Vulnerability assessment of landslide hazards based on hazard intensity at slope level: A case study in Xiangxiang County of Hunan
-
摘要:
以斜坡为单元,基于潜在灾害强度的区域性易损性评价是地质灾害防治亟待解决的重要问题之一。以湖南省湘乡市为研究区,在采用加权信息量方法进行易发性区划的基础上,逐个提取斜坡单元最高易发值点的高程、坡高、坡度、坡向、月平均降雨量为特征参数,分别代入BP神经网络、PSO-BP神经网络、随机森林及支持向量机模型。通过训练与精度测试对比,构建基于PSO优化BP神经网络算法的滑坡体积预测模型,建立以灾害体积为灾害强度指标,以建筑密度、人口密度、财产密度等为脆弱性指标的易损性综合评价模型。针对研究区开展基于潜在灾害强度的区域性易损性评价,完成高易损区(面积占比1.5%)、中易损区(面积占比28.5%)和低易损区(面积占比70%)的区划,实现了区域性易损性评价过程中致灾体灾害强度与承灾体脆弱性的有机结合,增强了评价的客观性和科学性。
-
关键词:
- 滑坡易损性评价 /
- 滑坡体积 /
- PSO-BP神经网络 /
- 斜坡单元
Abstract:Taking a slope as a unit, the regional vulnerability assessment based on potential disaster intensity is one of the important problems to be solved urgently. In this paper, the city of Xiangxiang in Hunan is selected as the research area. On the basis of susceptibility regionalization with the weighted information value method, the elevation, slope height, slope, slope direction and monthly average rainfall of the highest prone points of slope units are extract one by one as the characteristic parameters, which are put into the BP neural network, PSO-BP neural network, random forest and support vector machine model, respectively. A landslide volume prediction model based on BP neural network algorithm optimized by PSO is constructed through training and precision test comparison. A comprehensive vulnerability evaluation model is established with disaster volume as disaster intensity index and building density, population density and property density as vulnerability indexes. Regional vulnerability evaluation based on potential disaster intensity is carried out for the study area. The divisions of high-vulnerable areas (1.5% of the total area), medium-vulnerable areas (28.5% of the total area) and low-vulnerable areas (70% of the total area) are completed, which realize the organic combination of the disaster intensity of the disaster-causing body and the vulnerability of the disaster-bearing body in the process of regional vulnerability evaluation, and enhance the objectivity and scientific nature of the evaluation.
-
0. 引言
地质灾害易发性评价是以地质环境条件为基础,参考地质灾害现状的静态因素来预测一定区域内发生地质灾害的可能性 [1]。地质灾害易发性评价方法分为定性和定量两类。定性方法主要包括专家评分 [2]、层次分析 [3]等。随着数据获取的便利、计算能力的提升以及评估模型的日趋完善,定量评价方法应用更为广泛,定量方法主要有信息量 [4]、确定性系数 [5]、证据权 [6]、逻辑回归 [7]、支持向量机 [8]、决策树 [9]、随机森林 [10]、神经网络 [11]等。其中确定性系数方法计算严密,可以解决多源数据类型的合并问题和影响因子内部不同特征区间对地质灾害易发性的影响 [12],但单一的确定性系数评价法没有考虑每个评价因素对地质灾害易发性的影响差异。逻辑回归( Logistic Regression,LR) 可以使用简单的线性回归来描述自然现象之间的复杂非线性关系,并根据影响因素与历史灾害点之间的关系确定影响因素的权重。文章基于地理信息系统,将研究区划分为栅格,选取海拔、坡度、坡向、地形曲率、归一化植被指数(Normalized Difference Vegetation Index,NDVI)、工程地质岩组、断层、道路、水系这9个孕灾、诱灾因素作为评价指标因子,采用频率比法(Frequency Ratio,FR)、确定性系数法(Certainty Factor,CF)量化评价指标因子,基于确定性系数法进行逻辑回归运算,计算研究区网格地质灾害发生的概率,得到地质灾害易发性分区图。
1. 研究方法
1.1 频率比(FR)
频率比是建立在假设地质条件、孕育地质灾害的概率相似的地区。频率比重点考虑因子类别与地质灾害发生可能性的空间相关性,定量表示环境因子各属性区间对地质灾害发生的相对影响程度 [13-15],计算方法如式(1)。
(1) 式中:FRi——频率比值;
li——某个评价因子i类属性区间发生地质灾害的 个数;
L——研究区内的总数;
si——某个评价因子i类区间的面积;
S——研究区总面积。
FRi大于 1 表明该环境因子属性区间利于地质灾害发育,值越大表示对地质灾害发育的贡献也越大;反之,FRi小于 1 表明该环境因子属性区间不利于地质灾害发育。
1.2 确定性系数模型(CF)
确定性系数模型假设将来发生地质灾害的条件和过去发生地质灾害的条件相同。CF 计算公式为:
(2) 式中:CF——地质灾害发生的确定性系数;
PPa——地质灾害在因子分类数据a中发生的条件 概率,研究中通常用因子分类a中的地质 灾害个数与因子分类a的面积比值表示;
PPS——地质灾害在整个研究区中发生的先验概率, 以研究区地质灾害总个数与研究区总面 积比值表示。
由式(2)可知,CF的变化区间为[−1,1]。正值表示地质灾害发生的确定性大,越接近1越易于发生地质灾害;负值表示地质灾害发生确定性小,越接近−1越不易于发生地质灾害;值为 0 时表示条件概率和先验概率相同,不确定是否会发生地质灾害 [5]。
1.3 基于确定性系数的逻辑回归模型(CF-LR)
逻辑回归模型是研究二分类因变量常用的多元统计分析方法。自变量Xi 为控制灾害发生的影响因子。因变量Y属于二分类变量,通常 0 代表地质灾害不存在,1 代表地质灾害存在。用线性回归来描述自然现象之间复杂的非线性关系,揭示因变量和多个自变量之间的多元回归关系,将每个评价因子视为自变量,能很好解决滑坡易发性评价中出现的二分类变量问题 [16],逻辑回归函数如式(3):
(3) 式中:P——地质灾害发生的概率;
Z——地质灾害发生概率的目标函数,表达为各因素自变量x1,x2,x3
xn的线性组合; ——逻辑回归系数;β0——常数表示在不受任何有利或不利于地质灾害发生因素影响的条件下,地质灾害发生与不发生概率之比的对数值 [17]。
通过确定性系数模型计算得到各评价因子类别的值,将其结果作为逻辑回归模型中的自变量,建立回归方程,进行逻辑回归运算,得到各评价因子的逻辑回归系数,以此进行确定性系数–逻辑回归模型(CF-LR)进行地质灾害易发性评价。
2. 实例分析
2.1 研究区概况
研究区沿河土家族自治县位于贵州省东北部,隶属铜仁市,南北长98.28 km,东西宽53 km,行政区域总面积2483.51km2,占贵州省总面积的1.4%,占铜仁市总面积的13.7%。沿河县境内有乌江及其支流洪渡河、暗溪河、白泥河、坝坨河等26条河流,河道长548.7 km,河网密度0.23 km/km2。地貌轮廓明显受地质构造控制,全县地貌“轴部成山,翼部成谷”。区内出露地层从老到新有震旦系、寒武系、奥陶系、志留系、二叠系、三叠系及第四系。受乌江切割和地层、岩性、构造的影响,在内外营力综合作用下,形成山峦叠障、沟谷纵横、复杂多样的地形地貌景观。区内历史地质灾害以滑坡、崩塌为主,共计130处,滑坡、崩塌分别占全县地质灾害的55.38%、33.85%。研究区地理位置及地质灾害分布如图1所示。
2.2 评价指标因子选取
结合研究区的地质背景、地质灾害形成条件及发育特征,初步选取海拔、坡度、坡向、地形曲率、归一化植被指数(NDVI)、工程地质岩组、距断层距离、距道路距离、距水系距离9个影响因素作为评价指标因子。数据源为沿河县地质灾害数据库、地理空间数据云平台获取研究区30 m×30 m数字高程模型(Digital Elevation Model,DEM)、1∶50 000的地质图、Google影像地图,利用ArcGIS平台通过DEM数据提取分析得到研究区坡度、坡向、地形曲率、河流网评价因子图层,通过Google影像地图矢量化得到道路数据,利用 landsat8 影像获得该区的归一化植被指数(NDVI)专题图。
2.3 评价因子相关性分析
影响地质灾害发育的因素之间存在一定的关联,当评价因子之间存在多重共线问题时,会降低模型的预测精度,因而需对评价因素进行相关性分析。利用ArcGIS计算相关矩阵如表1所示,相关性系数绝对值最大为0.324,说明本文选取的9个评价指标因子之间相关性较弱,均可纳入研究区评价模型 [18]。
表 1 评价指标因子相关性系数矩阵Table 1. Correlation coefficient matrix of evaluation index factors评价因子 海拔 坡度 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区 道路缓冲区 河流缓冲区 海拔 1 坡度 −0.009 1 坡向 0.009 0.059 1 地形曲率 0.138 0.045 −0.004 1 NDVI 0.154 0.094 −0.073 0.032 1 工程地质岩组 −0.004 0.004 −0.016 −0.010 −0.006 1 断层缓冲区 0.182 −0.002 0.002 0.004 0.024 0.104 1 道路缓冲区 0.113 0.081 0.004 0.009 0.043 0.007 0.060 1 河流缓冲区 0.324 −0.042 0.006 0.024 0.059 0.075 0.094 0.146 1 2.4 评价指标因子分析
工程地质岩组为离散型因子,根据野外地质调查以及已有分类标准进行分类,连续型指标因子分类根据地质灾害比例进行等距离划分,各指标因子分级如图2所示,利用式(1)进行频率比计算确定性系数计算,利用式(2)进行确定性系数计算,结果见表2。
表 2 评价指标因子分级、频率比、确定性系数Table 2. Evaluation index factor classification, frequency ratio and certainty coefficient评价指
标因子分级 地质灾
害频数分级面积
/km2频率比 CF 评价指
标因子分级 地质灾
害频数分级面积
/km2频率比 CF 工程地
质岩组坚硬岩组 19 908.650 0.399 −0.374 地形
曲率<−0.2 54 842.320 1.225 0.194 较坚硬岩组 12 433.841 0.528 −0.485 −0.2~0.2 41 804.509 0.974 −0.028 较软岩组 24 354.624 1.293 0.239 ≥0.2 35 836.681 0.799 −0.210 软岩组 24 156.908 2.922 0.694 道路缓
冲区/m0~200 10 121.608 1.571 0.384 软硬相间岩组 51 629.487 1.548 0.373 200~400 7 110.030 1.215 0.187 海拔/m 209~400 19 125.528 2.892 0.690 400~600 8 102.096 1.497 0.350 400~600 35 630.016 1.061 0.061 600~800 8 96.148 1.590 0.391 600~800 46 781.436 1.125 0.117 800~1000 4 91.358 0.836 −0.206 800~1000 23 557.591 0.788 −0.221 ≥1000 93 1962.270 0.905 −0.099 1000~1200 5 329.869 0.290 −0.721 河流缓
冲区/m0~200 18 292.050 1.177 0.159 1200~1408 2 59.068 0.647 −0.366 200~400 20 270.762 1.411 0.307 坡度/(°) 0~8 8 360.777 0.424 −0.589 400~600 16 276.547 1.105 0.112 8~16 44 774.534 1.085 0.083 600~800 15 263.664 1.087 0.084 16~24 47 726.415 1.236 0.202 800~1000 13 249.447 0.996 −0.005 24~32 24 407.503 1.125 0.117 ≥1000 48 1131.039 0.811 −0.198 32~40 5 150.886 0.633 −0.380 断层缓
冲区/m0~300 15 263.922 1.086 0.083 ≥40 2 63.395 0.603 −0.410 300~600 13 246.968 1.006 0.006 坡向 平面 0 9.052 0.000 −1.000 600~900 13 230.345 1.078 0.077 北 17 249.994 1.299 0.243 900~1200 10 202.012 0.946 −0.057 东北 19 325.920 1.114 0.108 1200~1500 8 176.901 0.864 −0.143 东 32 390.819 1.564 0.381 ≥1500 71 1363.363 0.995 −0.005 东南 14 338.893 0.789 −0.220 NDVI −0.02~0.1 9 219.331 0.784 −0.225 南 9 253.127 0.679 −0.333 0.1~0.2 25 459.478 1.039 0.040 西南 21 287.807 1.394 0.298 0.2~0.3 61 1008.861 1.155 0.142 西 7 326.164 0.410 −0.603 0.3~0.4 34 757.656 0.857 −0.149 西北 11 301.734 0.696 −0.315 0.4~0.54 1 38.183 0.500 −0.513 海拔高度与降雨量、植被类型、植被覆盖等有着密切的关系,影响着人类工程活动程度,因此海拔间接影响着地质灾害的发育 [19],海拔高度209~1408 m,将其分为6个类别。
坡度定量描述地面的倾斜程度,它的大小对斜坡表面径流量、斜坡表体土层剩余下滑力等都影响巨大,一定程度上影响着地质灾害发育的规模与强度 [20],研究区坡度最高达75°,以8°等间距分为5类,大于40°为1类,共计6个类别。
不同坡向与岩体结构面的组合关系差异导致地质灾害发育的程度不同 [21],将研究区坡向分为9个类别。
地形曲率是局部地形曲面在各个截面方向上形状、凹凸变化的反映,其值为正时表明边坡是凸面坡,为 0 时表明为平面坡,为负时表明边坡为凹面坡 [22],由于研究区平面坡(曲率等于0)面积极小,所以用曲率为−0.2~0.2代表近似平面坡,将其分为凹坡(<−0.2),近似平面坡(−0.2~0.2),凸坡(≥0.2)3类。
归一化植被指数(NDVI)是遥感影像中近红外波段(NIR)的反射值和红光波段(R)的反射值的差与两者之和的比值,NDVI值的范围为 [−1 , 1],负值表示对可见光高反射,地面为江、河、湖泊等水体或有雪覆盖,0表示NIR和R近似相等,为岩石或裸地等,正值表示有植被覆盖,数值越大表示植被覆盖率越高 [23],研究区NDVI在−0.02~0.54之间,将其分为5个类别。
岩土体是地质灾害发生的物质来源基础,岩石类型、坚硬程度决定岩土体的力学强度、抗风化能力和抗侵蚀能力 [19],研究区工程地质岩组分为5类,分别为坚硬岩组、较坚硬岩组、较软岩组、软岩组和软硬相间岩组。
地质构造影响着岩体结构及其组合特征,对山区地质灾害发育起着重要的控制作用 [24],利用ArcGIS领域分析功能将研究区断层以300 m等距离提取缓冲区,得到6个类别。
道路修建开挖坡体改变原有地质环境,破坏岩土体结构 [25],以200 m等距离提取道路缓冲区,得到6个类别。
河流的侵蚀、侧蚀作用影响地质灾害的发育、且河流是控制坡面侵蚀的重要原因 [26],将研究区河流200 m等距离提取缓冲区,得到6个类别。
通过对因子类别进行分类后,利用式(1)对各评价因子类别进行频率比计算,当频率比大于1时,说明该因子类别对地质灾害发育具有促进作用,如表3所示。
表 3 频率比大于1的属性区间Table 3. Attribute intervals with frequency ratio greater than 1评价因子 海拔/m 坡度/(°) 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区/m 道路缓冲区/m 河流缓冲区/m 频率比大于
1类别209~400 8~16 北 < −0.2 0.1~0.2 较软质岩 0~300 0~200 0~200 400~600 16~24 东北 0.2~0.3 软质岩 300~600 200~400 200~400 600~800 24~32 东 软硬相间质岩 600~900 400~600 400~600 西南 600~800 600~800 2.5 逻辑回归分析
利用ArcGIS以500 m距离制作灾点缓冲区,在500 m以外提取随机点130个非地质灾害点,与灾害训练样本组成训练集共计260个点。将9个评价指标因子的属性提取至训练集样本,导出后替换成评价因子的CF值导入SPSS软件中进行逻辑回归运算,各评价因子分类级别的CF值作为自变量,是否发生滑坡灾害作为因变量(0 表示未发生地质灾害,1值表示已发生地质灾害),LR-CF模型的逻辑回归运算结果如表4所示,其计算得到的所有评价指标因子的逻辑回归系数均为正数,表明所有评价指标因子对模型均起正向作用。在逻辑回归计算过程中,显著性sig ≤ 0. 05 则该回归系数有效,评价指标因子具有统计意义 [22]。
表 4 逻辑回归系数和显著性Table 4. Logistic regression coefficient and significance评价因子 海拔 坡度 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区 道路缓冲区 河流缓冲区 常量 β 3.844 2.495 3.418 4.085 1.198 4.377 3.218 0.734 2.728 2.604 sig 0.000 0.003 0.000 0.019 0.023 0.000 0.027 0.036 0.130 0.000 3. 易发性分区与评价
3.1 CF、CF-LR分区结果
基于GIS平台,将评价指标因子图层自定义添加属性字段,对应输入计算的确定性系数,利用栅格叠加得到确定性系数模型评价图,利用自然断点法将沿河县地质灾害易发性区划为低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为361.265 km2(0.159)、784.269 km2(0.414)、895.197 km2(1.003)、442.779 km2(2.718),如图3(a)和表5所示。利用栅格计算器按照公式(3)计算得到CF-LR模型地质灾害发生概率图,利用自然断点法将其分为低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为671.252 km2(0.142)、467.758 km2(0.327)、927.527 km2(0.741)、507.145 km2(3.051),如图3(b)和表5所示。CF模型和CF-LR模型地质灾害易发性等级的频率比值均从极低易发区到极高易发区明显增大,表明有效评价了研究区地质灾害易发性。CF模型和CF-LR模型计算的极高易发区频率比值分别占总频率比值为63.3%和71.6%。说明CF-LR模型比单一CF模型评价精度更高。
表 5 地质灾害易发性评价频率比值Table 5. Frequency ratio of geological hazard susceptibility evaluation评价模型 易发性
等级分级面积
/km2面积
占比灾害点
频数灾害
占比频率比 CF 低易发区 361.265 0.145 3 0.023 0.159 中易发区 784.269 0.316 17 0.131 0.414 高易发区 895.197 0.360 47 0.362 1.003 极高易发区 442.779 0.178 63 0.485 2.718 CF-LR 低易发区 671.252 0.270 5 0.038 0.142 中易发区 467.758 0.188 8 0.062 0.327 高易发区 927.527 0.373 36 0.277 0.741 极高易发区 507.145 0.204 81 0.623 3.051 3.2 精度验证
本文使用ROC曲线来表示拟合数据和实测数据之间的关系,评价成功率或有效性以AUC值来表示(图4)。曲线中纵轴为敏感度,即实际地质灾害数量百分比累加量,横轴为特异性,即易发性面积百分比累积量,ROC曲线下面积AUC值越大表明模型评估效果越好 [27-28]。CF模型和CF-LR模型AUC值分别为0.722和0.818,说明CF和CF-LR评价模型均能够较为客观准确地对沿河县地质灾害易发性进行评价,且CF法进行逻辑回归后的CF-LR模型评价精度更高。
4. 结论
(1)文中从选取的9个地质灾害影响因素的各类别的频率比值可以看出,在海拔209~800 m,坡度8°~32°,坡向朝向北、东北、东、西南,地形曲率小于−0.2,NDVI为0.1~0.3,较软质岩、软质岩、软硬相间质岩,距断层900 m、道路和河流800 m以内对沿河县地质灾害发育具有促进作用。
(2)CF模型评价低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为361.265 km2(0.159)、784.269 km2(0.414)、895.197 km2(1.003)、442.779 km2(2.718);CF-LR模型评价低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为671.252 km2(0.142)、467.758 km2(0.327)、927.527 km2(0.741)、507.145 km2(3.051)。CF模型和CF-LR模型地质灾害易发性等级的频率比值从极低易发区到极高易发区明显增大,均有效评价了研究区地质灾害易发性。CF模型和CF-LR模型计算的极高易发区频率比值分别占总频率比值为63.3%和71.6%。
(3)CF模型和CF-LR模型AUC值分别为0.722和0.818,均能够较为客观准确地对沿河县地质灾害易发性进行评价。但单一CF法没有考虑评价因素对地质灾害易发性的影响差异,在此基础上,LR法用线性回归来表示评价因子之间复杂非线性关系,考虑了评价因子的权重,使得AUC值提高了0.096,CF-LR模型具有更高的评价精度。
由于研究区的地质灾害研究样本偏少,不为理想研究实验区,将影响评价效果和精度,对地质灾害易发性评价的精度还需进一步探索。
-
表 1 斜坡单元易损性综合评价
Table 1 Comprehensive evaluation of the vulnerability of slope units
易损性等级 脆弱性等级 低脆弱性 中脆弱性 高脆弱性 灾害强度
等级弱灾害强度 低 中 中 中灾害强度 低 中 高 强灾害强度 中 高 高 表 2 研究区基础数据
Table 2 Basic data of the study area
名称 类型 精度 遥感影像 栅格 0.5 m DEM 栅格 1∶10 000 工程地质图、土地利用类型图 矢量 1∶50 000 断层图、路网图 矢量 1∶50 000 行政区划图 矢量 1∶10 000 降雨数据 数据表 − 历史灾害点 数据表 − GDP 数据表 湘乡市 人口、建筑面积、道路、财产 数据表 斜坡单元 斜坡单元面积 数据表 斜坡单元 表 3 易发性评价指标分区结果
Table 3 Partition results of the susceptibility evaluation indicators
评价指标 二级指标区间 高程/m 32~101;101~171;171~267;267~409;>409 坡度/(°) 0~6;6~17;17~28;28~40;>40 坡向 平面;北;东北;东;东南;南;西南;西;西北 工程地质岩组 硅质岩、硅质板岩;浅变质砂岩夹板岩;板岩;砂岩、砂砾岩;碳酸盐岩与碎屑岩互层;碳酸盐岩;岩浆岩;土体;红色碎屑岩;砂岩、页岩;硅质岩、硅质页岩 距断层距离/m <100;100~200;200~300;300~400;>400 距道路距离/m <100;100~200;200~300;300~400;>400 土地利用情况 耕地;林地;草地;水域;城乡、工矿居民用地;未利用土地类型 月平均降雨量/mm <100;100~150;150~200;>200 表 4 湘乡市地质灾害易发性分区结果
Table 4 Results of geological hazard susceptibility zoning in the city of Xiangxiang
易发性分区 面积比例/% 灾害点数量/个 灾害点比例/% 灾积比 高易发 8.2 216 71.3 1.430 中易发 39.3 75 24.8 0.100 低易发 52.5 12 3.9 0.012 表 5 指标因子相关性分析
Table 5 Correlation of the controlling factors
指标因子 高程 坡高 坡度 坡向 工程地质岩组 距断层距离 距道路距离 土地利用情况 月平均降雨量 滑坡体积 高程 1 0.057 −0.055 −0.036 −0.169 −0.358 0.328 0.103 0.013 0.239 坡高 1 0.042 −0.028 −0.310 −0.260 −0.199 0.168 0.034 0.333 坡度 1 −0.027 −0.428 −0.104 0.245 0.051 −0.133 −0.205 坡向 1 0.003 0.007 −0.066 −0.493 −0.123 0.196 工程地质岩组 1 0.070 0.208 −0.024 0.043 0.003 距断层距离 1 −0.211 −0.102 0.207 −0.026 距道路距离 1 0.284 0.022 0.060 土地利用情况 1 −0.047 −0.102 月平均降雨量 1 −0.313 滑坡体积 1 表 6 各模型预测结果精度对比
Table 6 Comparison of prediction accuracy of each model
测试集结果 预测正确样本量/个 预测错误样本量/个 预测精度/% BP神经网络 21 15 58.33 PSO-BP神经网络 29 7 80.56 随机森林 18 18 50.00 支持向量机 25 11 69.44 表 7 斜坡单元灾害强度等级分区结果
Table 7 Results of disaster intensity classification of slope units
预测体积分区/m³ 灾害强度等级 <15 000 弱灾害强度 15 000~45 000 中灾害强度 >45 000 强灾害强度 表 8 脆弱性评价指标组合权重结果
Table 8 Combined weight results of vulnerability assessment indicators
评价因子 权重值 人口密度 0.3072 建筑密度 0.2160 道路密度 0.2141 GDP密度 0.1607 财产密度 0.1026 表 9 斜坡单元脆弱性等级分区结果
Table 9 Results of vulnerability classification of slope units
脆弱性值分区 脆弱性等级 <0.0845 低脆弱性 0.0845 ~ 0.1750 中脆弱性 >0.1750 高脆弱性 表 10 斜坡单元易损性统计结果
Table 10 Statistical results of slope unit vulnerability
易损性分区 斜坡单元数量/个 斜坡单元数量占比/% 高易损区 124 2.6 中易损区 2 023 42.7 低易损区 2 587 54.7 -
[1] UZIELLI M,NADIM F,LACASSE S,et al. A conceptual framework for quantitative estimation of physical vulnerability to landslides[J]. Engineering Geology,2008,102(3/4):251 − 256.
[2] 许强,张一凡,陈伟. 西南山区城镇地质灾害易损性评价方法—以四川省丹巴县城为例[J]. 地质通报,2010,29(5):729 − 738. [XU Qiang,ZHANG Yifan,CHEN Wei. Vulnerability assessment of geo-hazards in southwest mountainous area:Danba County,Sichuan,China as an example[J]. Geological Bulletin of China,2010,29(5):729 − 738. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2010.05.013 XU Qiang, ZHANG Yifan, CHEN Wei. Vulnerability assessment of geo-hazards in southwest mountainous area: Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 2010, 29(5): 729-738. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2010.05.013
[3] REYES-HARDY M P,AGUILERA BARRAZA F,SEPÚLVEDA BIRKE J P,et al. GIS-based volcanic hazards,vulnerability and risks assessment of the Guallatiri Volcano,Arica y Parinacota Region,Chile[J]. Journal of South American Earth Sciences,2021,109:103262. DOI: 10.1016/j.jsames.2021.103262
[4] GUZZETTI F,ARDIZZONE F,CARDINALI M,et al. Landslide volumes and landslide mobilization rates in Umbria,central Italy[J]. Earth and Planetary Science Letters,2009,279(3/4):222 − 229.
[5] GLADE T, ANDERSON M, CROZIER M J. Landslide hazard and risk [M]. New York: John Wiley & Sons, Inc. 2005: 41-74.
[6] 彭令,牛瑞卿,赵艳南,等. 区域滑坡灾害风险评估—以长江三峡库区秭归县为例[J]. 吉林大学学报(地球科学版),2013,43(3):891 − 901. [PENG Ling,NIU Ruiqing,ZHAO Yannan,et al. Risk assessment of a regional landslide:A case of Zigui County territory in Three Gorges Reservoir[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):891 − 901. (in Chinese with English abstract) PENG Ling, NIU Ruiqing, ZHAO Yannan, et al. Risk assessment of a regional landslide: A case of Zigui County territory in Three Gorges Reservoir[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 891-901. (in Chinese with English abstract)
[7] KAYNIA A M,PAPATHOMA-KÖHLE M,NEUHÄUSER B,et al. Probabilistic assessment of vulnerability to landslide:application to the village of Lichtenstein,Baden-Württemberg,Germany[J]. Engineering Geology,2008,101(1/2):33 − 48.
[8] 薛强,张茂省,高波,等. 陕西省绥德县城区地质灾害风险评估[J]. 工程地质学报,2018,26(3):711 − 719. [XUE Qiang,ZHANG Maosheng,GAO Bo,et al. Risk assessment of geological hazards in Suide City,Shaanxi Province[J]. Journal of Engineering Geology,2018,26(3):711 − 719. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2017-205 XUE Qiang, ZHANG Maosheng, GAO Bo, et al. Risk assessment of geological hazards in Suide city, Shaanxi Province[J]. Journal of Engineering Geology, 2018, 26(3): 711-719. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2017-205
[9] 张以晨,秦胜伍,翟健健,等. 基于信息量的长白山地区泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):150 − 158. [ZHANG Yichen,QIN Shengwu,ZHAI Jianjian,et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area[J]. Hydrogeology & Engineering Geology,2018,45(2):150 − 158. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.23 ZHANG Yichen, QIN Shengwu, ZHAI Jianjian, et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 150-158. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.23
[10] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2016.06.24 TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2016.06.24
[11] 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2859 − 2870 CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 1): 2859 − 2870. (in Chinese with English abstract)
[12] 李骅锦,许强,何雨森,等. 甘肃黑方台滑坡滑距参数的BP神经网络模型[J]. 水文地质工程地质,2016,43(4):141 − 146. [LI Huajin,XU Qiang,HE Yusen,et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J]. Hydrogeology & Engineering Geology,2016,43(4):141 − 146. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2016.04.23 LI Huajin, XU Qiang, HE Yusen, et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 141-146. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2016.04.23
[13] 王念秦,朱文博,郭有金. 基于PSO-SVM模型的滑坡易发性评价[J]. 长江科学院院报,2021,38(4):56 − 62. [WANG Nianqin,ZHU Wenbo,GUO Youjin. Assessment of landslide susceptibility based on PSO-SVM model[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):56 − 62. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20200074 WANG Nianqin, ZHU Wenbo, GUO Youjin. Assessment of landslide susceptibility based on PSO-SVM model[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 56-62. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20200074
[14] 吴迪. 基于PSO-SVM的凤县公路边坡地质灾害空间预测[J]. 中国地质灾害与防治学报,2018,29(6):112 − 120. [WU Di. Spatial prediction of highway slope geo-hazards in Feng County based on PSO-SVM[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):112 − 120. (in Chinese with English abstract) WU Di. Spatial prediction of highway slope geo-hazards in Feng County based on PSO-SVM[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 112-120. (in Chinese with English abstract)
[15] 何书,鲜木斯艳·阿布迪克依木,胡萌,等. 基于自组织特征映射网络-随机森林模型的滑坡易发性评价—以江西大余县为例[J]. 中国地质灾害与防治学报,2022,33(1):132 − 140. [HE Shu,ABUDIKEYIMU XMSY,HU Meng,et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):132 − 140. (in Chinese with English abstract) HE Shu, ABUDIKEYIMU XMSY, HU Meng, et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model: A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 132-140. (in Chinese with English abstract)
[16] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价—以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:A case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.05.03 XIA Hui, YIN Kunlong, LIANG Xin, et al. Landslide susceptibility assessment based on SVM-ANN Models: a case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 13-19. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.05.03
[17] LI Zhihong,NADIM F,HUANG Hongwei,et al. Quantitative vulnerability estimation for scenario-based landslide hazards[J]. Landslides,2010,7(2):125 − 134. DOI: 10.1007/s10346-009-0190-3
[18] 李春燕,孟晖,张若琳,等. 中国县域单元地质灾害风险评估[J]. 水文地质工程地质,2017,44(2):160 − 166. [LI Chunyan,MENG Hui,ZHANG Ruolin,et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology & Engineering Geology,2017,44(2):160 − 166. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.02.24 LI Chunyan, MENG Hui, ZHANG Ruolin, et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 160-166. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.02.24
[19] 李春燕,孟晖,张若琳,等. 基于承灾体易损性的县域单元地质灾害风险评估[J]. 地质通报,2021,40(9):1547 − 1559. [LI Chunyan,MENG Hui,ZHANG Ruolin,et al. Geological hazard risk assessment based on vulnerability of disaster-bearing body at County unite scale[J]. Geological Bulletin of China,2021,40(9):1547 − 1559. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.09.014 LI Chunyan, MENG Hui, ZHANG Ruolin, et al. Geological hazard risk assessment based on vulnerability of disaster-bearing body at County unite scale[J]. Geological Bulletin of China, 2021, 40(9): 1547-1559. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.09.014
[20] 陈东景,李培英,刘乐军,等. 我国沿海城市海底地质灾害易损性评价[J]. 中国安全科学学报,2010,20(11):11 − 17. [CHEN Dongjing,LI Peiying,LIU Lejun,et al. Evaluation on submarine geological hazard vulnerability of coastal cities in China[J]. China Safety Science Journal,2010,20(11):11 − 17. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-3033.2010.11.002 CHEN Dongjing, LI Peiying, LIU Lejun, et al. Evaluation on submarine geological hazard vulnerability of coastal cities in China[J]. China Safety Science Journal, 2010, 20(11): 11-17. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-3033.2010.11.002
[21] 罗路广,裴向军,谷虎,等. 基于GIS的“8 • 8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8·8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2020.0321 LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193-202. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2020.0321
[22] 邹凤钗,冷洋洋,陶小郎,等. 基于斜坡单元的滑坡风险识别—以贵州万山浅层土质斜坡为例[J]. 中国地质灾害与防治学报,2022,33(3):114 − 122. [ZOU Fengchai,LENG Yangyang,TAO Xiaolang,et al. Landslide hazard identification based on slope unit:A case study of shallow soil slope in Wanshan,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):114 − 122. (in Chinese with English abstract) ZOU Fengchai, LENG Yangyang, TAO Xiaolang, et al. Landslide hazard identification based on slope unit: a case study of shallow soil slope in Wanshan, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 114-122. (in Chinese with English abstract)
[23] 杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract) DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese with English abstract)
[24] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.0318 ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2015.0318
[25] 张群,许强,吴礼舟,等. 南江滑坡群体积的BP神经网络模型与预测[J]. 水文地质工程地质,2015,42(1):134 − 139. [ZHANG Qun,XU Qiang,WU Lizhou,et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology,2015,42(1):134 − 139. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2015.01.23 ZHANG Qun, XU Qiang, WU Lizhou, et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 134-139. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2015.01.23
[26] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract) TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)
[27] 闫举生,谭建民. 基于不同因子分级法的滑坡易发性评价—以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng,TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods:A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.06 YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods—a case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 52-60. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.06
[28] 唐波,刘希林,尚志海. 城市灾害易损性及其评价指标[J]. 灾害学,2012,27(4):6 − 11. [TANG Bo,LIU Xilin,SHANG Zhihai. Vulnerability of urban disasters and its evaluation index[J]. Journal of Catastrophology,2012,27(4):6 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2012.04.002 TANG Bo, LIU Xilin, SHANG Zhihai. Vulnerability of urban disasters and its evaluation index[J]. Journal of Catastrophology, 2012, 27(4): 6-11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2012.04.002
[29] 刘希林,莫多闻. 泥石流易损度评价[J]. 地理研究,2002,21(5):569 − 577. [LIU Xilin,MO Duowen. Site-specific debris flow vulnerability assessment[J]. Geographical Research,2002,21(5):569 − 577. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0585.2002.05.005 LIU Xilin, MO Duowen. Site-specific debris flow vulnerability assessment[J]. Geographical Research, 2002, 21(5): 569-577. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0585.2002.05.005
-
期刊类型引用(4)
1. 陈玉波,徐世光,陈梦瑞. 以确定性系数法为基础的不同滑坡易发性评价模型对比分析——以云南保山盆地为例. 中国地质灾害与防治学报. 2025(01): 119-130 . 本站查看
2. 王喜,徐世光,陈玉波. 基于确定性系数与随机森林模型的滑坡易发性评价. 江西科学. 2025(02): 375-384 . 百度学术
3. 张蓝兮,鲁军景,彭纪超. 基于地理信息系统(GIS)的地质灾害评价现状. 中国矿业. 2024(S1): 223-229 . 百度学术
4. 刘学亮. 基于斜坡单元的地质灾害风险评价——以石城县小姑村为例. 地下水. 2024(06): 181-182+309 . 百度学术
其他类型引用(3)