ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

云南某高填方边坡对油气管道的致灾风险及CFG加固效果分析对油气管道的影响

刘章振, 阿发友, 张晶, 杨大慎, 刘小波

刘章振,阿发友,张晶,等. 云南某高填方边坡对油气管道的致灾风险及CFG加固效果分析对油气管道的影响[J]. 中国地质灾害与防治学报,2024,35(4): 115-125. DOI: 10.16031/j.cnki.issn.1003-8035.202402018
引用本文: 刘章振,阿发友,张晶,等. 云南某高填方边坡对油气管道的致灾风险及CFG加固效果分析对油气管道的影响[J]. 中国地质灾害与防治学报,2024,35(4): 115-125. DOI: 10.16031/j.cnki.issn.1003-8035.202402018
LIU Zhangzhen,A Fayou,ZHANG Jing,et al. Analysis of disaster risk to oil and gas pipelines and the effect of CFG reinforcement on high-fill slopes in Yunnan[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 115-125. DOI: 10.16031/j.cnki.issn.1003-8035.202402018
Citation: LIU Zhangzhen,A Fayou,ZHANG Jing,et al. Analysis of disaster risk to oil and gas pipelines and the effect of CFG reinforcement on high-fill slopes in Yunnan[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 115-125. DOI: 10.16031/j.cnki.issn.1003-8035.202402018

云南某高填方边坡对油气管道的致灾风险及CFG加固效果分析对油气管道的影响

基金项目: 国家自然科学基金地区科学基金项目(4226070179)
详细信息
    作者简介:

    刘章振(2000—),男,硕士研究生,主要从事地质灾害防治的学习和研究工作。E-mail:925560689@qq.com

    通讯作者:

    阿发友(1979—),男,教授,工学博士,主要从事地质灾害防治的教学和研究工作。E-mail:afayou@163.com

  • 中图分类号: P642.22

Analysis of disaster risk to oil and gas pipelines and the effect of CFG reinforcement on high-fill slopes in Yunnan

Funds: National Natural Science Foundation of China (42267020)
  • 摘要:

    文章旨在研究位于云南省安宁市的某重点建设项目中填方边坡的稳定性及对坡脚油气管道的影响。该项目于2023年初形成了长近1.6 km、最大高度约42 m的高填方边坡,由于场地规划选址的限制,在高填方边坡坡脚平行埋设有4条油气管道,边坡坡脚距离最近的管道仅有7 m,这给油气管道的安全带来了严重威胁。研究采用FLAC3D软件,分析了填方边坡对坡脚管道的影响,并探讨了在边坡坡脚布置5排CFG桩的情况下边坡的稳定性。研究结果表明:失稳滑动面仅出现在人工填土内,位于油气管道上方;填方边坡的基本稳定系数为1.305,在暴雨工况下边坡处于基本稳定状态;管道在天然工况下满足稳定性要求,但在暴雨工况下可能导致变形和破裂;边坡坡脚地基增设5排CFG桩后,暴雨工况下管道变形和椭圆度满足规范要求,边坡稳定系数提升了4.2%,但仍未满足规范安全储备要求。建议进一步采取防治措施以保证填方边坡的安全储备。

    Abstract:

    The study aims to investigate the stability of high fill slopes and their impact on oil and gas pipelines at the foot of the slopes in a key construction project located in Anning City, Yunnan Province. The project formed a high fill slope with a length of nearly 1.6km and a maximum height of about 42 m in early 2023. Due to site planning constraints, four oil and gas pipelines were buried parallel at the foot of the high-fill slope, with the closest pipeline being only 7 m away from the foot of the slope, posing a serious threat to the safety of the oil and gas pipelines. FLAC3D software was employed to analyze the influence of the fill slope on the pipelines at the foot of the slope, and to explore the stability of the slope with the installation of five rows of CFG piles at the toe. The results show that the potential failure surface exists only within the artificial fill, above the oil and gas pipelines. The basic stability factor of the fill slope is 1.305, indicating basic stability under extreme rainfall conditions. Under natural conditions, the pipeline meets the stability requirements, but may lead to deformation and rupture under heavy rainfall conditions. With the addition of five rows of CFG piles at the slope toe, pipeline deformation and ellipticity meet the specification requirements under heavy rainfall conditions, and the safety and stability coefficient of the slope increases by 4.2%, yet fails to meet the specification safety reserve requirements. Further preventive measures are recommended to ensure the safety reserve of the fill slope.

  • 图  1   填方边坡及油气管道位置关系图

    Figure  1.   Relationship between the filled slopes and the positions of oil and gas pipelines

    图  2   填方边坡现状照片

    Figure  2.   Photographs of the current condition of the filled slopes

    图  3   填方边坡典型工程地质剖面图

    Figure  3.   Typical engineering geological cross-section profile of the filled slope

    图  4   边坡模型

    Figure  4.   Schematic view of the Slope model

    图  5   油气管道模型

    Figure  5.   Oil and gas pipeline model

    图  6   FLAC3D Mohr-Coulomb失效模型

    Figure  6.   FLAC3D Mohr-Coulomb failure model

    图  7   Interface单元的力学模型

    Figure  7.   Mechanical model of interface unit

    图  8   天然工况下坡体水平位移场

    Figure  8.   Horizontal displacement field of the slope body under natural working conditions

    图  9   暴雨工况坡体水平位移场

    Figure  9.   Horizontal displacement field of the slope body under heavy rainfall conditions

    图  10   天然工况管道模拟计算结果

    Figure  10.   Simulation results of pipeline under natural conditions

    图  11   暴雨工况管道计算结果

    Figure  11.   Simulation results of pipeline under heavy rainfall conditions

    图  12   CFG桩布置剖面图

    Figure  12.   Cross-Sectional diagram of CFG pile arrangement

    图  13   CFG桩布置情况

    Figure  13.   CFG pile arrangement

    图  14   CFG桩处理后在暴雨工况下的边坡X方向位移分布云图

    Figure  14.   Contour map of X-direction displacement distribution of the slope under heavy rainfall conditions after CFG pile treatment

    图  15   CFG桩处理后在暴雨工况管道变形分布云图

    Figure  15.   Contour map of pipe distribution deformation under heavy rainfall conditions after CFG pile treatment

    图  16   CFG桩剪力与位移模拟计算结果

    Figure  16.   Simulation results of shear stress and displacement of CFG piles

    表  1   研究区地层岩性表

    Table  1   Stratigraphic lithology of the study area

    地层 代号 描述
    第四系人工填土 Qhml 2层:褐黄色,褐灰色,红褐色,稍湿,松散,成分主要为黏性土及碎石,主要分布于填方边坡区。层厚0.20~42 m,揭露平均厚度约2.49 m。回填时间短,局部经碾压
    第四系耕植土 Qhpd 1层:褐红色,稍湿,质地松散,均匀性较差。成分主要为黏性土及碎石,分布于旱地内。层厚 0.30~1.80 m,平均厚度0.61 m
    第四系坡残积黏土 Qhel+dl ②层:棕红色和褐红色的土壤,稍微湿润,主要呈硬塑状态,土质均匀。钻探揭露厚度介于0.50~22.40 m,揭露平均厚度约5.29 m
    第四系坡残积粉质黏土 Qhel+dl ③层:棕红和灰黄色的土壤,夹杂有灰白色的条带,稍微湿润,主要呈硬塑状态。土质不够均匀,局部出现混有粉砂团块和少量角砾的情况。角砾成份主要为强风化砂岩、白云岩。钻探揭露厚度介于0.90~36.30 m,揭露平均厚度约10.77 m,部分钻孔深度内未击穿该层
    震旦系灯影组白云岩 Zbdn ④层:强风化,岩石呈灰色或灰白色,具有细晶结构和层状构造,经历了强烈的风化作用。其节理和裂隙非常发育,岩芯呈碎块状,裂隙常以灰黄色粉质黏土充填。场地范围钻孔均揭露
    震旦系灯影组白云岩 Zbdn 1层:岩石呈灰色或灰白色,具有细晶结构和层状构造,风化程度中等。节理和裂隙非常发育,岩芯呈短柱状,部分地区呈碎块状
    下载: 导出CSV

    表  2   填方边坡岩土体的物理力学参数

    Table  2   Physical and mechanical parameters of the rock and soil bodies in the filled slopes

    岩土
    名称
    泊松比 天然重度
    /(kN·m−3
    饱和重度
    /(kN·m−3
    天然黏聚力
    /MPa
    饱和黏聚力
    /MPa
    天然内摩擦角
    φ/(°)
    饱和内摩擦角
    φ/(°)
    耕植土 0.20 17.0 17.5 9.0 8.5 19.0 18.5
    素填土 0.20 17.3 18.0 9.0 8.5 19.0 18.5
    黏土 0.35 18.2 18.8 35.6 27.5 25.2 22.2
    粉质黏土 0.30 18.4 19.4 41.2 31.7 26.0 22.4
    中风化白云岩 0.30 25.1 26.5 60.0 60.0 31.0 31.0
    下载: 导出CSV

    表  3   各管道参数表

    Table  3   Parameters of each pipeline

    名称 输送介质 管材参数
    云南成品油管道安曲线 95#汽油、92#汽油、0#柴油、航空煤油,
    常温密闭输送
    L415级,管径406.4 mm,壁厚7.9 mm,高频电阻焊钢管(HFW管),杨氏模量2.0 GPa,泊松比0.30,密度8500 kg/m
    云南成品油管道安保线 95#汽油、92#汽油、0#柴油,常温密闭输送 L415级,管径406.4 mm,壁厚7.9 mm,高频电阻焊钢管(HFW管),杨氏模量2.0 GPa,泊松比0.30,密度8500 kg/m
    中缅原油管道安宁支线 轻质原油,常温密闭输送 X65(L450),管径610 mm,壁厚7.9 mm,螺旋缝埋弧焊钢管,杨氏模量2.0 GPa,泊松比0.30,密度8500 kg/m
    中缅天然气管道玉溪支线 天然气,常温密闭输送 X80(L555),管径813 mm,壁厚14 mm,螺旋缝埋弧焊钢管,杨氏模量2.0 GPa,泊松比0.30,密度8500 kg/m
    下载: 导出CSV

    表  4   CFG桩单元计算参数

    Table  4   Calculation parameters of CFG pile units

    横截面积
    /m2
    弹性模量
    /GPa
    泊松比 法向及剪切耦合弹簧单位长度
    刚度/GPa 黏聚力/kPa 摩擦角/( °)
    0.785 15 0.3 130 500 20
    下载: 导出CSV
  • [1] 陈腾辉,阿发友,黑明昌,等. 输油管道纵向穿越滑坡的成灾机理研究[J]. 地质灾害与环境保护,2022,33(1):57 − 62. [CHEN Tenghui,A Fayou,HEI Mingchang,et al. Study on disaster mechanism of oil pipeline longitudinal crossing landslide[J]. Journal of Geological Hazards and Environment Preservation,2022,33(1):57 − 62. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2022.01.010

    CHEN Tenghui, A Fayou, HEI Mingchang, et al. Study on disaster mechanism of oil pipeline longitudinal crossing landslide[J]. Journal of Geological Hazards and Environment Preservation, 2022, 33(1): 57 − 62. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2022.01.010

    [2] 张佳璐. 兰成渝输油管道剑阁段滑坡稳定性及治理监测研究[D]. 成都:西南石油大学,2017. [ZHANG Jialu. Study on landslide stability and treatment monitoring of Jiange section of Lan Cheng Yu oil pipeline[D]. Chengdu:Southwest Petroleum University,2017. (in Chinese with English abstract)]

    ZHANG Jialu. Study on landslide stability and treatment monitoring of Jiange section of Lan Cheng Yu oil pipeline[D]. Chengdu: Southwest Petroleum University, 2017. (in Chinese with English abstract)

    [3] 梁政,张杰,韩传军. 地质灾害下油气管道力学[M]. 北京:科学出版社,2016. [LIANG Zheng,ZHANG Jie,HAN Chuanjun. Mechanics of oil and gas pipelines under geological hazards[M]. Beijing:Science Press,2016. (in Chinese)]

    LIANG Zheng, ZHANG Jie, HAN Chuanjun. Mechanics of oil and gas pipelines under geological hazards[M]. Beijing: Science Press, 2016. (in Chinese)

    [4] 程玉峰. 保障中俄东线天然气管道长期安全运行的若干技术思考[J]. 油气储运,2020,39(1):1 − 8. [CHENG Yufeng. Technical insights into the long-term integrity and sustainability of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2020,39(1):1 − 8. (in Chinese with English abstract)] DOI: 10.6047/j.issn.1000-8241.2020.01.001

    CHENG Yufeng. Technical insights into the long-term integrity and sustainability of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 1 − 8. (in Chinese with English abstract) DOI: 10.6047/j.issn.1000-8241.2020.01.001

    [5] 杨卫涛,苏东. 秦巴山区长输管道地质灾害发育特征及防治对策[J]. 天然气与石油,2020,38(4):130 − 134. [YANG Weitao,SU Dong. Geological hazards development characteristics and their prevention and control measures of long distance pipeline engineering in Qinba mountainous terrain[J]. Natural Gas and Oil,2020,38(4):130 − 134. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-5539.2020.04.023

    YANG Weitao, SU Dong. Geological hazards development characteristics and their prevention and control measures of long distance pipeline engineering in Qinba mountainous terrain[J]. Natural Gas and Oil, 2020, 38(4): 130 − 134. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-5539.2020.04.023

    [6]

    ZHANG Zhenping,SHENG Qian,SONG Dingfeng,et al. Stability evaluation of the high fill deposit slope subjected to rainfall considering water deterioration[J]. Bulletin of Engineering Geology and the Environment,2023,82(3):68. DOI: 10.1007/s10064-023-03083-w

    [7] 唐军. 高填方边坡在强降雨条件下稳定性分析——以攀枝花机场为例[D]. 成都:成都理工大学,2014. [TANG Jun. In high fill slope stability analysis under the condition of heavy rainfallby Panzhihua airport as an example [D]. Chengdu:Chengdu University of Technology,2014. (in Chinese with English abstract)]

    TANG Jun. In high fill slope stability analysis under the condition of heavy rainfallby Panzhihua airport as an example [D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)

    [8]

    YANG Zhou, CHENG Xiaohui. High fill slope collapse: Stability evaluation based on finite element limit analyses[J]. Transportation Geotechnics,2024,44:101156.

    [9]

    BEZUGLOVA E V,MATSII S I. Stability express-assessment of landslide prone slopes during pre-design development work on engineering protection for gas pipeline and power transmission line routes[J]. Soil Mechanics and Foundation Engineering,2017,54(2):122 − 127. DOI: 10.1007/s11204-017-9444-6

    [10] 唐培连,穆树怀,霍锦宏,等. 土体加筋技术在油气长输管道站场高填方工程中的应用[J]. 天然气工业,2017,37(9):109 − 113. [TANG Peilian,MU Shuhuai,HUO Jinhong,et al. Application of soil reinforcement technology to high fill engineering at long-distance oil and gas pipeline stations[J]. Natural Gas Industry,2017,37(9):109 − 113. (in Chinese with English abstract)] DOI: 10.3787/j.issn.1000-0976.2017.09.015

    TANG Peilian, MU Shuhuai, HUO Jinhong, et al. Application of soil reinforcement technology to high fill engineering at long-distance oil and gas pipeline stations[J]. Natural Gas Industry, 2017, 37(9): 109 − 113. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2017.09.015

    [11]

    CROFT P,HOOPES O T,WUTTIG F J,et al. Slope stabilization along a buried crude-oil pipeline in ice-rich permafrost[C]//Permafrost 2021. Virtual Conference. Reston,VA:American Society of Civil Engineers,2021:339 − 350.

    [12]

    MA Fengshan,WANG Jie,YUAN Renmao,et al. Application of analytical hierarchy process and least-squares method for landslide susceptibility assessment along the Zhong-Wu natural gas pipeline,China[J]. Landslides,2013,10(4):481 − 492. DOI: 10.1007/s10346-013-0402-8

    [13]

    TANG P,MU S,HUO J,CHEN,X. Application of soil reinforcement technology to high fill engineering at long-distance oil and gas pipeline stations. Natural Gas Industry,37(9),109 − 113.

    [14]

    WANG Hongde,CUI Tiejun. Deformation effect of buried pipeline in shield tunneling crossing thick and hard rock[J]. Advanced Materials Research,2013,639/640:961 − 964. DOI: 10.4028/www.scientific.net/AMR.639-640.961

    [15]

    HUANG Fan,LU Hongzhi,WU Zhaoming. Buried pipeline optimization in landslide area[C]//ICPTT 2011. Beijing,China. Reston,VA:American Society of Civil Engineers,2011:113 − 117.

    [16]

    ANDREWS J,GARCIA D,NELSON E J. Analyses of slope failures resulting during and after construction of a natural gas pipeline,southeastern Ohio[C]//Forensic Engineering 2022. Denver,Colorado. Reston,VA:American Society of Civil Engineers,2022:288 − 293.

    [17]

    FENG Xing,YAO Yangping,ZHANG Jian et al. Stability analysis of high fill slopes in mountainous airports[J/OL]. Mechanics and Practice,(2023-09-07)[2024-03-15]. https://lxsj.cstam.org.cn/en/article/doi/10.6052/1000-0879-23-140

    [18] 崔长吉,任晓东,李申. 利用ANSYS模拟边坡稳定性并分析其对西气东输管道的影响[J]. 科技风,2014(2):20 − 21. [CUI Changji,REN Xiaodong,LI Shen. Analysis of slope stability by ANSYS to study it’s influence to West-East Gas Pipeline Project[J]. Technology Wind,2014(2):20 − 21. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-7341.2014.02.015

    CUI Changji, REN Xiaodong, LI Shen. Analysis of slope stability by ANSYS to study it’s influence to West-East Gas Pipeline Project[J]. Technology Wind, 2014(2): 20 − 21. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-7341.2014.02.015

    [19] 中华人民共和国住房和城乡建设部. 输油管道工程设计规范:GB 50253—2014[S]. 北京:中国计划出版社,2015. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of oil transportation pipeline engineering:GB 50253—2014[S]. Beijing:China Planning Press,2015. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of oil transportation pipeline engineering: GB 50253—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)

    [20] 中华人民共和国住房和城乡建设部. 输气管道工程设计规范:GB 50251—2015[S]. 北京:中国计划出版社, 2015. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of gas transmission pipeline engineering:GB 50251—2015[S]. Beijing:China Planning Press, 2015. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of gas transmission pipeline engineering: GB 50251—2015[S]. Beijing: China Planning Press, 2015. (in Chinese)

    [21] 孙书伟,朱本珍,谭冬生. 黄土地区管道沿线填土边坡滑坡发生机理和防治对策[J]. 中国铁道科学,2008,29(4):8 − 14. [SUN Shuwei,ZHU Benzhen,TAN Dongsheng. Mechanism of filling slope landslide along pipeline in loess area and the countermeasures[J]. China Railway Science,2008,29(4):8 − 14. (in Chinese with English abstract)]

    SUN Shuwei, ZHU Benzhen, TAN Dongsheng. Mechanism of filling slope landslide along pipeline in loess area and the countermeasures[J]. China Railway Science, 2008, 29(4): 8 − 14. (in Chinese with English abstract)

    [22] 郭书太,邵景林,孙炜锋,等. 西气东输管道工程EJ065桩附近边坡稳定性分析[J]. 水文地质工程地质,2002,29(5):33 − 36. [GUO Shutai,SHAO Jinglin,SUN Weifeng,et al. Assessment on the slope stability around the EJ065 pile on the line of the gas diversion tunnel engineering from the West China to the east[J]. Hydrogeology & Engineering Geology,2002,29(5):33 − 36. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2002.05.010

    GUO Shutai, SHAO Jinglin, SUN Weifeng, et al. Assessment on the slope stability around the EJ065 pile on the line of the gas diversion tunnel engineering from the West China to the east[J]. Hydrogeology & Engineering Geology, 2002, 29(5): 33 − 36. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2002.05.010

    [23] 帅健. 管线力学[M]. 北京:科学出版社,2010. [SHUAI Jian. Pipeline mechanics[M]. Beijing:Science Press,2010. (in Chinese)]

    SHUAI Jian. Pipeline mechanics[M]. Beijing: Science Press, 2010. (in Chinese)

    [24] 王子,王栋,姜帅,等. 西气东输管道工程陕西岭湾村滑坡变形特征及成因机制分析[J]. 中国地质灾害与防治学报,2023,34(3):8 − 19. [WANG Zi,WANG Dong,JIANG Shuai,et al. Analysis on deformation mechanism of the Lingwan Village landslide in Shaanxi Province section of the west-east gas pipeline project[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):8 − 19. (in Chinese with English abstract)]

    WANG Zi, WANG Dong, JIANG Shuai, et al. Analysis on deformation mechanism of the Lingwan Village landslide in Shaanxi Province section of the west-east gas pipeline project[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 8 − 19. (in Chinese with English abstract)

    [25] 中华人民共和国建设部. 建筑边坡工程技术规范:GB 50330—2002[S]. 北京:中国建筑工业出版社,2002. [Ministry of Construction of the People’s Republic of China. Technical code for building slope engineering:GB 50330—2002[S]. Beijing:China Architecture & Building Press,2002. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Technical code for building slope engineering: GB 50330—2002[S]. Beijing: China Architecture & Building Press, 2002. (in Chinese)

    [26] 中华人民共和国住房和城乡建设部. 高填方地基技术规范:GB 51254—2017[S]. 北京:中国建筑工业出版社,2017. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for deep filled ground:GB 51254—2017[S]. Beijing:China Architecture & Building Press,2017. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for deep filled ground: GB 51254—2017[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)

    [27] 文海家,张岩岩,付红梅,等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报,2018,31(2):15 − 29. [WEN Haijia,ZHANG Yanyan,FU Hongmei,et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport,2018,31(2):15 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7372.2018.02.002

    WEN Haijia, ZHANG Yanyan, FU Hongmei, et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport, 2018, 31(2): 15 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2018.02.002

    [28] 贺三,张伊恒,梁武东. 中缅输气管道澜沧江段地震工况的应力分析[J]. 天然气技术与经济,2016,10(1):50 − 53. [HE San,ZHANG Yiheng,LIANG Wudong. Stress under seismic operation for the China-Burma gas pipeline across Lantsang River[J]. Natural Gas Technology and Economy,2016,10(1):50 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2095-1132.2016.01.015

    HE San, ZHANG Yiheng, LIANG Wudong. Stress under seismic operation for the China-Burma gas pipeline across Lantsang River[J]. Natural Gas Technology and Economy, 2016, 10(1): 50 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-1132.2016.01.015

    [29] 李宁,刘冠麟,许建聪,等. 降雨条件下抗滑桩边坡三维稳定性分析[J]. 中国地质灾害与防治学报,2018,29(3):38 − 46. [LI Ning,LIU Guanlin,XU Jiancong,et al. 3D numerical analysis of the stability of a slope reinforced with piles under rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):38 − 46. (in Chinese with English abstract)]

    LI Ning, LIU Guanlin, XU Jiancong, et al. 3D numerical analysis of the stability of a slope reinforced with piles under rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 38 − 46. (in Chinese with English abstract)

  • 期刊类型引用(6)

    1. 曾红晓,陶小郎. 盘州市鸡母滑坡发育特征及稳定性分析评价. 贵州科学. 2023(04): 81-86 . 百度学术
    2. 姚杰,李秀珍,徐瑞池. 降雨条件下拟建川藏铁路典型段潜在滑坡三维稳定性动态识别研究. 防灾减灾工程学报. 2021(03): 422-431 . 百度学术
    3. 周英博,陈航,周秋鹏,段志强,高晓晶. 输电杆塔极限荷载状态对滑坡稳定性的影响研究. 人民长江. 2021(12): 188-194 . 百度学术
    4. 麻玉山,董梦龙,陈松,丁阳波,俞正浩. 电塔塔基边坡受风荷载影响的稳定性研究. 河北工程大学学报(自然科学版). 2020(04): 63-70 . 百度学术
    5. 丁延平. 藏中联网工程塔基滑坡灾害特点分析. 科技创新导报. 2019(03): 49+51 . 百度学术
    6. 林文华,叶诚耿,王浩. 山区输电塔边坡成灾模式及塔基失效类型. 水利与建筑工程学报. 2019(06): 50-54 . 百度学术

    其他类型引用(0)

图(16)  /  表(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  27
  • PDF下载量:  50
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-04-11
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回