共享数据[M/OL]. [2014-1-20]. www.Openafrica.org

    Open Africa Database. Shared data on surface runoff, landforms, and annual rainfall in Kenya [M/OL]. [2014-1-20]. (in Chinese)

    [24] 世界资源研究所公开数据. 肯尼亚地区土地利用类型共享数据[M/OL]. [2014-1-20]. www.wri.org.

    World Resources Institute Open Data. Shared data on land use types in Kenya[M/OL]. [2014-1-20]. (in Chinese)

    [25]

    CHENG Yongzhen,HUANG Xiaoming. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils[J]. Applied Sciences,2018,9(1):30. DOI: 10.3390/app9010030

    [26]

    SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science,1988,240(4857):1285 − 1293. DOI: 10.1126/science.3287615

  • 期刊类型引用(5)

    1. 卢玉斌,池磊,颜仁富. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应. 工程技术研究. 2023(06): 17-19 . 百度学术
    2. 刘威军,范俊奇,李天斌,郭鹏,曾鹏,巨广宏. 深埋高地应力隧道勘察期岩爆烈度概率分级预测. 水文地质工程地质. 2022(06): 114-123 . 百度学术
    3. 韩晓玉,董志宏,付平,刘元坤. 基于HI应变计的首次断裂带岩体地应力监测. 长江科学院院报. 2022(12): 1-7 . 百度学术
    4. 边江豪,李秀珍,徐瑞池,王栋. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划. 中国地质灾害与防治学报. 2021(02): 84-93 . 本站查看
    5. 邬爱清. 长江科学院水工岩石力学与工程应用研究进展. 长江科学院院报. 2021(10): 104-111 . 百度学术

    其他类型引用(1)

图(7)  /  表(3)
计量
  • 文章访问数:  1874
  • HTML全文浏览量:  1375
  • PDF下载量:  226
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-10-09
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回