ISSN 1003-8035 CN 11-2852/P

    原状黄土土-水特征曲线与湿陷性的相关性

    陈家乐, 倪万魁, 王海曼, 荣誉

    陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
    引用本文: 陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
    CHEN Jiale,NI Wankui,WANG Haiman,et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056
    Citation: CHEN Jiale,NI Wankui,WANG Haiman,et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 107-114. DOI: 10.16031/j.cnki.issn.1003-8035.202211056

    原状黄土土-水特征曲线与湿陷性的相关性

    详细信息
      作者简介:

      陈家乐(1999—),男,安徽宿州人,硕士研究生,主要从事黄土方面的研究。E-mail:945844224@qq.com

      通讯作者:

      倪万魁(1965—),男,宁夏固原人,博士,教授,主要从事黄土力学方面的研究。E-mail:niwankui@che.edu.cn

    • 中图分类号: P694

    Correlation between soil-water characteristic curve and collapsibility in undisturbed loess

    • 摘要:

      为了研究原状黄土土-水特征曲线与黄土湿陷性之间的联系,在陕西西安长安区取地表以下30 m范围内的原状黄土土样,进行基本物理指标试验和湿陷性试验。对不同典型地层的黄土-古土壤试样进行土水特征曲线试验,通过电镜扫描从微观角度分析。研究结果表明:大孔隙的数量与饱和体积含水率呈正相关;中孔隙的数目与过渡区斜率的大小呈正相关,孔隙数目越多土体失水速度越快;微小孔隙的数目和土的塑性指数影响残余含水率的大小。对于不同深度土层,饱和体积含水率和过渡区斜率与土层的湿陷系数呈正相关;塑性指数接近土层的湿陷系数对残余体积含水率的影响不明显;古土壤层的SWCC与湿陷系数之间存在与黄土层相同的正相关性。文章从非饱和土力学的方向去研究黄土的湿陷性,为湿陷性的研究提供一种新的研究角度。

      Abstract:

      This study investigates the correlation between the soil-water characteristic curve (SWCC) of undisturbed loess and its collapsibility. Undisturbed loess soil samples, obtained from depths up to 30 meters below the surface in Chang’an District, Xi’an City, Shaanxi Province, were taken for basic physical index tests and collapsibility assessments. SWCC analyses of loess-paleosol samples from different typical strata were conducted and analyzed using scanning electron microscope. The findings reveal a positive correlation between the number of macropores and saturated volumetric water content. Additionaly, the number of pores is positively correlated with the slope of the transition zone, indicating that a higher pore count accelerates the soil's water loss rate. The number of tiny voids and the plasticity index of soil affect the residual moisture content. For different soil layers, saturated volumetric water content and slope of transition zone exhibit a positive correlation with collapsible coefficient. The influence of collapsible coefficient of plastic index close to soil layer on residual volumetric water content is not obvious. The study also indicates a positive correlation between SWCC and the collapsibility coefficient of the loess layer. By approaching loess collapsibility from the direction of unsaturated soil mechanics, this paper introduces a novel research angle for the study of collapsibility.

    • 不稳定边坡是公路沿线常见的一种不良地质灾害现象[1],在降雨情况下,往往会失稳滑动,威胁公路运营安全。公路沿线滑坡体正确处治以地质勘察的准确性作为前提,地质钻探结合调绘工作是滑坡勘察的主流手段。但由于地质钻探工期较长且在不稳定边坡上施工有一定安全隐患,而物探手段具有高效、快捷、可直观成像等特点,因此物探方法发挥的作用越来越大[2-6]

      在公路边坡灾害探测中,常用的物探手段包括:电法[7]、探地雷达、瞬变电磁法、浅层地震等方法,且都取得了不错的效果。单一方法应用研究较多,将电阻率与速度参数有机结合的应用较少。文章依据公路不稳定边坡探测实例,通过常规对称四极电阻率测深与瞬态面波[8-10]相结合,对滑坡体进行勘察,准确高效的圈定滑坡范围,识别滑面及潜在滑面位置,为后续处治工作提供了合理可靠的支撑。

      G5京昆高速(雅安至西昌段)90 km附近右侧存在不稳定斜坡,坡高约50 m,为5级坡。通车前已进行过处治,坡角为重力式挡墙,坡体采用框架梁形式进行防护。但在强降雨及周边施工开挖扰动情况下,受重力及水压力作用,出现滑移变形,框架梁发生严重变形错位。边坡表面多处可见土体裂缝,部分框架梁被剪断(图1),对该段高速公路运营威胁极大。

      图  1  现场坡体框架梁破坏情况
      Figure  1.  Supporting structure failure of the slope

      坡角采用重力式挡墙,I、II级坡面为自然削坡后植被防护,由于坡度小,自然坡角稳定,坡体及表面未出现变形现象,上部III—V级坡面采用框架护坡(图2),经地面调查和钻探揭示,防护主体为第四系崩坡残积Q4col+dl碎石土和Q3col+dl碎石土。边坡变形部分主要为Q4col+dl松散含角砾黏土层及部分碎石土层。

      图  2  边坡照片
      Figure  2.  Photograph of the slope

      依照地质调绘分析,变形段边坡高约50 m,分5级,边坡坡比为1∶1.25,每级边坡高约10 m,平台宽约2 m,边坡上部3~5级边坡为框架锚杆处治,主体为黏土层及崩坡积层块石土,路嵌挡墙为重力式挡墙,墙体无明显变形,下部2级采用削坡及植被护坡。边坡主要为含砾黏土、块石土。I、II级坡面无明显变形,局部有浅表性滑塌,长约5~8 m,影响深度约1 m,钻孔ZK4处于II级平台,出现拉裂缝,其附近坡表变形严重,致使3级坡表框架梁严重变形拉裂,土体呈隆起剪出状。III级平台及IV级平台挡墙前均出现长约30 m贯通性拉裂缝,其中IV级平台挡墙墙体出现变形,下部局部出现淘空现象。V级坡面菱形框架梁出现整体下沉,边缘出现剪断现象。边坡后缘已形成高约1~2 m的陡坎,并形成宽约0.2 m裂缝,深约1 m,有逐渐垮塌后退趋势。滑坡后沿排截水沟出现夸塌拉裂现象。

      由于斜坡前期开挖时坡度较陡,坡表植被难以形成较好防护效果,加上长时间降雨渗透使覆盖层抗剪能力减弱,引起坡体失稳。同时,由于Q3c+dl地层较为密实,新近系与第四系地层之间易产生相对富水区,在斜坡重力作用下,逐渐产生滑移现象,并会持续加剧,对防护结构造成破坏,坡体拉裂变形,最终造成整个边坡结构失稳垮塌,严重威胁下方高速公路。因此,需要快速对斜坡开展准确的勘察设计工作。

      通过边坡变形机理分析,主要为富水带引起滑动,从物性特征来看,会产生明显的电阻率及波速变化,且由于斜坡滑动时还会产生裂隙发育区域,附近土体或岩体会造成不同程度的破坏,从而产生明显的物性差异。

      通常来说,滑体内波速比稳定区域会明显降低,横波和纵波比(Vp/Vs)也相应增大,且这种变化与岩(土)体破坏程度呈正比。相应的,滑体电阻率也呈类似特征,在含水情况下则会更加明显。

      因此,组成滑坡的地质体物性参数与稳定区域存在较=为明显的差异,是利用物探技术研究滑坡的物理基础。

      根据2.2节对地球物理特征的分析,本次研究选用电法勘探与瞬态面波相结合的综合物探手段。

      电测深法[7,11-13]是利用探测地质体的导电性质的不同,根据电阻率的变化特征判断地质体分布情况,完成勘察目标。

      根据现场条件及技术要求,本次工作采用对称四极装置进行数据采集,其电极排列方式如图3所示。该装置主要特征为两边极距的对称性,即:AM=BN,采用该装置测量时,测量深度与供电极距AB为正比关系,随着AB逐渐增加,探测深度逐步增大。在固定测点使用不断变化的AB采集,能够得到该点不同深度的电阻率值。利用双对数坐标纸进行绘制(纵坐标为ρS为变量,横坐标为AB/2),即可取得该点的一维电阻率曲线。

      图  3  对称四极排列装置形式示意图
      Figure  3.  Schematic diagram of symmetrical quadrupole arrangement device

      相对常用的折射、反射等浅层地震勘探,瞬态面波法[14-17]在20世纪70年代国际上才开始研究,基本原理是通过瑞雷面波频散曲线,采用定量分析,取得不同地下介质弹性波的传播速度,根据速度的差异,可以反映出地层物性差异情况。基于以上原理,能够划分岩土界面、软弱带等,达到解决相应地质问题的目的。瞬态面波勘察法对薄层分辨率高,能通过成像直观表示地下地质体及地质构造,能够在滑坡探测上取得较好的成像效果。

      工程勘察时,通常采用瑞雷面波,因此瞬态面波勘探又常称为瑞雷波法,主要具有以下特点:

      (1)当传播介质均匀时,瑞雷波波长r和振动频率f没有联系,也就是说,均匀介质条件下瑞雷波扩散不具有频散性。

      层状介质时,rf的函数,此种情况下瑞雷波扩散表现为频散性特征。

      (2)通过计算可知:当深度zr的一半时,瑞雷面波就会损失大半能量。在深度接近波长时,能量衰减更强,一般来说,瑞雷波的穿透深度约等于r。因此,瑞雷波特定波长的波速主要与深度r/2以内地层物性密切相关,是瑞雷波勘探的物性基础。

      根据公式r=Vr/f,瑞雷波波长与弹性波频率有关,根据各种频率的弹性波速,就能取得Vrr曲线:频散曲线。频散曲线的特性以及变化规律取决于地质情况,根据频散曲线反演变换,就能获取地下一定深度范围内的地质构造特征以及不同深度瑞雷波速值Vr

      (3)瑞雷波速度Vr同横波速度Vs可以相互转换,主要根据式(1)计算:

      Vr=0.87+1.12δ1+δVs (1)

      根据式(1)得到地质体与VrVs的关系见表1,利用此相关性,能够获得地下地质体的横波速度。

      表  1  地质体中VrVs关系表
      Table  1.  Relationship of Vr and Vs in geological body
      泊松比0.250.380.400.50
      Vr /Vs0.9200.9390.9430.955
      下载: 导出CSV 
      | 显示表格

      (1)装置选择:在电法勘探中,根据现场条件进行装置选择是开展工作的一个重要环节,通常来说,装置设计主要由研究区地形条件、目标体规模、测量精度等方面决定,而四极装置可以达到最大的测量电位,能够节省外接电源,减少供电电压,最重要的是可以压制干扰,提高信噪比,在场地条件允许下,为最优选择方案。因此本次研究工作采用对称四极装置,最大供电电压为400 V。

      (2)极距选择:电法勘探过程中,极距的选择与勘探深度密切相关,在本次研究中,电法勘探深度要求超过35 m。为了使MNAB以及勘探精度的要求,在初始时使MN/AB=1/3,随后固定MN,逐渐增大AB进行测量。MN/2=0.5不变,AB/2取1.5 m、2 m、3 m、5 m、7 m、10 m、15 m、20 m、30 m、50 m、70 m、90 m等十二个极距跑极测量,能探测地下0−50 m深度内岩体电性参数。

      精确解释的前提是对场区物性参数的准确统计测试,因此,解释前首先要将研究区电阻率参数进行统计,本次依据现场试验及工区综合统计得出以下电阻率参数见表2

      在深度转换时,利用已有钻孔资料进行约束校正,根据钻孔资料揭示的地质分层信息,试验并确定了本次电测深资料解释深度转换采用极距(AB/2)与深度的比值系数为0.95~0.5之间,转换后物探成果解释深度与钻探揭示的地层深度基本吻合。

      表  2  研究区电阻率实测参数表
      Table  2.  Measured parameters of resistivity in study area
      岩性电阻率值ρ/(Ω·m)表现特征
      黏土层<200等值线平滑
      稳定堆积体(冰水堆积层)200~500等值线紊乱
      基岩>500等值线平滑
      滑面<200低阻闭合圈
      下载: 导出CSV 
      | 显示表格

      在时域内,原始数据采集质量与频散曲线有直接关系。同地震反射类似,瞬态面波法同样有最佳窗口。为提高原始数据精度,增加处理解释精度,面波数据采集时应注意以下关键采集问题:

      (1)采样时每道设计排列不能超过面波域,同时采集到足够长记录;

      (2)采集时要避开附近振动干扰,减少直达波的后续波或反射、折射波干扰面波;

      (3)采集的波形真实可靠。

      依照上述原则,排列设计时,应根据勘探深度的要求设计合适的偏移距以及道间距,若偏移距较小,高频分量较大,能凸显浅部信号;要想得到深部信息,则应加大偏移距,使高频分量衰减,凸显低频分量。

      在震源选择上,瞬态瑞雷波法的激震可采用大锤或吊锤自由落下,常规来说,勘探深度20~30 m范围内时,24磅大锤激发就能得到较为理想的频散曲线,在介质较软,或勘探深度要求较深时,需要较重吊锤自由落下,能够得到理想的低频震动。

      本次研究使用的设备为北京水电物探研究所研制的SWS-6型面波仪,单点激发,12道接收进行数据采集。偏移距10~30 m,道间距l m,采样间隔0.5 ms,记录长度1024 ms。面波的激发采用锤击法,重15 kg。实际工作中,为获取更可靠的面波数据,每个测点上应重复锤击3~5次,采用面波干扰小、能量强、信噪比高的激发记录作为该测点的面波采集数据。

      与电法勘探一样,研究区波速参数的准确统计也是面波解释的重要前提条件,由于面波波速近似等于横波波速,因此本次依据现场孔内剪切波测试得出以下参数,见表3

      表  3  研究区横波波速实测参数表
      Table  3.  Measured parameters of shear wave velocity in study area
      岩性横波波速v/(m·s−1)表现特征
      粘土层<200低速层
      稳定堆积体(冰水堆积层)200~1000波速变化大
      滑面<200低速带
      下载: 导出CSV 
      | 显示表格

      数据处理使用SWS-6型面波仪专用处理软件进行,利用频散曲线变化特征分析测点位置面波速度随深度的变化情况,判断地下地质条件。频散曲线与地下介质的层厚度、波速等参数有紧密联系,分析这些变化规律和特征,可以初步确定速度层的层数以及各层的厚度和速度范围,再结合已有地质资料对曲线进行综合分析与定量解释,得到各层的厚度以及波速,达到对地质体分层和识别滑坡的目的。

      依照现场地形,结合前期调绘圈定的滑坡体的范围,垂直布置纵横两条剖面(沿高速公路方向为纵剖面,垂直高速路线方向为横剖面),电测深法与面波法测线重合,以便互相验证。具体测线位置见图4

      图  4  物探测线布置图
      Figure  4.  Layout of geophysical prospecting detection line

      根据上述处理解释方法得到物探解释成果图件(图5678),结合地质调绘资料进行综合地质解释。

      图  5  面波横剖面成果图
      Figure  5.  Cross section of surface wave
      图  6  面波纵剖面成果图
      Figure  6.  Longitudinal section of surface wave

      根据解释资料分析:面波横剖面(图5)中30~80 m范围,表层3~5m深度存在明显低速带,波速V150m/s,分析认为是主滑体,面波纵剖面图(图6)中清晰可见低速黏土层,同时波速相对较高的稳定层中也有明显的低速夹层,解释为滑面和潜在滑面。但由于震源激发能量受限,探测深度约30 m,无法探测基岩,必需结合电测深成果才能得到岩土界面。

      在电测深成果图中(图7图8),分层也较为清晰,能够得出明确的三层界面:黏土层、稳定堆积体层以及基岩,但纵向分辨率较面波成果低,较难识别出滑面具体位置,解释时要参考面波成果图进行滑面判别。

      图  7  电测深横剖面成果图
      Figure  7.  Cross section of electrical sounding method
      图  8  电测深纵剖面成果图
      Figure  8.  Longitudinal section of electrical sounding method

      依照两种方法成果综合分析,滑坡体厚度约为3~4 m,剖面75 m附近较厚,约6~7 m,推测在横剖面30 m处剪出,横剖面90 m处为滑坡后缘,覆盖层整体厚度超过30 m,滑坡体及覆盖层形态见图58

      (1)结合现场坡体变形情况,坡体剪出位置与物探推测位置吻合,边坡在测线58 m、72 m、97 m、103 m和116 m处出现土体裂缝及部分框架梁破坏位置,均在物探推测滑坡体范围内,变形范围与物探成果推测一致;根据现场调绘的滑体厚度也与推测结果一致。

      (2)依照综合物探解释成果,结合地质调绘,在推测主滑面位置布设5个钻孔,绘制出边坡综合地质成果图(图9),钻探揭示滑面深度、滑坡体规模等与物探结果基本吻合,表明综合物探能在不稳定边坡勘察中取得良好效果。

      图  9  地质剖面成果图
      Figure  9.  Geological profile

      (1)综合瞬态面波与电测深成果,较为准确的推测出滑坡体的规模、形态以及滑面位置,与地质资料对比,两者具有很好的一致性。

      (2)电法勘探与面波勘探相结合,可互相验证,利于消除物探多解性,在滑坡探测中具有快速、有效、直观的特点,可在类似条件下滑坡识别进行推广应用。

      (3)由于地质体不同物性参数的差异,造成不同物探方法对地质体表现结果并不完全一致,解释时必须有效结合地质调绘及钻孔信息,去伪存真,才能发挥物探工作的作用,没有地质基础的物探解释可能会造成误判。

    • 图  1   试验图片

      Figure  1.   Experimental Setup

      图  2   各地层黄土湿陷系数e-P压缩曲线

      Figure  2.   e-P Compression curves of loess collapsibility coefficients in various strata of loess

      图  3   SWCC拟合结果图

      Figure  3.   SWCC fitting results figure

      图  4   不同深度黄土与古土壤SWCC对比图

      Figure  4.   Comparison of SWCC between loess and paleosol at different depths

      图  5   电镜扫描结果及各土层SWCC

      Figure  5.   Scanning electron microscope results and SWCC of each soil layer

      表  1   试验土样基本物理参数

      Table  1   Basic physical parameters of test soil samples

      地层 深度/m 天然含水率/% 干密度/(g·cm−3 孔隙比 饱和度/% 液限/% 塑限/% 塑性指数 液性指数
      6 m黄土(Qp) 6 21.8 1.46 0.849 70.5 33.5 21.4 12.1 0.05
      11 m古土壤(Qp) 11 19.6 1.61 0.677 78.8 35.2 22.0 13.2 <0
      15 m黄土(Qp) 15 22.3 1.40 0.933 65.1 33.8 22.2 11.7 0.05
      23 m古土壤(Qp) 23 20.8 1.55 0.745 75.9 35.4 22.2 13.3 <0
      28 m黄土(Qp) 28 22.8 1.48 0.833 75.0 33.9 22.2 11.7 0.05
      下载: 导出CSV

      表  2   各地层黄土湿陷系数

      Table  2   Loess collapsibility coefficient of various strata in loess regions

      土层 起始湿陷压力/kPa 自重湿陷系数 湿陷系数
      6 m黄土(Qp) 50 0.015 0.032
      11 m古土壤(Qp) 200 0.008 0.008
      15 m黄土(Qp) 50 0.038 0.042
      23 m古土壤(Qp) 200 0.017 0.015
      28 m黄土(Qp) 150 0.016 0.016
      下载: 导出CSV

      表  3   SWCC的VG拟合相关参数

      Table  3   VG fitting parameters of SWCC

      土层 残余体积
      含水率
      /%
      饱和体积
      含水率
      /%
      a n m R2
      6 m黄土(Qp) 7.76 45.92 0.0563 1.9913 0.4978 0.9883
      11 m古土壤(Qp) 8.63 40.37 0.0160 2.4253 0.5877 0.9997
      15 m黄土(Qp) 7.93 48.27 0.2626 1.6456 0.3923 0.9985
      23 m古土壤(Qp) 8.67 42.70 0.0315 2.527 0.6042 0.9740
      28 m黄土(Qp) 8.63 45.44 0.0799 1.9027 0.4744 0.9936
      下载: 导出CSV

      表  4   各个土层孔隙含量

      Table  4   Porosity content of each soil layer

      孔隙
      类型
      6 m黄土
      孔隙比/%
      11 m古土壤
      孔隙比/%
      15 m黄土
      孔隙比/%
      23 m古土壤
      孔隙比/%
      28 m黄土
      孔隙比/%
      大孔隙 12 6 13 8 10
      中孔隙 24 18 26 18 20
      小孔隙 20 27 18 26 24
      微孔隙 44 49 43 48 46
      下载: 导出CSV
    • [1] 雷祥义. 秦岭黄土的粒度分析及其成因初步探讨[J]. 地质学报,1998,72(2):178 − 188. [LEI Xiangyi. Grain-size analysis and genesis of loess in the Qinling mountains[J]. Acta Geologica Sinica,1998,72(2):178 − 188. (in Chinese with English abstract)]

      LEI Xiangyi. Grain-size analysis and genesis of loess in the Qinling mountains[J]. Acta Geologica Sinica, 1998, 72(2): 178 − 188. (in Chinese with English abstract)

      [2] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)]

      FAN Wen, WEI Yani, YU Bo, et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144 − 156. (in Chinese with English abstract)

      [3] 毛正君,张瑾鸽,仲佳鑫,等. 梯田型黄土滑坡隐患发育特征与成因分析——以宁夏南部黄土丘陵区为例[J]. 中国地质灾害与防治学报,2022,33(6):142 − 152. [MAO Zhengjun,ZHANG Jinge,ZHONG Jiaxin,et al. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace:Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):142 − 152. (in Chinese with English abstract)]

      MAO Zhengjun, ZHANG Jinge, ZHONG Jiaxin, et al. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace: Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 142 − 152. (in Chinese with English abstract)

      [4] 张卜平,朱兴华,成玉祥,等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报,2021,32(6):41 − 52. [ZHANG Buping,ZHU Xinghua,CHENG Yuxiang,et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):41 − 52. (in Chinese with English abstract)]

      ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 41 − 52. (in Chinese with English abstract)

      [5] 李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划——以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract)]

      LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105 − 114. (in Chinese with English abstract)

      [6] 李同录,李颖喆,赵丹旗,等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报,2022,33(2):25 − 32. [LI Tonglu,LI Yingzhe,ZHAO Danqi,et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25 − 32. (in Chinese with English abstract)]

      LI Tonglu, LI Yingzhe, ZHAO Danqi, et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 25 − 32. (in Chinese with English abstract)

      [7] 屈宏录,刘德仁,孙英萍,等. 深厚黄土地基浸水湿陷变形及竖向土压力作用分析[J]. 水文地质工程地质,2022,49(4):157 − 164. [QU Honglu,LIU Deren,SUN Yingping,et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology,2022,49(4):157 − 164. (in Chinese with English abstract)]

      QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 157 − 164. (in Chinese with English abstract)

      [8] 邵生俊,杨春鸣,马秀婷,等. 黄土的独立物性指标及其与湿陷性参数的相关性分析[J]. 岩土力学,2013,34(增刊2):27 − 34. [SHAO Shengjun,YANG Chunming,MA Xiuting,et al. Correlation analysis of collapsible parameters and independent physical indices of loess[J]. Rock and Soil Mechanics,2013,34(Sup2):27 − 34. (in Chinese with English abstract)]

      SHAO Shengjun, YANG Chunming, MA Xiuting, et al. Correlation analysis of collapsible parameters and independent physical indices of loess[J]. Rock and Soil Mechanics, 2013, 34(Sup2): 27 − 34. (in Chinese with English abstract)

      [9] 朱凤基,南静静,魏颖琪,等. 黄土湿陷系数影响因素的相关性分析[J]. 中国地质灾害与防治学报,2019,30(2):128 − 133. [ZHU Fengji,NAN Jingjing,WEI Yingqi,et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):128 − 133. (in Chinese with English abstract)]

      ZHU Fengji, NAN Jingjing, WEI Yingqi, et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 128 − 133. (in Chinese with English abstract)

      [10] 蒲虹宇,张立峰,何毅,等. 甘肃通渭黄土滑坡二维形变时序监测[J]. 中国地质灾害与防治学报,2022,33(6):114 − 124. [PU Hongyu,ZHANG Lifeng,HE Yi,et al. Time-series monitoring of two-dimensional deformation of Tongwei loess landslide in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):114 − 124. (in Chinese with English abstract)]

      PU Hongyu, ZHANG Lifeng, HE Yi, et al. Time-series monitoring of two-dimensional deformation of Tongwei loess landslide in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 114 − 124. (in Chinese with English abstract)

      [11] 张茂花. 湿陷性黄土增(减)湿变形性状试验研究[D]. 西安:长安大学,2002. [ZHANG Maohua. Experimental study on wet deformation behavior of collapsible loess[D]. Xi’an:Changan University,2002. (in Chinese with English abstract)]

      ZHANG Maohua. Experimental study on wet deformation behavior of collapsible loess[D]. Xi’an: Changan University, 2002. (in Chinese with English abstract)

      [12] 沙爱民,陈开圣. 压实黄土的湿陷性与微观结构的关系[J]. 长安大学学报(自然科学版),2006,26(4):1 − 4. [SHA Aimin,CHEN Kaisheng. Relationship between collapsibility and microstructure of compacted loess[J]. Journal of Chang’an University (Natural Science Edition),2006,26(4):1 − 4. (in Chinese with English abstract)]

      SHA Aimin, CHEN Kaisheng. Relationship between collapsibility and microstructure of compacted loess[J]. Journal of Chang’an University (Natural Science Edition), 2006, 26(4): 1 − 4. (in Chinese with English abstract)

      [13] 江耀. 非饱和黄土特征曲线的研究[D]. 兰州:兰州大学,2012. [JIANG Yao. Study on characteristic curve of unsaturated loess[D]. Lanzhou:Lanzhou University,2012. (in Chinese with English abstract)]

      JIANG Yao. Study on characteristic curve of unsaturated loess[D]. Lanzhou: Lanzhou University, 2012. (in Chinese with English abstract)

      [14] 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型[J]. 岩土工程学报,2022,44(11):2017 − 2025. [ZHANG Yuwei,SONG Zhanping,XIE Yongli. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering,2022,44(11):2017 − 2025. (in Chinese with English abstract)]

      ZHANG Yuwei, SONG Zhanping, XIE Yongli. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017 − 2025. (in Chinese with English abstract)

      [15] 康海伟. 原状黄土土-水特征曲线及孔隙特征研究[D]. 西安:长安大学,2020. [KANG Haiwei. Study on soil-water characteristic curve and pore characteristics of undisturbed loess[D]. Xi’an:Changan University,2020. (in Chinese with English abstract)]

      KANG Haiwei. Study on soil-water characteristic curve and pore characteristics of undisturbed loess[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract)

      [16] 李萍,李同录. 黄土物理性质与湿陷性的关系及其工程意义[J]. 工程地质学报,2007,15(4):506 − 512. [LI Ping,LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance[J]. Journal of Engineering Geology,2007,15(4):506 − 512. (in Chinese)]

      LI Ping, LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance[J]. Journal of Engineering Geology, 2007, 15(4): 506 − 512. (in Chinese)

      [17] 武小鹏. 基于试坑浸水试验的大厚度黄土湿陷及渗透特性研究[D]. 兰州:兰州大学,2016. [WU Xiaopeng. Study on collapsibility and permeability of thick loess based on immersion test in test pit[D]. Lanzhou:Lanzhou University,2016. (in Chinese with English abstract)]

      WU Xiaopeng. Study on collapsibility and permeability of thick loess based on immersion test in test pit[D]. Lanzhou: Lanzhou University, 2016. (in Chinese with English abstract)

      [18] 赵景波,楚纯洁,马延东,等. 陕西洛川L1~S4黄土-古土壤湿陷性及其成因研究[J]. 第四纪研究,2014,34(2):399 − 406. [ZHAO Jingbo,CHU Chunjie,MA Yandong,et al. Collapsibility from l1 loess to s4 paleosol and its causes in the Luochuan,Shaanxi Province[J]. Quaternary Sciences,2014,34(2):399 − 406. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7410.2014.02.14

      ZHAO Jingbo, CHU Chunjie, MA Yandong, et al. Collapsibility from l1 loess to s4 paleosol and its causes in the Luochuan, Shaanxi Province[J]. Quaternary Sciences, 2014, 34(2): 399 − 406. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7410.2014.02.14

      [19] 陈开圣,沙爱民. 基于数字图像处理技术压实黄土微观结构研究[J]. 公路,2009(12):152 − 7. [CHEN Shengkai,SHA Aimin. Study on microstructure of compacted loess based on digital image processing technology[J]. Highway,2009(12):152 − 7. (in Chinese with English abstract)]

      CHEN Shengkai, SHA Aimin. Study on microstructure of compacted loess based on digital image processing technology[J]. Highway, 2009(12): 152 − 7. (in Chinese with English abstract)

      [20] 陈开圣,沙爱民. 压实黄土不同含水率下微观结构特征[J]. 公路,2009(11):103 − 7. [CHEN Shengkai,SHA Aimin. Microstructure characteristics of compacted loess under different water content[J]. Highway,2009(11):103 − 7. (in Chinese with English abstract)]

      CHEN Shengkai, SHA Aimin. Microstructure characteristics of compacted loess under different water content[J]. Highway, 2009(11): 103 − 7. (in Chinese with English abstract)

      [21] 胡全. 基于电镜图像的土壤微观结构关键要素分析方法研究[D]. 杨凌:西北农林科技大学,2015. [HU Quan. Study on key elements analysis method of soil microstructure based on electron microscope image[D]. Yangling:Northwest A & F University,2015. (in Chinese with English abstract)]

      HU Quan. Study on key elements analysis method of soil microstructure based on electron microscope image[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract)

      [22] 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法[J]. 岩土力学,2022,43(7):1845 − 1853. [WANG Haiman,NI Wankui,LIU Kui. Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess[J]. Rock and Soil Mechanics,2022,43(7):1845 − 1853. (in Chinese with English abstract)]

      WANG Haiman, NI Wankui, LIU Kui. Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess[J]. Rock and Soil Mechanics, 2022, 43(7): 1845 − 1853. (in Chinese with English abstract)

      [23] 张洁,阳帅,谭泽颖,等. 基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型[J]. 工程地质学报,2022,30(2):301 − 308. [ZHANG Jie,YANG Shuai,TAN Zeying,et al. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology,2022,30(2):301 − 308. (in Chinese with English abstract)]

      ZHANG Jie, YANG Shuai, TAN Zeying, et al. Probabilistic prediction of soil water characteristic curve of unsaturated sand based on particle size distribution[J]. Journal of Engineering Geology, 2022, 30(2): 301 − 308. (in Chinese with English abstract)

      [24] 潘登丽. 土水特征曲线的基本参数和模型研究[D]. 西安:长安大学,2021. [PAN Dengli. Study on basic parameters and model of soil-water characteristic curve[D]. Xi’an:Changan University, 2021. (in Chinese with English abstract)]

      PAN Dengli. Study on basic parameters and model of soil-water characteristic curve[D]. Xi’an: Changan University, 2021. (in Chinese with English abstract)

      [25] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]中国科学,1987,(12):1309 − 18. [LEI Xiangyi. Pore types and collapsibility of loess in China [J] Scientia Sinica,1987,(12):1309 − 18. (in Chinese with English abstract)]

      LEI Xiangyi. Pore types and collapsibility of loess in China [J] Scientia Sinica, 1987, (12): 1309 − 18. (in Chinese with English abstract)

      [26] 刘鑫,苗雪青,黄良,等. 5种排水条件下饱和重塑黄土三轴剪切特性[J]. 吉林大学学报(地球科学版),2023,53(5):1499 − 1509. [LIU Xin,MIAO Xueqing,HUANG Liang,et al. Triaxial shear behavior of saturated remolded loess subjected to five drainage conditions[J]. Journal of Jilin University (Earth Science Edition),2023,53(5):1499 − 1509. (in Chinese with English abstract)]

      LIU Xin, MIAO Xueqing, HUANG Liang, et al. Triaxial shear behavior of saturated remolded loess subjected to five drainage conditions[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1499 − 1509. (in Chinese with English abstract)

      [27] 李征征,高晓雯. 重塑黄土的湿陷性与微观试验研究[J]. 科学技术与工程,2018,18(3):319 − 327. [LI Zhengzheng,GAO Xiaowen. Study on collapsibility of remolded loess by model test and evaluation of loess collapsibility[J]. Science Technology and Engineering,2018,18(3):319 − 327. (in Chinese with English abstract)]

      LI Zhengzheng, GAO Xiaowen. Study on collapsibility of remolded loess by model test and evaluation of loess collapsibility[J]. Science Technology and Engineering, 2018, 18(3): 319 − 327. (in Chinese with English abstract)

    • 期刊类型引用(6)

      1. 赵亚文,刘勇,刘长青. 小型加筋土试件电阻率响应特征. 山东交通学院学报. 2025(02): 71-76 . 百度学术
      2. 朱瑞,任云峰,熊奇,薛寒. 综合物探探测豫北灰岩区薄覆盖层隐伏断层方法研究. 水文地质工程地质. 2024(01): 154-166 . 百度学术
      3. 吴庆良,唐彬雪,王惠贤. 综合物探方法在黏土地区开挖隧道的应用. 西南大学学报(自然科学版). 2023(06): 192-200 . 百度学术
      4. 马志超,窦文武,李文,廉玉广,李汉超,李雁川,申桄会,程海林. 煤矿回采工作面内部不良地质体的多波联合探测. 中国地质灾害与防治学报. 2023(03): 83-92 . 本站查看
      5. 王小川. 物探方法在高速公路勘察中的应用. 工程技术研究. 2023(10): 36-38 . 百度学术
      6. 赵全升,孔智涵,胡舒娅,张建伟. 柴达木盆地马海盐湖地下卤水地球物理探测及应用. 吉林大学学报(地球科学版). 2023(05): 1560-1572 . 百度学术

      其他类型引用(2)

    图(5)  /  表(4)
    计量
    • 文章访问数:  203
    • HTML全文浏览量:  72
    • PDF下载量:  88
    • 被引次数: 8
    出版历程
    • 收稿日期:  2022-11-29
    • 修回日期:  2023-03-26
    • 刊出日期:  2024-04-24

    目录

    /

    返回文章
    返回