Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission
-
摘要:
在冻融环境下,层理岩石的破裂对寒区工程稳定性存在一定的威胁,容易发生工程事故。将平行、垂直层理砂岩在0,20,40,60次冻融循环处理后,进行了单轴压缩和声发射试验,研究了不同层理砂岩的力学性质和岩石变形破坏过程中声发射特征参数的变化情况。结果表明:随着冻融作用的加强,两组试样的纵波速度都逐渐变小,孔隙率逐渐变大;平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样;两组不同层理砂岩在冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,可分为三个阶段:平静阶段、阶梯式增长阶段、骤增阶段。不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,而垂直组试样声发射b值变化呈正“V”型,基于RA-AF值变化特征表明平行层理黄砂岩基本以拉伸破坏为主,而垂直层理砂岩在未处理时以拉伸破坏和剪切破坏为主,在60次冻融循环处理后,也以拉伸破坏为主。研究成果为寒区岩土工程的安全评估提供科学依据。
Abstract:In the freeze-thaw environments, the fracturing of bedding rock poses a significant threat to the stability of the projects in cold regions, leading to potential engineering accidents. In this paper, uniaxial compression and acoustic emission tests were carried out on parallel and vertical stratified sandstones after 0, 20, 40, and 60 freeze-thaw cycles. The mechanical properties of different stratified sandstones and the changes in acoustic emission characteristic parameters during rock deformation and failure were studied. The results show that with the intensification of freeze-thaw effects, both longitudinal wave velocities of the two sample groups gradually decrease, and the porosity increases gradually. The proportion of compressive strength decrease and strain increase of the parallel group of samples is greater than that of the vertical group, indicating a higher level of degradation in parallel group. The trend of acoustic emission ringing count evolution curve of the two groups of different stratified sandstones under freeze-thaw cycles is consistent and can be divided into three stages: a calm stage, a stepwise growth stage, and a sudden growth stage. Uniaxial failure modes of sandstones with different bedding directions are different. The change in acoustic emission b-values for parallel group samples presents an inverted “V” shape, while for vertical group samples, it shows a normal "V" shape. Based on the various characteristics of RA-AF values, it is suggested that the parallel stratified yellow sandstone primarily undergoes tensile failure, while the vertical stratified sandstone is mainly dominated by both tensile and shear failures in the untreated condition, and also mainly dominated by tensile failure after 60 freeze-thaw cycles. The research results provide a scientific basis for the safety assessment of geotechnical engineering in cold regions.
-
Keywords:
- stratified sandstone /
- freeze-thaw cycles /
- acoustic emission /
- failure mechanicsm
-
0. 引言
据统计,季节性寒区面积在我国国土面积中占比为75%,而在自然界中具有层状构造的岩石约占陆地面积的三分之二,在中国更是占到77%以上[1],说明在寒区工程中面临更多的层状岩石冻融破坏问题,在冻融环境下,温度下降使岩石内部孔隙水冻结,体积膨胀,而固体介质遇冷收缩,致使冻胀力的产生,导致岩石内部原生孔隙和裂隙发展,同时产生新的孔隙,并破坏岩石内的胶结物;温度上升使岩石内部冰融化成水,并在岩石内部渗流迁移,形成裂隙通道并带走破坏后的胶结物质与颗粒,使岩石孔隙率进一步增大,进而导致岩石的损伤[2]。而对于层状岩石的层理面更易于发生冻融损伤,这对寒区工程稳定性存在一定的威胁,容易发生工程事故[3]。所以研究层状岩石受冻融作用后的力学特征,对寒区工程具有一定的指导意义。
层状岩石是指具有一组占绝对优势的结构面(层理面或者片理面)的岩体,与普通岩石相比具有一些特殊的特征。一些沉积岩(如砂岩、石灰石和页岩)和变质岩(如花岗岩、玄武岩和麻粒岩)具有明显的层理结构,声发射(acoustic emission,AE)技术可以有效、连续地实时监测脆性材料中细裂纹的产生和扩展,并实现裂纹的定位,已成为岩石变形和破坏的重要监测方法。Jia等[4]在不同次数的冻融循环后,测试了不同层理砂岩的P波速度、单轴抗压强度、拉伸强度和剪切强度。通过上述参数定义了几个各向异性指数,并分析了它们随冻融循环的变化;常森等[5]研究了冲击作用下冻融循环层理砂岩的强度、变形性质,针对性地对岩石的层理动荷载关系进行了力学响应的试验研究;张东明等[6]、Wang等[7]研究了含层理岩石在单轴压缩下损伤破坏声发射参数及能量耗散规律;姜德义等[8]、刘慧等[9]、宋彦琦等[10]、杨更社等[11]开展了不同冻融循环次数岩石单轴声发射试验,获得相应的物理力学参数,并分析声发射信号与冻融灰岩内部微裂纹活动的相关性; Qiao等[12]研究了冻融压缩荷载作用下非永久性节理岩石的断裂和声发射特征,结果表明,随着冻融循环次数的增加,材料的物理力学参数有不同程度的劣化;郑坤等[13 − 14]、付斌等[15]、王桂林等[16]、张艳博等[17]、蒋利松等[18]开展了岩石的声发射监测试验,获取了岩石的声发射累计振铃计数、累计能量计数等参数演化特征;赵娜等[19]、陈东升等[20]、何建华等[21]分析了岩石变形破坏过程中岩石损伤与声发射特征参数的变化情况。
综上,虽然学者对层状岩石的研究较多,但是对在冻融循环下层状岩石声发射特征研究还是相对较少。本文对层理砂岩进行了单轴压缩和声发射试验,研究了声发射振铃计数、振铃累计数、RA-AF值以及b值的演化特征。
1. 试样准备与试验方法
1.1 试样准备
砂岩试样取自四川省某露天矿区,该地气候寒冷,冬季寒冷漫长,昼夜温差大。试样表面呈黄色,层理发育明显。取样后经过切割、打磨等加工工序,根据ISRM标准,将试件制成50×100 mm、表面平行度小于0.02的标准圆柱体试件。由于层状岩石的力学特性在同一层面内大致相同,但在平行和垂直方向上差异较大。因此,仅选用平行和垂直于层理面的两种试样,平行层理试样和垂直层理试样分别简称为P试样和V试样,两种试样用声波测速仪筛选出波速相近,剔除波速离散度较高的试件,减小试验的离散程度。选出层理均匀、结构完整的试样后,将其分为8组试样,每组平行、垂直层理试样各一个,如图1所示。
1.2 试验方案和试验设备
将试样在模拟环境试验机内进行冻融循环,在试验机里−20 °C冻结6 h,然后在20 °C下融化6 h,如图2所示,循环次数分别为0,20,40,60次,每个循环次数设置两个平行组。先将所有试样在105 °C烘箱中干燥24 h后,留下两组(0次冻融循环)试样,直接进行单轴声发射试验,然后将剩下的试样真空饱水24 h后,放入环境模拟试验机分别进行冻融循环20,40,60次,其中将需要进行60次冻融循环的两组试样每隔20次冻融循环取出并烘干,同时对试样的波速、质量进行统计,最后进行单轴声发射试验。
加载系统采用DSZ-1000型应力应变三轴剪切渗透试验仪。加载试验设备由加载系统、声发射系统和观测系统组成。该设备由伺服液压动力系统、伺服介质控制系统和数据采集及控制系统组成,针对岩石和混凝土材料,该设备可以进行单轴、三轴应力应变试验,剪切试验,岩石力学流变试验,岩石力学渗透试验,温度条件下的岩石力学试验等。试验设备最大轴向力1000 kN,最大切向力300 kN,试验力测量精度小于±0.5%;声发射系统采用PIC-Express型声发射监测系统。该系统由1台计算机、1个软件、8个波形通道、8个放大器和探头组成;该系统支持多通道声发射信号检测,稳定性好,灵敏度高,传输高速。单轴轴向压缩试验加载采用位移控制方式,加载速率为0.05 mm/min,试样失去承载能力时停止加载。AE监测系统的主放大器设置为40 dB,阈值为40 dB。试验设备见图3。
2. 力学特性
2.1 冻融循环后试样孔隙发育
岩石在经过冻融循环后,岩石内部孔隙得到较好的发育,孔隙率和波速都能定量地反映出岩石内部孔隙的发育情况以及岩石质量的优劣程度[22]。在本次试验中将试样分别在0,20,40,60次冻融循环后取出烘干后测波速和称重,测完后将试样进行饱水24 h称重继续进行冻融循环直到60次,采用称重法计算试样的孔隙率[23],如式(1):
(1) 式中:n——岩石孔隙率/%;
——岩样饱和后的质量/g; ——干燥岩样的质量/g; ——水的密度/(g·cm−3);V——岩样块体体积/cm3。
根据60次冻融循环过程中所测得孔隙率和波速,对结果取平均值得到图4。如图所示平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。平行、垂直层理试样纵波波速岩石孔隙度增加、纵波波速降低可集中反应结构体密度的降低,进一步表明随着冻融循环次数的增加,岩石内部孔隙等微观缺陷数量也在增加,岩石本身存在孔隙,在冻融循环过程中,孔隙中的水冻结成冰,产生冻胀力,扩大了孔隙体积;在融化过程中,孔隙里面的冰消融,液态水在新增微孔隙的虹吸作用下不断补充进来,在这样的冻融循环过程中,试样的孔隙率逐渐变大,纵波波速逐渐变小。由于层理角度的不同,相同条件下,在图中可以看出,垂直组试样的纵波波速比水平组试样的纵波波速大,这是由于层理弱面角度不同而导致的,垂直组试样具有的层理弱面更利于纵波传播,这说明不同层理角度的试样具有各向异性。
2.2 力学性质及参数变化
图5为不同冻融循环次数下两组层理砂岩的单轴压缩应力-应变曲线,在图中可以看出两组试样的应力-应变曲线,整体变化趋势相近,可分为OA孔隙压密阶段,AB线弹性阶段,BC非稳定破裂发展阶段,CD峰后失稳破坏阶段,随着冻融循环次数的增加,可以看出两组试样的应力峰值降低,曲线都有向下压缩,向右拉伸的趋势。
图6为不同冻融循环次数试样应力峰值及最大轴向应变的变化趋势,在对比0到60次冻融循环后,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样。
岩石在低温冻结下,水凝结成冰,体积会膨胀9%,这时会产生冻胀力,使试样内部孔隙发育,微裂纹开始产生;当温度升高时,冰融化,水在孔隙之间连通,形成水流通道,充满微裂纹空间。随着冻融循环作用的增强,试样内部微裂纹发育逐渐增强,直至微裂纹互相连接贯通。试样内部由于冻融损伤的累积,微观孔隙缺陷数量增多并造成了压密阶段增大,导致应力峰值降低,应变增加。所以两组试样的OA段孔隙压密阶段和CD段峰后破坏阶段明显变长,岩石从脆性破坏变为延性破坏的特征显著。但对比两组试样,平行组试样的峰后破坏阶段更加平缓,时间更长,这是由于层理方向不同。对于平行组试样,当轴向压力与层理面垂直时,在应力达到峰值时,平行层理弱面相对于垂直层理弱面能更充分发挥抵抗轴向压力的作用(表1)。
表 1 试样冻融前后应力、应变峰值变化情况Table 1. Peak stress and strain changes of samples before and after freeze-thaw冻融循环
次数应力峰值下降比例/% 应变峰值增加比例/% 平行层理试样 垂直层理试样 平行层理试样 垂直层理试样 20 37.9 13.4 13.4 16.5 40 41.3 29.1 33.7 30.4 60 57.5 52.8 40.7 35.7 3. 声发射特征参数研究
3.1 声发射振铃计数特征
声发射信号如果越过门槛值,就被定义为一次撞击,一个或若干个撞击构成一个AE事件,其主要作用是反映AE源(材料内部缺陷)的活跃度。事件率是单位时间内AE事件发生的次数,累计事件数则是单位时间内AE事件的累计叠加。因岩石在损伤破裂过程中1 s内对应若干个AE事件,故以1 s时间为单位,统计砂岩在单轴压缩试验全过程中AE事件率及其累计事件数,对比分析其演化特征[24 − 25]。
如图7、图8所示,两组不同层理砂岩在不同冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,所以可整体分析将其分为三个阶段,平静阶段、阶梯式增长阶段、骤增阶段。
(1) 平静阶段振铃计数和振铃累计数增长缓慢,声发射事件较少,原生缺陷渐进压密使得岩样内部整体趋于完整,不具备发生明显声发射活动条件。
(2) 阶梯式增长阶段处在砂岩的弹性阶段及非稳定破裂发展阶段振铃计数及振铃累计数显著增长,其中振铃累计数多呈阶段式增长。这是随着应力的增加,岩石内部开始产生微裂纹,更利于声发射事件的发生。
(3) 骤增阶段声发射信号显著增强。此时应力达到峰值,试样内部微裂纹连接贯通,同时试样外部出现宏观裂纹,试样破坏前声发射的信号多且间隔时间短,声发射接收信号灯此时长亮,是试样破坏的前兆特征。
岩石的劣化程度与AE事件数有明显的变化关系,随着冻融循环次数的增加,可以看到两组试样的平静阶段相对一个完整试验过程逐渐变短,阶梯增长阶段逐渐变长,试样在冻融循环作用下,内部孔隙之间发生联通,向外扩张,使岩石的抗压强度下降,在轴向应力增大时,AE事件也更容易发生;每个试样的对应的骤增阶段都很明显,说明试样在破坏时AE事件大量发生,声发射信号显著增强,是一个明显的破坏前兆特征。
3.2 声发射b值演化特征
AE监测中使用较多的是借鉴于地震学中的破裂源参数统计指标,主要有b值以及对该统计指标的进一步统计分析。b值(b-value)起源于地震学中的 Gutenberg Richter(G-R)关系,即区域地震中大于M级的累计次数N的对数,与M级呈线性关系,如式(2)所示。
(2) 式中,a和b是常数。在分析AE参数时,通常可以用振幅(A)除以20来表示声发射震级M,即 M=A/20。在计算b值时,A的单位是dB[26]。
在监测压缩岩石过程发生的小破裂事件和大断裂事件的相对数量可以用b值表示,并且可以代表 AE事件的规模分布,因此,在分析和预测岩石破裂的前兆中被广泛利用[27]。声发射b值与岩石内部裂纹萌生扩展过程密切相关,b值较大时对应大量弱声发射事件产生,说明小破裂占据主导,而当b值迅速降低时,则说明岩石内部大破裂开始增加或裂纹扩展的速度突增。
在图9中可以得知两组不同层理砂岩的声发射b值变化有很大的区别,说明不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,随着冻融循环次数的增加,b值变化明显,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变大,说明这些阶段以微破裂或者小破裂为主导,而在60次冻融循环后b值又变小,说明此时由微破裂转为大破裂。垂直组试样声发射b值变化与平行组试样相反呈正“V”型,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变小,说明在这些阶段垂直层理砂岩以大破裂为主,在60次冻融循环后,b值开始变大,这时岩石在冻融循环作用下,内部微破裂增多,产生的微裂纹相互连接贯通,岩石整体劣化程度高,以微破裂为主导。
对于平行层理岩石,层理弱面与外界环境的接触程度更高,试件侧面平行层理弱面分布更广,更利于冻融损伤的累积。因此,随着冻融循环作用的加强,平行层理弱面劣化程度要高于垂直层理试样,这与前面两组试样的单轴抗压强度的变化结果一致。故在0~40次冻融循环作用下,由于平行层理试样的劣化程度高于垂直层理试样,故更可能发生大破裂,则b值变小。而在60次冻融循环后,试样内部得到充分劣化,又因为层理方向与轴向应力方向垂直,平行层理弱面相对于垂直层理弱面更能起到抵抗外力的作用,岩石内部以微破裂为主,则b值变大。
3.3 声发射RA-AF值演化特征
基于声发射参数特征判别法是使用上升时间与最大振幅的比值(risetime/amplitude,RA)与平均频率(average frequency,AF)来进行破裂类型的判断。一般而言,拉伸破坏对应的声发射事件具有较小的 RA值和较大的 AF值;与剪切破坏对应的声发射事件具有较大的RA值和较小的AF值。
图10显示了使用RA和AF的声发射参数方法对拉伸和剪切裂纹进行分类的方法[28]。对角线可以用来作为拉伸裂纹和剪切裂纹的分界直线,直线上侧的裂纹即为拉伸裂纹,直线下侧的裂纹则为剪切裂纹,而直线的斜率AF/RA称之为拉剪裂纹判断的阈值。
由图11、图12可知,我们可以看到对于不同冻融循环次数的平行层理砂岩的破坏模式主要以拉伸裂纹为主,带有少量的剪切裂纹或者复合裂纹,在经过20,40,60次冻融循环的试样同样是以拉伸裂纹为主,剪切裂纹或者复合裂纹的变化比较小,但是没有经过冻融循环处理的试样对照经过冻融循环作用的试样组,它的剪切裂纹或者复合裂纹较多,与图13试样的宏观破裂特征与其对应一致。对于垂直层理砂岩的破坏模式与平行层理砂岩有所区别,在未经过冻融处理的试样主要以拉伸裂纹和剪切裂纹为主,但随着冻融作用的加强,试样的拉伸裂纹逐渐增多,剪切裂纹逐渐减少,在经过60次冻融循环处理后,试样破坏基本以拉伸裂纹为主,这与图13试样在宏观上的拉伸破裂特征一致。
4. 结论
(1) 平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。
(2) 在对比0到60次冻融循环后,水平层理试样的应力峰值下降了57.5%、应变增大40.7%,而垂直层理砂岩应力峰值下降52.8%、应变增大35.4%,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样,
(3) 两组不同层理砂岩在冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,可分为三个阶段:平静阶段、阶梯式增长阶段、骤增阶段。
(4) 不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,而垂直组试样声发射b值变化呈正“V”型,基于RA-AF值变化特征表明平行层理黄砂岩基本以拉伸破坏为主,而垂直层理砂岩在未处理时以拉伸破坏和剪切破坏为主,在60次冻融循环处理后,以拉伸破坏为主。
-
表 1 试样冻融前后应力、应变峰值变化情况
Table 1 Peak stress and strain changes of samples before and after freeze-thaw
冻融循环
次数应力峰值下降比例/% 应变峰值增加比例/% 平行层理试样 垂直层理试样 平行层理试样 垂直层理试样 20 37.9 13.4 13.4 16.5 40 41.3 29.1 33.7 30.4 60 57.5 52.8 40.7 35.7 -
[1] 傅昱. 层状岩石破坏过程的声发射特性及源定位研究[D]. 南昌:华东交通大学. [FU Yu. Study on acoustic emission characteristics and source location of layered rock failure process[D]. Nanchang:East China Jiaotong University. (in Chinese with English abstract)] FU Yu. Study on acoustic emission characteristics and source location of layered rock failure process[D]. Nanchang: East China Jiaotong University. (in Chinese with English abstract)
[2] 杨志全,甘进,樊详珑,等. 岩石冻融损伤机理研究进展及展望[J]. 防灾减灾工程学报,2023,43(1):176 − 188. [YANG Zhiquan,GAN Jin,FAN Xianglong,et al. Research progress and prospect on freeze-thaw damage mechanism of rocks[J]. Journal of Disaster Prevention and Mitigation Engineering,2023,43(1):176 − 188. (in Chinese with English abstract)] YANG Zhiquan, GAN Jin, FAN Xianglong, et al . Research progress and prospect on freeze-thaw damage mechanism of rocks[J]. Journal of Disaster Prevention and Mitigation Engineering,2023 ,43 (1 ):176 −188 . (in Chinese with English abstract)[3] 张亮,牛富俊,刘明浩,等. 冻融损伤与围压对层状岩石强度各向异性的影响[J]. 冰川冻土,2022,44(2):366 − 375. [ZHANG Liang,NIU Fujun,LIU Minghao,et al. Effects of freeze-thaw damage and confining pressure on anisotropy strength of bedded rock[J]. Journal of Glaciology and Geocryology,2022,44(2):366 − 375. (in Chinese with English abstract)] ZHANG Liang, NIU Fujun, LIU Minghao, et al . Effects of freeze-thaw damage and confining pressure on anisotropy strength of bedded rock[J]. Journal of Glaciology and Geocryology,2022 ,44 (2 ):366 −375 . (in Chinese with English abstract)[4] JIA H,DING S,ZI F,et al. Development of Anisotropy in Sandstone Subjected to Repeated Frost Action[J]. Rock Mechanics and Rock Engineering,2021,54(4):1863 − 1874.
[5] 常森,许金余,郑广辉. 冻融循环层理砂岩冲击荷载下应变率特性研究[J]. 地下空间与工程学报,2021,17(1):53 − 61. [CHANG Sen,XU Jinyu,ZHENG Guanghui. Study on strain rate characteristics of frozen-thawed bedding sandstone under impact load[J]. Chinese Journal of Underground Space and Engineering,2021,17(1):53 − 61. (in Chinese with English abstract)] CHANG Sen, XU Jinyu, ZHENG Guanghui . Study on strain rate characteristics of frozen-thawed bedding sandstone under impact load[J]. Chinese Journal of Underground Space and Engineering,2021 ,17 (1 ):53 −61 . (in Chinese with English abstract)[6] 张东明,白鑫,尹光志,等. 含层理岩石单轴损伤破坏声发射参数及能量耗散规律[J]. 煤炭学报,2018,43(3):646 − 656. [ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Analysis of acoustic emission parameters and energy dissipation characteristics and damage evolution of bedding rock failure process under uniaxial compression[J]. Journal of China Coal Society,2018,43(3):646 − 656. (in Chinese with English abstract)] ZHANG Dongming, BAI Xin, YIN Guangzhi, et al . Analysis of acoustic emission parameters and energy dissipation characteristics and damage evolution of bedding rock failure process under uniaxial compression[J]. Journal of China Coal Society,2018 ,43 (3 ):646 −656 . (in Chinese with English abstract)[7] WANG Hong,YANG Tianhong,ZUO Yujun. Experimental study on acoustic emission of weakly cemented sandstone considering bedding angle[J]. Shock and Vibration,2018,2018:1 − 12.
[8] 姜德义,张水林,陈结,等. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究[J]. 岩土力学,2019,40(2):436 − 444. [JIANG Deyi,ZHANG Shuilin,CHEN Jie,et al. Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone[J]. Rock and Soil Mechanics,2019,40(2):436 − 444. (in Chinese with English abstract)] JIANG Deyi, ZHANG Shuilin, CHEN Jie, et al . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone[J]. Rock and Soil Mechanics,2019 ,40 (2 ):436 −444 . (in Chinese with English abstract)[9] 刘慧,蔺江昊,杨更社,等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报,2021,38(4):830 − 839. [LIU Hui,LIN Jianghao,YANG Gengshe,et al. Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining and Safety Engineering,2021,38(4):830 − 839. (in Chinese with English abstract)] LIU Hui, LIN Jianghao, YANG Gengshe, et al . Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining and Safety Engineering,2021 ,38 (4 ):830 −839 . (in Chinese with English abstract)[10] 宋彦琦,马宏发,刘济琛,等. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报,2022,41(增刊1):2603 − 2614. [SONG Yanqi,MA Hongfa,LIU Jichen,et al. Experimental study on uniaxial acoustic emission damage characteristics of freeze-thaw limestone[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 1):2603 − 2614. (in Chinese with English abstract)] SONG Yanqi, MA Hongfa, LIU Jichen, et al . Experimental study on uniaxial acoustic emission damage characteristics of freeze-thaw limestone[J]. Chinese Journal of Rock Mechanics and Engineering,2022 ,41 (Sup 1 ):2603 −2614 . (in Chinese with English abstract)[11] 杨更社,蒲毅彬. 冻融循环条件下岩石损伤扩展研究初探[J]. 煤炭学报,2002,27(4):357 − 360. [YANG Gengshe,PU Yibin. Initial discussion on the damage propagation of rock under the frost and thaw condition[J]. Journal of China Coal Society,2002,27(4):357 − 360. (in Chinese with English abstract)] YANG Gengshe, PU Yibin . Initial discussion on the damage propagation of rock under the frost and thaw condition[J]. Journal of China Coal Society,2002 ,27 (4 ):357 −360 . (in Chinese with English abstract)[12] QIAO Chen,SONG Zhengyang,WANG Yu,et al. Fractures and acoustic emission features of non-persistent jointed rocks subjected to freeze-thaw-compression load:experimental insights[J]. Rock Mechanics and Rock Engineering,2022,55(1):109 − 123. DOI: 10.1007/s00603-021-02667-w
[13] 郑坤,孟庆山,汪稔,等. 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学,2020,41(1):205 − 213. [ZHENG Kun,MENG Qingshan,WANG Ren,et al. Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression[J]. Rock and Soil Mechanics,2020,41(1):205 − 213. (in Chinese with English abstract)] ZHENG Kun, MENG Qingshan, WANG Ren, et al . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression[J]. Rock and Soil Mechanics,2020 ,41 (1 ):205 −213 . (in Chinese with English abstract)[14] 郑坤. 珊瑚礁灰岩工程地质及声发射特性研究[D]. 南宁:广西大学. [ZHENG Kun. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning:Guangxi University. (in Chinese with English abstract)] ZHENG Kun. Study on engineering geology and acoustic emission characteristics of coral reef limestone[D]. Nanning: Guangxi University. (in Chinese with English abstract)
[15] 付斌,周宗红,王海泉,等. 大理岩单轴循环加卸载破坏声发射先兆信息研究[J]. 煤炭学报,2016,41(8):1946 − 1953. [FU Bin,ZHOU Zonghong,WANG Haiquan,et al. Precursor information study on acoustic emission characteristics of marble under uniaxial cyclic loading-unloading[J]. Journal of China Coal Society,2016,41(8):1946 − 1953(in Chinese with English abstract)] FU Bin, ZHOU Zonghong, WANG Haiquan, et al . Precursor information study on acoustic emission characteristics of marble under uniaxial cyclic loading-unloading[J]. Journal of China Coal Society,2016 ,41 (8 ):1946 −1953 (in Chinese with English abstract)[16] 王桂林,王润秋,孙帆,等. 单轴压缩下溶隙灰岩声发射RA-AF特征及破裂模式研究[J]. 中国公路学报,2022,35(8):118 − 128. [WANG Guilin,WANG Runqiu,SUN Fan,et al. RA-AF characteristics of acoustic emission and failure mode of Karst-fissure limestone under uniaxial compression[J]. China Journal of Highway and Transport,2022,35(8):118 − 128. (in Chinese with English abstract)] WANG Guilin, WANG Runqiu, SUN Fan, et al . RA-AF characteristics of acoustic emission and failure mode of Karst-fissure limestone under uniaxial compression[J]. China Journal of Highway and Transport,2022 ,35 (8 ):118 −128 . (in Chinese with English abstract)[17] 张艳博,孙林,姚旭龙,等. 花岗岩破裂过程声发射关键信号时频特征试验研究[J]. 岩土力学,2020,41(1):157 − 165. [ZHANG Yanbo,SUN Lin,YAO Xulong,et al. Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture[J]. Rock and Soil Mechanics,2020,41(1):157 − 165. (in Chinese with English abstract)] ZHANG Yanbo, SUN Lin, YAO Xulong, et al . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture[J]. Rock and Soil Mechanics,2020 ,41 (1 ):157 −165 . (in Chinese with English abstract)[18] 蒋利松,赵登科,周军平,等. 单轴压缩试验下不同含水率页岩声发射特征研究[J]. 地下空间与工程学报,2021,17(增刊2):696 − 702. [JIANG Lisong,ZHAO Dengke,ZHOU Junping,et al. Acoustic emission characteristics of shale with different water content under uniaxial compression test[J]. Chinese Journal of Underground Space and Engineering,2021,17(sup 2):696 − 702. (in Chinese with English abstract)] JIANG Lisong, ZHAO Dengke, ZHOU Junping, et al . Acoustic emission characteristics of shale with different water content under uniaxial compression test[J]. Chinese Journal of Underground Space and Engineering,2021 ,17 (sup 2 ):696 −702 . (in Chinese with English abstract)[19] 赵娜, 孟利新, 缪海宾, 等. 不同倾角软-硬组合岩体破裂演化过程分析[J]. 中国地质灾害与防治学报,2023,34(4):58 − 67. [ZHAO Na, MENG Lixin, MIAO Haibin, et al. Experimental analysis of failure process in soft-hard combined rock masses at different inclination angles[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):58 − 67. (in Chinese with English abstract)] ZHAO Na, MENG Lixin, MIAO Haibin, et al . Experimental analysis of failure process in soft-hard combined rock masses at different inclination angles[J]. The Chinese Journal of Geological Hazard and Control,2023 ,34 (4 ):58 −67 . (in Chinese with English abstract)[20] 陈东升, 纪洪广, 袁永忠, 等. 岩石非均质程度对水压致裂地应力测试方法影响的分析与讨论[J]. 地质力学学报,2023,29(3):365 − 374. [CHEN Dongsheng, JI Hongguang, YUAN Yongzhong, et al. Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,2023,29(3):365 − 374. (in Chinese with English abstract)] CHEN Dongsheng, JI Hongguang, YUAN Yongzhong, et al . Influence of rock inhomogeneity degree on the crustal stress results measured by hydraulic fracturing method[J]. Journal of Geomechanics,2023 ,29 (3 ):365 −374 . (in Chinese with English abstract)[21] 何建华, 曹峰, 邓虎成, 等. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质,2023,50(4):1107 − 1121. [HE Jianhua, CAO Feng, DENG Hucheng, et al. Evaluation of in situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China,2023,50(4):1107 − 1121. (in Chinese with English abstract)] HE Jianhua, CAO Feng, DENG Hucheng, et al . Evaluation of in situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China,2023 ,50 (4 ):1107 −1121 . (in Chinese with English abstract)[22] 郑坤,孟庆山,汪稔,等. 珊瑚礁灰岩工程地质特性研究新进展[J]. 海洋地质与第四纪地质,2020,40(1):42 − 49. [ZHENG Kun,MENG Qingshan,WANG Ren,et al. Advances in study of engineering geological characteristics of coral reef limestone[J]. Marine Geology & Quaternary Geology,2020,40(1):42 − 49. (in Chinese with English abstract)] ZHENG Kun, MENG Qingshan, WANG Ren, et al . Advances in study of engineering geological characteristics of coral reef limestone[J]. Marine Geology & Quaternary Geology,2020 ,40 (1 ):42 −49 . (in Chinese with English abstract)[23] 郑坤,孟庆山,汪稔,等. 不同结构类型珊瑚礁灰岩弹性波特性研究[J]. 岩土力学,2019,40(8):3081 − 3089. [ZHENG Kun,MENG Qingshan,WANG Ren,et al. Elastic wave properties of coral reef limestone with different structural types[J]. Rock and Soil Mechanics,2019,40(8):3081 − 3089. (in Chinese with English abstract)] ZHENG Kun, MENG Qingshan, WANG Ren, et al . Elastic wave properties of coral reef limestone with different structural types[J]. Rock and Soil Mechanics,2019 ,40 (8 ):3081 −3089 . (in Chinese with English abstract)[24] WU Chen,GONG Fengqiang,LUO Yong. A new quantitative method to identify the crack damage stress of rock using AE detection parameters[J]. Bulletin of Engineering Geology and the Environment,2021,80(1):519 − 531. DOI: 10.1007/s10064-020-01932-6
[25] SAGAR R V,SRIVASTAVA J,SINGH R K. A probabilistic analysis of acoustic emission events and associated energy release during formation of shear and tensile cracks in cementitious materials under uniaxial compression[J]. Journal of Building Engineering,2018,20:647 − 662. DOI: 10.1016/j.jobe.2018.09.006
[26] SAGASTA F,ZITTO M E,PIOTRKOWSKI R,et al. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings[J]. Mechanical Systems and Signal Processing,2018,102:262 − 277. DOI: 10.1016/j.ymssp.2017.09.022
[27] GUO Pei, WU Shunchuan, ZHANG Guang,et al. Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2021,144:104820. DOI: 10.1016/j.ijrmms.2021.104820
[28] WANG Y,ZHANG B,GAO S H,et al. Investigation on the effect of freeze-thaw on fracture mode classification in marble subjected to multi-level cyclic loads[J]. Theoretical and Applied Fracture Mechanics,2021,111:102847.
-
期刊类型引用(3)
1. 蒋婷婷,潘华利,艾一帆,熊薇. 冻融循环及含水率对冰碛土力学特性影响. 地质科技通报. 2024(02): 238-252 . 百度学术
2. 叶陟天. 冻融循环对板岩物理特性劣化影响试验研究. 江西建材. 2024(07): 203-205 . 百度学术
3. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 . 百度学术
其他类型引用(3)