Quantitative risk assessment and its application for individual landslide disaster based on slope failure probability
-
摘要:
对潜在滑坡灾害实施风险评价至关重要,但在实际工程中单体滑坡灾害风险评价仍然以定性评价方法为主,由危险性和损失通过风险矩阵得到定性风险等级,存在风险标准多重性和不连续性的问题,不便于在实际工程中对风险大小进行比较并实施分类处置,还可能导致风险评价结果出现误差,误导风险处置。为此,运用概率模型定量描述滑坡灾害的稳定性,同时考虑承灾体的损失大小,得到单体滑坡灾害风险定量评价指标,提出了滑坡灾害风险曲面及风险等值线的概念,并开发相应的评估计算软件,形成了滑坡灾害风险定量评价方法,消除了传统滑坡风险矩阵带来的风险标准多重性和不连续性,提高了评估的准确性。通过对重庆市奉节县6个单体滑坡进行风险定量评价,验证了所提方法的正确性和可靠性,为滑坡灾害风险评价提供了新的途径。
Abstract:Effective risk assessment of potential landslide disasters is crucial for informed decision-making in engineering projects. In practical engineering, the risk assessment of individual landslide disasters still relies mainly on qualitative evaluation methods. The qualitative risk level is obtained through the risk matrix based on danger and loss, which poses problems of multiple and discontinuous risk standards. This makes it difficult to compare and classify risks in actual engineering, and may also lead to errors in risk assessment results, misleading risk management. To address these issues, a probability model is employed to quantitatively describe the stability of landslide disasters, considering the size of losses to the element at risk. A quantified risk index for individual landslide disasters is obtained, introducing the concept of landslide disaster risk surface and risk contour. Corresponding evaluation and calculation software are developed to form a quantified risk assessment method for landslide disasters, eliminating the multiplicity and discontinuity of risk standards brought about by traditional landslide risk matrices. The accuracy of the evaluation is improved. By conducting quantitative risk assessment on six individual landslides in Fengjie County, Chongqing, the correctness and reliability of the quantitative risk assessment method were verified, providing a new approach for landslide disaster risk assessment.
-
-
稳定系数(Fs) Fs<1.00 1.00≤Fs<1.05 1.05≤Fs<1.15 1.15≤Fs 稳定状态 不稳定 欠稳定 基本稳定 稳定 保护等级 Ⅰ Ⅱ Ⅲ EL/(万元) EL≥ 5000 5000 >EL≥500EL<500 TP TP≥500 500>TP≥100 TP<100 PI 非常重要 重要 一般 EL—经济损失;TP—受威胁者;PI—公共基础设施;
只要满足一个条件即可以定义为相应的保护等级表 3 受威胁人员数量引起的风险水平的变化
Table 3 Variations in risk levels caused by the number of endangered individuals
稳定系数:Fs=1.04 稳定状态:欠稳定 TP:99 等级:Ⅲ 风险水平:低 TP:101 等级:Ⅱ 风险水平:中等 TP:499 等级:Ⅱ 风险水平:中等 TP:501 等级:Ⅰ 风险水平:高 表 4 经济损失引起的风险水平的变化
Table 4 Variations in risk levels caused by the number of endangered individuals
稳定系数: Fs=1.04 稳定状态:欠稳定 EL(万元): 490 等级:Ⅲ 风险水平:低 EL(万元): 510 等级:Ⅱ 风险水平:中等 EL(万元): 4990 等级:Ⅱ 风险水平:中等 EL(万元): 5010 等级:Ⅰ 风险水平:高 表 5 失稳概率随稳定系数的变化范围(n=0.2)
Table 5 Variation range of failure probability with stability factor Fs (n=0.2)
Fs 0.95 1.00 1.05 1.15 P/% 60.38 50.00 40.59 25.71 表 7 失稳概率随变异系数的变化范围(Fs=1.20)
Table 7 Variation range of failure probability with coefficient of variation n (Fs=1.20)
n 0.10 0.20 0.30 P/% 4.78 20.24 28.88 表 6 失稳概率随变异系数的变化范围(Fs=0.95)
Table 6 Variation range of failure probability with coefficient of variation n (Fs=0.95)
n 0.10 0.20 0.30 P/% 70.05 60.38 56.92 表 8 重庆市奉节县6个滑坡的TP风险水平
Table 8 Ranking of TP risk for 6 landslides in Fengjie County, Chongqing
滑坡名称 分析状态 TP等级 稳定状态 失稳概率/% TP风险等级 TP风险指数 TP 风险排名 车家坝滑坡 大雨 Ⅰ 1.075
基本稳定28.52 高风险 1.589 1 火石梁滑坡 大雨 Ⅱ 1.013
欠稳定34.75 中风险 0.753 2 万家坪滑坡 大雨 Ⅱ 1.037
欠稳定31.18 中风险 0.433 3 陈家沟滑坡 大雨
高水位Ⅱ 1.069
基本稳定29.16 中风险 0.412 4 放牛坪滑坡 大雨 Ⅱ 1.065
基本稳定29.34 中风险 0.299 5 老林沟滑坡 大雨 Ⅱ 1.356
稳定11.77 低风险 0.264 6 表 9 重庆市奉节县6个滑坡的EL风险水平
Table 9 Ranking of EL risk for 6 landslides in Fengjie County, Chongqing
滑坡名称 分析状态 EL等级 稳定状态 失稳概率/% TP风险等级 EL风险指数 EL风险排名 车家坝滑坡 大雨 Ⅰ 1.075
基本稳定28.52 高风险 1.142 1 陈家沟滑坡 大雨
高水位Ⅱ 1.069
基本稳定29.16 中风险 1.091 2 火石梁滑坡 大雨 Ⅱ 1.013
欠稳定34.75 中风险 0.691 3 万家坪滑坡 大雨 Ⅱ 1.037
欠稳定31.18 中风险 0.570 4 放牛坪滑坡 大雨 Ⅱ 1.065
基本稳定29.34 中风险 0.293 5 老林沟滑坡 大雨 Ⅱ 1.356
稳定11.77 低风险 0.141 6 -
[1] 宋德光, 吴瑞安, 马德芹, 等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185 − 2197. [SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185 − 2197. (in Chinese with English abstract)] SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185 − 2197. (in Chinese with English abstract)
[2] 陶伟,胡晓波,姜元俊,等. 颗粒粒径对滑坡碎屑流动力特征及能量转化的影响——以四川省三溪村滑坡为例[J]. 地质通报,2023,42(9):1610 − 1619. [TAO Wei,HU Xiaobo,JIANG Yuanjun,et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide:A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China,2023,42(9):1610 − 1619. (in Chinese with English abstract)] TAO Wei, HU Xiaobo, JIANG Yuanjun, et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide: A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China, 2023, 42(9): 1610 − 1619. (in Chinese with English abstract)
[3] 张宇,徐宗恒,查玲珑,等.不同计算方法的云南省永胜县下院滑坡堰塞湖沉积物粒度特征及沉积历史重建[J/OL]. 中国地质(2022-08-22)[2023-07-12]. [ZHANG Yu,XU Zongheng,ZHA Linglong et al. [J/OL]Geology in China(2022-08-22)[2023-07-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1500.018.html. (in Chinese with English abstract)] ZHANG Yu, XU Zongheng, ZHA Linglong et al. [J/OL]Geology in China(2022-08-22)[2023-07-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1500.018.html. (in Chinese with English abstract)
[4] 邹凤钗,冷洋洋,陶小郎,等. 基于斜坡单元的滑坡风险识别——以贵州万山浅层土质斜坡为例[J]. 中国地质灾害与防治学报,2022,33(3):114 − 122. [ZOU Fengchai,LENG Yangyang,TAO Xiaolang,et al. Landslide hazard identification based on slope unit:A case study of shallow soil slope in Wanshan,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):114 − 122. (in Chinese with English abstract)] ZOU Fengchai, LENG Yangyang, TAO Xiaolang, et al. Landslide hazard identification based on slope unit: A case study of shallow soil slope in Wanshan, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 114 − 122. (in Chinese with English abstract)
[5] 曾斌,吕权儒,寇磊,等. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):105 − 113. [ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):105 − 113. (in Chinese with English abstract)] ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 105 − 113. (in Chinese with English abstract)
[6] 贾雨霏,魏文豪,陈稳,等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)] JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 125 − 137. (in Chinese with English abstract)
[7] ABEDINI M,GHASEMIAN B,SHIRZADI A,et al. A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment[J]. Geocarto International,2019,34(13):1427 − 1457. DOI: 10.1080/10106049.2018.1499820
[8] POURGHASEMI H R,KORNEJADY A,KERLE N,et al. Investigating the effects of different landslide positioning techniques,landslide partitioning approaches,and presence-absence balances on landslide susceptibility mapping[J]. CATENA,2020,187:104364. DOI: 10.1016/j.catena.2019.104364
[9] SHAFIZADEH-MOGHADAM H,MINAEI M,SHAHABI H,et al. Big data in Geohazard;pattern mining and large scale analysis of landslides in Iran[J]. Earth Science Informatics,2019,12(1):1 − 17. DOI: 10.1007/s12145-018-0354-6
[10] GAO Wenwei,GAO Wei,HU Ruilin,et al. Microtremor survey and stability analysis of a soil-rock mixture landslide:A case study in Baidian town,China[J]. Landslides,2018,15(10):1951 − 1961. DOI: 10.1007/s10346-018-1009-x
[11] WU Yiping,MIAO Fasheng,LI Linwei,et al. Time-varying reliability analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir based on water-soil coupling[J]. Engineering Geology,2017,226:267 − 276. DOI: 10.1016/j.enggeo.2017.06.016
[12] YANG Beibei,YIN Kunlong,XIAO Ting,et al. Annual variation of landslide stability under the effect of water level fluctuation and rainfall in the Three Gorges Reservoir,China[J]. Environmental Earth Sciences,2017,76(16):564. DOI: 10.1007/s12665-017-6898-9
[13] 重庆市城乡建设委员会. 重庆市城市地质灾害防治工程设计规范:JTG D70—2004[S]. 重庆:2004. [Chongqing Urban Rural Development Committee E. C. S. i (2004) Code for design of geological hazard control engineering:JTG D70—2004[S]. Chongqing:2004. (in Chinese)] Chongqing Urban Rural Development Committee E. C. S. i (2004) Code for design of geological hazard control engineering: JTG D70—2004[S]. Chongqing: 2004. (in Chinese)
[14] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 滑坡防治工程勘查规范:GB/T 32864—2016[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Code for geological investigation of landslide prevention:GB/T 32864—2016[S]. Beijing:Standards Press of China,2017. (in Chinese)] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Code for geological investigation of landslide prevention: GB/T 32864—2016[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[15] 解明礼,巨能攀,刘蕴琨,等,崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2022,48(5):184 − 191. [XIE Mingli,JU Nengpan,LIU Yunkun,et. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology. 2022,48(5):184 − 191(in Chinese with English abstract)] XIE Mingli, JU Nengpan, LIU Yunkun, et. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology. 2022, 48(5): 184 − 191(in Chinese with English abstract)
[16] 吴越,刘东升,孙树国,等. 岩土强度参数正态–逆伽马分布的最大后验估计[J]. 岩石力学与工程学报,2019,38(6):1188 − 1196. [WU Yue,LIU Dongsheng,SUN Shuguo,et al. Maximum posteriori estimation of strength parameters for geotechnical material obeying normal-inverse Gamma distribution[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1188 − 1196. (in Chinese with English abstract)] WU Yue, LIU Dongsheng, SUN Shuguo, et al. Maximum posteriori estimation of strength parameters for geotechnical material obeying normal-inverse Gamma distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1188 − 1196. (in Chinese with English abstract)
[17] 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 5版. 北京:高等教育出版社,2019. [SHENG Zhou,XIE Shiqian,PAN Chengyi. Probability and mathematical statistics[M]. 5th ed. Beijing:Higher Education Press,2019. (in Chinese)] SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability and mathematical statistics[M]. 5th ed. Beijing: Higher Education Press, 2019. (in Chinese)
[18] VAN DAO D,JAAFARI A,BAYAT M,et al. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility[J]. CATENA,2020,188:104451. DOI: 10.1016/j.catena.2019.104451
[19] CHEN Wei,SHAHABI H,SHIRZADI A,et al. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4397 − 4419. DOI: 10.1007/s10064-018-1401-8
[20] 吴越,向灵均,吴同情,等. 基于受灾体空间概率的滑坡灾害财产风险定量评估[J]. 岩石力学与工程学报,2020,39(增刊2):3464 − 3474. [WU Yue,XIANG Lingjun,WU Tongqing,et al. Quantitative assessment of property risk of landslide disaster based on spatial probability of affected body[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3464 − 3474. (in Chinese with English abstract)] WU Yue, XIANG Lingjun, WU Tongqing, et al. Quantitative assessment of property risk of landslide disaster based on spatial probability of affected body[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3464 − 3474. (in Chinese with English abstract)
-
期刊类型引用(32)
1. 陈新宇,罗益辉,曾飞云. 浅谈高速公路崩塌堆积体稳定性评价. 中国水运. 2025(03): 141-144 . 百度学术
2. 林孟铭,赵建军,邓杰,李清淼. 厚层硬岩采动斜坡溃屈破坏规律研究. 地质灾害与环境保护. 2024(01): 33-40 . 百度学术
3. 马杰,何开明,常文斌,邢爱国. 基于离散元的采空诱发山体滑塌失稳模式研究. 水文地质工程地质. 2024(03): 171-179 . 百度学术
4. 杨昌文,李军,罗天贤. 采动作用下反倾斜坡变形破坏过程研究——以某矿山崩塌灾害为例. 西部探矿工程. 2024(09): 14-19 . 百度学术
5. 曾红晓,赖琪毅. 黔西盘州市重点区域地质灾害特征及形成条件浅析. 贵州科学. 2023(02): 69-73 . 百度学术
6. 张会仙. 纳雍县“12·3”崩滑地质灾害形成机理及失稳模式. 甘肃水利水电技术. 2023(03): 53-56 . 百度学术
7. 刘新荣,冉乔,熊飞,李滨,杨忠平. 采动和降雨影响下含深大裂隙岩溶山体破坏机制. 重庆大学学报. 2023(06): 1-13 . 百度学术
8. 高杨,殷跃平,李滨,张晗,吴伟乐. 考虑颗粒状态转化的高位远程滑坡数值模拟方法. 岩石力学与工程学报. 2023(07): 1623-1637 . 百度学术
9. 周迎,易武,刘朝,敖亮,贲琰棋. 湖北地区不同岩性崩塌破坏过程及防护措施分析. 河南科技. 2023(12): 101-105 . 百度学术
10. 蔡培,王刘文,王彤标,胡应全,陈金宏. 基于运动特征分析的高陡边坡崩塌落石防治措施建议. 地质灾害与环境保护. 2023(03): 23-27+35 . 百度学术
11. 陈红旗,方志伟,祁小博. 地质灾害危害程度分级标准优化研究. 灾害学. 2023(04): 18-22 . 百度学术
12. 王猛,何德伟,贾志宏,胡至华. 基于多源遥感数据的高位滑坡特征分析——以广元市利州区荣山镇岩窝村滑坡为例. 中国地质灾害与防治学报. 2023(06): 57-68 . 本站查看
13. 罗刚,程谦恭,沈位刚,凌斯祥,张晓宇,邹鹏,赵永杰. 高位高能岩崩研究现状与发展趋势. 地球科学. 2022(03): 913-934 . 百度学术
14. 高杨,殷跃平,李壮,李滨,吴伟乐,张晗. 高位远程岩质滑坡动力解体效应研究. 岩石力学与工程学报. 2022(10): 1958-1970 . 百度学术
15. 廖德武,郑冰,杜艳松,张君恺,兰中孝,吴正超. 兴仁“6·10”彭家洞高速滑坡运动特征与形成机理. 地质科技通报. 2022(06): 66-76 . 百度学术
16. 熊绍真,史文兵,彭雄武,王勇. 基于离散元的普洒崩塌过程分析研究. 自然灾害学报. 2022(05): 202-211 . 百度学术
17. 李洪梁,高波,张佳佳,田尤,陈龙,黄海,王灵,李宝幸. 内外动力地质作用耦合的崩塌形成机理研究:以藏东昌都地区上三叠统石灰石矿山采场崩塌为例. 地质力学学报. 2022(06): 995-1011 . 百度学术
18. 夏相骅,刘德成,李玉倩,高雪媛. 北京雁栖镇典型危岩基本特征及稳定性分析. 中国地质灾害与防治学报. 2021(01): 28-34 . 本站查看
19. 朱赛楠,殷跃平,王猛,朱茂,王晨辉,王文沛,李俊峰,赵慧. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例. 岩土工程学报. 2021(04): 688-697 . 百度学术
20. 任广丽,傅宇浩,李立云. 边坡工程灾变监测预警研究述评. 防灾科技学院学报. 2021(01): 6-16 . 百度学术
21. 赵永辉,王黎,任才让旦主,王赟,杨金华,洛桑次仁. 中国西藏高海拔河谷崩塌灾害及其生态效应研究. 河北地质大学学报. 2021(02): 84-88 . 百度学术
22. 胡鹏飞. 西(乡)—镇(巴)高速公路危岩工程地质分析及治理设计. 中外公路. 2021(S2): 1-5 . 百度学术
23. 刘小平,田延哲,曹晓毅,刘元均. 多煤层开采条件下高陡山体变形控制. 煤炭科学技术. 2021(11): 180-190 . 百度学术
24. 熊飞,刘新荣,冉乔,李滨,钟祖良,杨忠平,周小涵. 采动-裂隙水耦合下含深大裂隙岩溶山体失稳破坏机理. 煤炭学报. 2021(11): 3445-3458 . 百度学术
25. 钟祖良,高国富,刘新荣,王南云,李皓. 地下采动下含深大裂隙岩溶山体变形响应特征. 水文地质工程地质. 2020(04): 97-106 . 百度学术
26. 杨忠平,蒋源文,李滨,高杨,刘新荣,赵亚龙. 采动作用下岩溶山体深大裂隙扩展贯通机理研究. 地质力学学报. 2020(04): 459-470 . 百度学术
27. 郭静芸,李守定,李滨,李晓,毕鑫涛,方然可. 岩溶山区崩滑灾害变形破坏地质模式分类. 中国岩溶. 2020(04): 478-491 . 百度学术
28. 崔芳鹏,李滨,杨忠平,吴乐乐,李宁,彭健全. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析. 中国岩溶. 2020(04): 524-534 . 百度学术
29. 刘传正. 崩塌滑坡灾害风险识别方法初步研究. 工程地质学报. 2019(01): 88-97 . 百度学术
30. 槐永波,赵其苏,景远亮. 四川省北川县“2016.9.5”李家湾滑坡特征及成因机制分析. 水利水电快报. 2019(07): 27-30+42 . 百度学术
31. 李小玲,胡才源,孙全福,张忠. UDEC软件对矿山采空区崩塌过程进行应力分布的研究. 贵州地质. 2019(03): 254-260 . 百度学术
32. 汪庆一. 猴山水库左岸边坡崩塌变形破坏特征研究. 陕西水利. 2018(05): 104-105+108 . 百度学术
其他类型引用(19)