ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

黄土地震滑坡研究综述与展望

钱法桥, 邓亚虹, 刘凡, 门欢

钱法桥,邓亚虹,刘凡,等. 黄土地震滑坡研究综述与展望[J]. 中国地质灾害与防治学报,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
引用本文: 钱法桥,邓亚虹,刘凡,等. 黄土地震滑坡研究综述与展望[J]. 中国地质灾害与防治学报,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
QIAN Faqiao,DENG Yahong,LIU Fan,et al. A review of earthquake-induced loess landslides research and future prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020
Citation: QIAN Faqiao,DENG Yahong,LIU Fan,et al. A review of earthquake-induced loess landslides research and future prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 5-20. DOI: 10.16031/j.cnki.issn.1003-8035.202401020

黄土地震滑坡研究综述与展望

基金项目: 国家自然科学基金项目(41772275)
详细信息
    作者简介:

    钱法桥(1997—),男,重庆云阳人,博士研究生,主要从事地质灾害及地震工程方面的研究。E-mail:2020226080@chd.edu.cn

    通讯作者:

    邓亚虹(1978—),男,湖南安化人,教授,博士,主要从事土动力学及地震工程方面的研究。E-mail:dgdyh@chd.edu.cn

  • 中图分类号: P642.22

A review of earthquake-induced loess landslides research and future prospects

Funds: National Natural Science Foundation of China(41772275)
  • 摘要:

    黄土地区地貌形态复杂,地震频发,地震滑坡灾害严重。黄土地震滑坡受多种因素影响,包括黄土边坡地形地貌、地层岩性、动力响应,黄土强度和动力特性,水文地质条件等。目前,黄土地震滑坡研究主要采用室内试验、物理与数值模型试验、野外调研、遥感与监测等手段,研究内容包括黄土地震滑坡成因机理、发育特征与分布、滑坡动力响应和稳定性等方面。文章阐述了黄土地震滑坡国内外研究现状,介绍了一种考虑地震波动特性的拟动力评价方法,并对基于拟动力法开展黄土地震滑坡研究进行了展望。通过分析黄土地震滑坡力学成因机制、研究黄土滑坡地震液化现象、讨论黄土地震滑坡失稳特征,提出能够精确评价黄土地震滑坡稳定性的计算方法,可以为黄土地区防震减灾提供理论依据,也是今后研究的重点。

    Abstract:

    The loess region is characterized by complex geomorphological patterns. This region is prone to frequent earthquakes with serious seismic landslide disasters. Loess seismic landslides are affected by a variety of factors, including the topography and geomorphology of loess slopes, stratigraphic lithology, dynamic responses, strength and dynamic characteristics of loess, and hydrogeological conditions. Current research on loess seismic landslides primarily involves laboratory experiments, physical and numerical simulations, field investigations, and remote sensing and monitoring techniques. The research focuses on the mechanisms, development characteristics, distribution, dynamic responses, and stability of loess seismic landslides. This paper reviews the current state of both domestic and international research on loess seismic landslides, introduces the pseudo-dynamic method that considers seismic wave propagation characteristics, and outlines future research prospects based on this method. By analyzing the mechanics mechanisms of loess seismic landslide, investigating the seismic liquefaction phenomena of loess landslides, and discussing the instability characteristics of these landslides, this study proposes a calculation method to accurately evaluate the stability of loess seismic landslides. This research can provide a theoretical basis for earthquake disaster prevention and mitigation in loess areas, and it represents a key focus for future studies.

  • 我国是世界上滑坡地质灾害最为发育的国家之一,国内每年发生的滑坡地质灾害约占全国地质灾害总量的七成[1]。其中,地震是触发滑坡的重要因素[2]。2008年5月12日14时28分,四川省汶川县映秀镇发生里氏8.0级强烈地震[3],共造成69 227人遇难,17 923人失踪,受伤人数达37.46万人[4]。经调查,汶川大地震共触发15000余处山体滑坡、崩塌、泥石流,估计直接造成2万人死亡[5]。当特大地震袭来时,除保证建筑物稳定外,也理应保证重点斜坡的稳定性。

    接近地球表面的岩层中弹性波传播所引起的震动称为地震,按其成因类型可分为构造地震、火山地震和陷落地震[6]。历史上造成严重灾难性后果的地震事件往往属于构造地震[711]。我国地处欧亚板块东部,与太平洋板块及印度洋板块接壤[1214],欧亚地震带和环太平洋地震带均与我国紧密相关。我国内部又可细分为9个一级构造单元和56个二级构造单元[13],剧烈的构造活动使得我国地震频发。纵观人类历史,第一次有史料记载的强震发生于公元前780年[15],位于我国宝鸡。1556年发生的华县地震,死亡人数超过83万,民房、官署、庙宇、书院荡为废墟,是全球历史上记录死亡人数最为严重的一次地震[16]

    我国地貌形态复杂多变,强地震引发的次生灾害严重,特别是我国西南山区及西北地区,沟壑纵横、自然边坡随处可见。随着我国一系列重大战略计划的实施和经济的发展,加大了对地质环境的扰动,使得原本稳定的边坡安全性降低。当强地震发生后,往往会诱发大量的山体滑坡。因此,研究地震边坡稳定性对保障国民经济稳定健康发展、人民安居乐业具有重要意义。

    我国具有全世界分布面积最广、厚度最大、成因类型最复杂的黄土沉积区域[17]。包括黄土类土在内,中国黄土分布面积可达64×104 km2。主要分布于黄河中上游的陕西、甘肃、宁夏、山西、青海、河南等省份,我国东北、河北、山东、内蒙古和新疆等地也零星分布[1819]。黄土高原是我国黄土主要分布区域,属于风成沉积,沉积厚度大。第四纪以来形成的风积黄土覆盖于地表欠压密的应力历史,形成了黄土特殊的支架孔隙结构[20]。在遇水后黄土表现出强水敏性,骨架结构遭受破坏。颗粒发生偏转、滑移和重组[21],表现出强度降低、变形增大的性质。

    黄土高原地处干旱大陆性季风地区,降水稀少且较为集中,植被稀松,地表土易受流水裹挟冲刷。在长期水流作用下,逐渐形成目前千沟万壑、地貌复杂的黄土高原(图1),具有黄土塬、黄土梁、黄土峁和河谷阶地等多种地貌形态。并且随着人类工程活动在黄土高原地区不断增加,形成了形状各异的人工边坡。这些边坡除少数敏感斜坡外,在正常条件下基本都是稳定的。然而在降雨、地震等极端环境下[2225],容易滑动造成灾害。截至2022年,黄土地区(及其周边)共记录到6级及以上破坏性地震54次(张振中[17]、中国台网正式地震目录)。其中7级以上强震共22次,8级及以上破坏性地震共6次。

    图  1  黄土高原梁、峁、丘陵地貌[20]
    Figure  1.  The loess ridges, hillocks, and hill landscapes of the loess plateau[20]

    关于我国黄土地震滑坡的研究可追溯至20世纪20年代,Close等[26]在海原地震发生后对震后滑坡开展了详细考察,为后续黄土地震滑坡灾害研究积累了宝贵资料。16世纪至今,黄土地区共记载较大规模黄土地震滑坡数十余次[27]。1556年华县大地震[2829],1645年天水地震[30],1718年通渭地震[31],1920年海原地震[3233]以及其余相关地震[3435]等均产生了不同程度的黄土地震滑坡灾害。自然资源部2022年《全国地质灾害防治“十四五”规划》中表明,黄土高原地区崩塌滑坡泥石流等自然灾害易发性程度较高,多为中易发区及高易发区(图2)。加之黄土高原及周边地区地震频发(图3),使得黄土高原地区地震滑坡灾害严重。

    图  2  黄土高原地区崩塌、滑坡、泥石流、、地面塌陷易发程度图
    Figure  2.  Susceptibility to avalanches, landslides, debris flows, and surface collapses in the loess plateau
    图  3  黄土高原及周边地区地震分布[36]
    Figure  3.  Earthquake distribution in the loess plateau and surrounding areas[36]

    国内黄土地震滑坡相关研究主要始于20世纪70年代末80年代初[27],随着西北战略地位的不断提高,黄土地震滑坡相关研究逐渐丰富。直至20世纪90年代末,黄雅虹、张振中等研究学者对黄土地震滑坡的形成机理、发育特征进行了大量研究[17, 3740]。目前,关于黄土地震滑坡的研究已然成为一个热点话题。

    王兰民[27]指出,黄土因其微结构具有特殊的动力特性,在地震作用下,表现出很高的地震易损性。在承受动荷载时,黄土结构受到破坏并且孔隙水压力上升,容易出现震陷、液化等现象。在不同动荷载情况下,黄土表现出的特点有所不同。当动荷载较小时,黄土以应力应变关系为主,在大动荷载情况下,震陷是主要问题,强度问题次之[41]

    黄土地震滑坡的变形与破坏与黄土本身动力特性有关,黄土的动力特性影响了黄土边坡破坏的机理和规模。其动力特性往往体现在动模量、动强度、动孔压、阻尼比等参数变化规律之中[4244]。Carey等[45]通过对原状黄土和重塑黄土进行剪切试验,讨论了孔隙水压力对黄土试样破坏和体积变化的影响。Wu等[46]在同一干密度条件下对宁夏、山西、甘肃三处黄土进行了原状黄土、饱和黄土和重塑黄土的三轴试验,研究了初始结构参数随围压和含水率的变化情况。Wang等[47]基于摩尔-库伦强度准则,通过动三轴试验研究了西宁、兰州、西吉、西安等地原状黄土的动强度特性。Qiao等[48]基于前人研究成果,对海原黄土进行了研究。研究表明,该地区黄土物理性质指标变异系数相对稳定,但力学性质较为离散。在前人研究基础上, Wei等[49]、Wang等[4751]对马兰、离石等不同年代黄土的动力特性也进行了研究。为模拟黄土地区反复地震的现象,Liu等[52]对黄土动荷载预加载,对加载后黄土进行了循环荷载剪切试验。试验结果表明,在不同含水量情况下,黄土的变形和孔隙水压力容易受到预加载应力的影响。Wang等[53]通过室内动三轴试验,研究了天水地区黄土的动力特性。Cheng等[54]通过总结前人研究成果,分析了不同地区(兰州、西安、太原等)黄土的动力参数特征,研究了不同固结比、含水率和振次下黄土的动力参数变化趋势。

    基于此,黄土地震滑坡研究主要围绕其形成机理[5558]、分布与发育特征[31, 5962]、稳定性评价和影响因素[6364]、边坡动力响应[6567]及黄土边坡地震液化[6871]等方面。

    国内外研究成果表明[55, 7275],黄土地震滑坡形成机理主要有液化型、剪切型和震陷型3种。液化型黄土滑坡是指饱和或近似饱和的黄土边坡在反复地震动作用下,土体内部孔隙水压力上升形成超静孔隙水压力导致有效应力降低、土体抗剪强度减弱甚至丧失抗剪能力,最终导致边坡滑动的现象。黄土震陷型地震滑坡是指完全发生于黄土层中,没有地下水参与,土体保留一定的抗剪强度却表现出流滑等宏观特征的滑坡。剪切型地震滑坡是指黄土边坡在地震力的作用下,边坡内剪应力超过其抗剪强度,形成贯通弧形剪切带发生滑动,震陷及液化现象不明显。

    王兰民[27]通过对1920年海原地震、1718年通渭地震诱发滑坡开展现场考察,发现黄土地震滑坡大致可分为如下三种特征:1. 坡体土质疏松,坡角平缓且规模巨大,土层呈流滑形态表现出震陷崩塌失稳特征;2. 坡体土质密实,滑动面沿黄土、红层交界面或切入第三纪红层内,呈现地震惯性力与重力双重影响下的剪切失稳特征;3. 坡体底部湿度大,土体发生液化表现出液化失稳特征。Shang等[76]对宁夏西吉县和原州区地震诱发滑坡进行了调查,分析了黄土地震滑坡的空间分布特征,将黄土地震滑坡分为地震力引起的黄土滑坡、地震液化引起的黄土滑坡和震陷-液化型黄土滑坡。Zhong等[77]应用遥感影像解译的方法,通过GIS探讨了黄土滑坡与影响因子间的关系,阐述了研究区黄土地震滑坡的分布特征。Li等[78]探讨了1654年天水地震诱发滑坡的分布特征与地震烈度、震中距、原始坡角和黄土脊走向等参数的关系,提出黄土地震滑坡的滑动方向不仅与黄土脊走向和地震传播方向有关,而且黄土厚度和地层结构可能是控制滑坡发展的主要因素。陈永明等[79]对1654年天水南地震、1718年通渭地震、1920年海原地震、1927年古浪地震等4次地震诱发147处黄土滑坡调查研究,总结了4次地震滑坡的分布和发育特征。结果表明黄土地震滑坡一般发生在具有一定临空高度和厚度的马兰黄土中,其展布形态较为复杂,空间分布不均匀。王兰民等[80]通过对海原地震已有震害调查资料和野外调查发现,海原地震作用下黄土地震滑坡往往表现出如下特点:

    ①滑坡密集区斜坡缓,震前稳定性高;

    ②滑动土体规模大,滑速快,滑距长;

    ③滑坡成群连片,形成串珠状堰塞湖;

    ④4. 滑动面大多位于马兰黄土层或黄土-基岩接触面;

    ⑤黄土液化可以触发大规模黄土滑坡。

    在地震作用下,黄土边坡的动力响应特征研究方面,王尚等[81]通过大型振动台试验,使用时程分析、小波包和反应谱分析相结合的方法,研究了黄土边坡的动力响应特征。张兴臣等[82]通过振动台试验,分析了地震作用下,黄土边坡的动力响应特征,并将响应过程划分为三个阶段,即弹性阶段、塑型阶段和破坏阶段。张彬等[83]使用离心机模型试验和FLAC3D数值模拟软件,探究了黄土边坡的动力响应特征,提出了估算黄土边坡震陷量的计算方法。孙文等[84]通过振动台试验,讨论了不同黄土边坡坡度对失稳形态的影响,并讨论了黄土边坡的动力失稳过程[85]。田欣欣等[86]采用有限元法,研究了不同黄土暗穴影响下,黄土高边坡路基的动力响应规律,分析了黄土暗穴对路基的动力放大效应。万金侠等[87]通过大型振动台试验,利用小波分析能量提取工具,讨论了黄土边坡在不同频带的动力响应。邵帅等[88]通过离心机物理模型试验,研究了黄土边坡不同部位的加速度动力响应,给出了不同部位的放大系数。施艳秋等[89]在大型振动台物理模型试验的基础上,通过小波分析将土压力时程曲线分解,得到了黄土滑坡的动土压力特征。陈金昌等[90]通过大型振动台试验,阐述了地震对纯黄土边坡的放大效应,讨论了不同地震烈度下,纯黄土边坡的破坏形式。夏坤等[91]应用大型振动台模拟试验和Abaqus分析软件,探讨了汶川地震作用下,黄土塬平台场地地表加速度的动力响应问题。张泽林等[92]利用离心机和数值模拟,讨论了地震波振幅对黄土-泥岩类边坡动力响应的影响规律。

    在地震作用下,饱和或近似饱和黄土体内产生超静孔隙水压力,使得有效应力降低、抗剪强度减弱,更容易发生滑动。在黄土液化滑坡方面,常晁瑜等[68]应用PFC2D颗粒流离散单元法,分析了地震液化现象对滑坡运动的影响。张子东等[69]基于室内试验和数值模拟,阐述了非饱和黄土滑坡的液化过程,表明非饱和黄土层孔压响应具有滞后性。吴志坚等[70]分析了永光村地震滑坡机理,研究表明震前持续强降雨和地震荷载作用下,黄土层被弱化,表层黄土开始液化并触发滑坡。张晓超等[71]通过现场勘察和动三轴试验,研究了饱和黄土的液化特性,基于此探讨了党家岔地震滑坡的演化机制。芮雪莲等[93]通过动三轴试验,分析了黄土动力状态下应力-应变-动孔压关系,探讨了饱和黄土的液化强度和稳态强度,提出了坡体是否发生流滑破坏的判别标准。张晓超等[94]以石碑塬滑坡黄土为研究对象,通过对黄土试样进行动三轴试验,研究了黄土液化应力比与黄土颗粒组成、土体微观参数和饱和度的关系。Pei等[95]研究表明饱和松软黄土受循环剪切应力后,超静孔隙水压力不断增大,塑性变形迅速发展且强度降低,并阐述了石碑塬滑坡的形成机理。

    目前,地震边坡稳定性分析方法主要有拟静力法、动力时程分析方法、Newmark永久位移法,以及拟动力分析方法[96100]。地震边坡拟静力分析方法[2223, 101104]将地震惯性力简化为大小不变的力施加于土体使边坡滑动,表现为水平地震力系数kh和垂直地震力系数kv,使土体受水平地震荷载Fh=khW及垂直地震荷载Fv=kvW。动力时程分析方法直接向模型输入地震动时程,通过数值软件分析地震边坡稳定性。Newmark永久位移法假设滑动土体为刚体,基于地震动时程计算滑坡地震过程中的永久位移,进而评价地震边坡稳定性。1950年,Terzaghi[105]提出,对一般性地震kh=0.1,对破坏性地震kh=0.2,对灾难性地震kh=0.5。1966年,Kramer[106]考虑竖向地震力和水平地震力的综合影响,讨论了地震边坡的稳定性。之后,Seed[107108]基于拟静力法,研究了大坝地震稳定性影响因素和破坏方式,讨论了坝体边坡稳定性和变形的评价方法。拟静力法原理简单,适用性强,广泛应用于我国多个规范[109112]及理论研究[113114]中。

    在地震作用下,黄土边坡稳定性研究方面,袁中夏等[115]采用Plaxis 3D数值模拟软件,通过输入地震动时程、完全流固耦合和强度折减等方法,讨论了地震后不同降雨工况下高填方边坡的稳定性。李旭东等[116]使用振动台模型试验和有限元数值模拟的手段,讨论了强震和坡顶建筑共同作用对黄土边坡稳定性的影响。刘畅等[117]使用并行电法对税湾某黄土地震滑坡进行了精细分层探查,确定了主滑面强度参数,构建了精确数值模型。在此基础上,计算了自然状态、小震和大震情况下边坡的安全稳定性系数,并讨论了该黄土滑坡的变形破坏过程。陈亚光[118]基于摩尔-库伦强度准则,利用有限元分析软件,采用强度折减法计算了某处黄土边坡的静力、动力安全稳定性系数。闫东晗等[119]通过拟静力强度折减法,研究了不同地震动强度和岩土体强度指标对黄土-泥岩二元结构型边坡稳定性的影响。孙萍等[120]通过野外调查、室内试验和FLAC3D数值模拟等手段,评价了地震作用下黄土-泥岩类边坡的稳定性。

    然而,目前国内外通过拟动力法评价黄土地震边坡稳定性的相关研究较少。为进一步深化拟动力法理论研究,推广拟动力法在黄土地震滑坡稳定性评价、黄土地震滑坡灾害范围分析预测、黄土地区震后应急抢险中的应用,对拟动力法相关原理和研究进展进行介绍。

    拟动力法作为一种有效简化地震荷载的手段,最初被应用于挡土墙稳定性计算。Steedman等[100]首先于1990年提出将随机的地震波简化为简谐函数式,见式(1),从基底垂直入射,进而计算得到挡土墙在地震情况下所受土压力的大小。

    $$ {a_{\mathrm{h}}}(t) = {k_{\mathrm{h}}}g\sin (2\text{π} ft) $$ (1)

    式中:ah(t)——t时刻土体的水平加速度/(m·s−2);

    kh——简谐波幅值;

    g——重力加速度/(m·s−2);

    f——简谐波频率/Hz。

    之后,Zeng等[121]通过对比离心机模型试验结果与理论结果,进一步证明了拟动力法的合理性。但此时Steedman等 [100]忽略了竖向地震力的影响。21世纪初,Choudhury等[122123]基于拟动力法,考虑竖向地震力计算了动土压力,并讨论了土体、墙体及简谐波参数等变化时的结果。此外,Choudhury等[124]通过拟动力法计算了被动土压力条件下刚性挡土墙的旋转位移。Baziar等[125]运用拟动力法研究了重力式挡土墙的抗滑稳定性,并与传统的拟静力方法进行了比较。结果表明,拟静力法可能会过于保守,特别是当地震动强度较高时。Yan等[126]假设墙后土体中的破坏面为对数螺旋曲面和平面的组合,结合拟动力法推导了地震情况下墙后主动土压力的分布,并讨论了初始相位、放大系数和内摩擦角对地震主动土压力的影响。

    通过描述地震波在土体中的传播过程(图4),可以计算出土体单元任意时刻所受的地震力,见式(2)。拟动力法考虑了地震波的波动特性,较拟静力法更符合实际 [125, 127131]

    图  4  拟动力法的地震波传播过程与条块地震力计算
    Figure  4.  Seismic wave propagation process and strip seismic force calculation using the pseudo-dynamic method
    $$ {F_{\mathrm{h}}}(\textit{z},t) = \rho {b_i}{k_{\mathrm{h}}}g\sin \left[ {2\text{π} f\left( {t - \frac{{H - \textit{z}}}{{{v_{\mathrm{s}}}}}} \right)} \right]{\mathrm{d}}\textit{z} $$ (2)

    式中:Fh(z, t)——深度z处土体单元在t时刻所受的水 平地震力/kN;

    z——自坡顶起微元的深度/m;

    ρ——土体密度/(kg·m−3);

    b——微元宽度/m;

    f——简谐波频率/Hz;

    H——边坡高度/m;

    vs——剪切波速/(m·s−1)。

    对式(2)沿条块积分,见式(3),即可得到条块的地震力合力,从而计算边坡的地震安全系数。

    $$ {F_{{\mathrm{h}}i}} = \int_{{\textit{z}_1}}^{{\textit{z}_2}} {\rho {b_i}{k_{\mathrm{h}}}g\sin \left[ {2\text{π} f\left( {t - \frac{{H - \textit{z}}}{{{v_{\mathrm{s}}}}}} \right)} \right]} {\mathrm{d}}\textit{z} $$ (3)

    式中:Fhi——条块i所受的水平地震力/kN;

    z1z2——条块i的底、顶部距坡顶的深度/m。

    2013年,Chakraborty等[132]采用拟静力法与拟动力法,在不同水位条件和坝体填充条件下,分析了印度某尾矿坝典型断面的边坡地震稳定性。同年,阮晓波等[133]基于拟动力法,研究了水平和垂直地震荷载、裂缝积水深度、坡顶荷载及锚索等情况下,受锚固岩质边坡的地震稳定性。Ruan等[134]采用拟动力法,计算了城市生活垃圾填埋场护坡的稳定系数,探讨了地震系数、放大系数、护坡参数及填埋深度等参数的影响。Zhou等[135]提出了一种评价地震滑坡稳定性的位移—拟动力模型,该模型采用正弦波模拟地震位移,并讨论了放大系数、滑体物理力学特性、惯性力和阻尼力对地震边坡稳定性的影响。卢玉林等[136]结合极限平衡理论和拟动力法,研究了渗流条件下的砂土边坡稳定性。

    随着进一步研究,学者发现拟动力法与传统的边坡稳定性评价方法具有较好的适应性。邓亚虹等[137]基于拟动力法和极限平衡法,得到了边坡地震力计算公式和边坡安全系数计算公式,讨论了拟静力法和拟动力法的计算结果与边坡坡高比的关系。杨楠等[138]基于拟动力法和剩余推力法,分析了地震力放大作用影响下边坡的稳定性。蒋青江等[139]结合拟动力法和Sarma法,提出了一种适用于任意滑面和任意条块划分的地震边坡稳定性分析方法。宋桂峰等[140]在极限分析上限法的基础上,通过拟动力法,研究了一种含拉张裂缝的顺层岩质边坡的安全稳定性。Zhao等[128]采用Barton-Bandis破坏准则并基于改进的拟动力法,评价地震情况下岩质边坡的稳定性。Basha等[129130]提出了一种基于拟动力法评估加筋土结构稳定性的方法,并考虑了不同土体参数、地震动参数及结构物参数的影响。Zhou等[131]结合极限平衡法以及拟动力法提出了一种三维边坡稳定性分析方法,并分析了土体参数对地震边坡稳定性的影响。

    目前,除传统的考虑放大系数的拟动力法外, Bellezza[141]于2014年提出了一种考虑土体阻尼系数的改进拟动力法。该方法将土体视为Kelvin-Voigt型材料,考虑了土体的阻尼特性和放大特性。随后,Chanda等[142]、Pain等[143]、Qin等[144]、李雨浓等及其他研究者[142148]对该方法进行了运用和推广。例如,李雨浓等[145]结合极限分析上限定理及改进拟动力法,分析了三维桩加固边坡的安全稳定性。陈立伟等[148]基于改进拟动力法,推导了不同工况下岩石边坡的地震抗倾覆稳定性计算公式。综上所述,拟动力法在评价地震边坡稳定性方面,具有广阔的应用前景和重要的实际意义。

    目前,国内外基于拟动力法开展黄土地震滑坡的相关研究较少。从拟动力法基本原理上看,其将随机地震波简化为简谐波,通过调整简谐波幅值、频率、波速和放大系数等参数,可描述不同能量大小和频率特征地震波对黄土边坡的影响。拟动力法在拟静力法的基础上创新性明显,原理较时程分析方法简单且计算量更小,可以与剩余推力法、Samar法和Barton-Bandis破坏准则等理论有机结合,在黄土地震边坡稳定性评价、黄土地震滑坡形成机理等方面具有广阔的应用场景。

    在当前的拟动力分析方法和黄土地震滑坡研究中,还存在一些关注的热点和尚未解决的科学问题:

    (1)无论是拟静力法还是拟动力法,在分析地震边坡稳定性时,其结果可靠度与地震动参数密切相关。拟静力法中,通过地震烈度或对设计地震加速度代表值修正确定地震力系数[50, 5556]。该方法极大程度地简化了地震荷载,保障了工程的顺利运营,经过长时间的理论研究和实践验证。然而,拟动力分析方法起步较晚,如何选取拟动力法特征参数还有待研究。Steedman[45]提出通过地震动周期计算简谐波频率,通过弹性波动理论计算剪切波速vs=(G/ρ)0.5,简谐波幅值则依据地震烈度或选取峰值加速度。后续的研究中,大多采取了这一原则。然而,地震力毕竟是一种复杂的随机荷载,通过简谐波对地震波简化的合理性以及如何选取简谐波特征参数仍需进一步研究。

    (2)拟动力分析方法起源于挡土墙研究,截至目前,在地震边坡领域已有大量的应用并将理论进一步深化。无论是岩质边坡、土质边坡,加筋土、桩加固边坡,及降雨渗流耦合作用等特殊工况下,均有相关拟动力法研究。然而,国内外基于拟动力法的黄土地震滑坡研究鲜有报道。黄土地区沟壑纵横,地震频发,地震滑坡易发性高。拟动力法较拟静力法和时程分析法优势明显,可以很好地评价黄土边坡地震稳定性,为黄土地区防震减灾服务。然而黄土土性较为特殊,如何在这一过程中将拟动力分析方法合理运用是地质工作者和设计人员需要解决的问题。解决上述问题后,基于拟动力分析方法可以更好地研究黄土地震滑坡形成机理、发育特征与分布、地震滑坡稳定性、动力响应特征和地震液化。

    (3)基于极限平衡法的地震边坡拟动力分析方法主要关注地震滑坡稳定性系数Fs,忽视了简谐波的作用时长。但是基于拟动力法和数值模拟分析地震滑坡稳定性和变形时,必须考虑简谐波持时。实际地震过程中,地震动强度往往是先增加后减小。如何定义简谐波的持续时间或循环次数仍待讨论,既使得拟动力分析方法的稳定性系数合理,也使得边坡变形与实际地震动作用下接近。

    随着我国一系列重大战略的实施,黄土地区地位日渐显著。由于黄土边坡的特殊性,易于在地震作用下发生大规模滑动造成人员伤亡和财产损失。然而,黄土地震滑坡受多种因素影响,形成机理十分复杂,需要进一步开展对黄土地震滑坡的研究工作。开展黄土地震滑坡研究,需要采用室内试验、物理与数值模型试验、野外调研、遥感与监测等手段,从黄土动力特性出发,深入研究黄土地震滑坡形成机理,探讨黄土地震滑坡动力响应特性,分析黄土地震滑坡发育特征。在评价地震滑坡稳定性方面,目前主要有拟静力法、拟动力法、动力时程分析方法和Newmark永久位移法。为提升黄土地区抗灾抗震水平,推动拟动力法在黄土地震边坡稳定性分析中的应用,本文介绍了拟动力分析方法并对基于拟动力法开展黄土地震滑坡研究进行了展望,可为防治黄土地震滑坡灾害提供依据。

  • 图  1   黄土高原梁、峁、丘陵地貌[20]

    Figure  1.   The loess ridges, hillocks, and hill landscapes of the loess plateau[20]

    图  2   黄土高原地区崩塌、滑坡、泥石流、、地面塌陷易发程度图

    Figure  2.   Susceptibility to avalanches, landslides, debris flows, and surface collapses in the loess plateau

    图  3   黄土高原及周边地区地震分布[36]

    Figure  3.   Earthquake distribution in the loess plateau and surrounding areas[36]

    图  4   拟动力法的地震波传播过程与条块地震力计算

    Figure  4.   Seismic wave propagation process and strip seismic force calculation using the pseudo-dynamic method

  • [1] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报,2022,41(6):1 − 13. [TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology,2022,41(6):1 − 13. (in Chinese with English abstract)]

    TANG Huiming. Advance and prospect of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1 − 13. (in Chinese with English abstract)

    [2] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)]

    TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)

    [3] 黄润秋,李为乐. “5•12” 汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    [4] 国务院抗震救灾总指挥部. 汶川特大地震抗震救灾总结报告[R]. 2008. [State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)]

    State Council Earthquake Relief Headquarters. Wenchuan earthquake relief summary report[R]. 2008. (in Chinese)

    [5] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.04.001

    [6] 张倬元. 工程地质分析原理[M]. 4版. 北京:地质出版社,2016. [ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing:Geological Publishing House,2016. (in Chinese)]

    ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 4th ed. Beijing: Geological Publishing House, 2016. (in Chinese)

    [7] 王椿镛,段永红,吴庆举,等. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,2016,38(4):511 − 549. [WANG Chunyong,DUAN Yonghong,WU Qingju,et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica,2016,38(4):511 − 549. (in Chinese with English abstract)]

    WANG Chunyong, DUAN Yonghong, WU Qingju, et al. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica, 2016, 38(4): 511 − 549. (in Chinese with English abstract)

    [8] 孙金龙,徐辉龙,詹文欢,等. 南海北部陆缘地震带的活动性与发震机制[J]. 热带海洋学报,2012,31(3):40 − 47. [SUN Jinlong,XU Huilong,ZHAN Wenhuan,et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography,2012,31(3):40 − 47. (in Chinese with English abstract)]

    SUN Jinlong, XU Huilong, ZHAN Wenhuan, et al. Activity and seismogenic mechanism of the continental margin seismic belt in the northern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(3): 40 − 47. (in Chinese with English abstract)

    [9] 徐杰,周本刚,计凤桔,等. 华北渤海湾盆地区大震发震构造的基本特征[J]. 地震地质,2012,34(4):618 − 636. [XU Jie,ZHOU Bengang,JI Fengju,et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area,North China[J]. Seismology and Geology,2012,34(4):618 − 636. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2012.04.008

    XU Jie, ZHOU Bengang, JI Fengju, et al. Features of seismogenic structures of great earthquakes in the Bohai Bay Basin area, North China[J]. Seismology and Geology, 2012, 34(4): 618 − 636. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2012.04.008

    [10] 陈祥熊,袁定强,吴长江. 台湾海峡南部Ms 7.3地震震源破裂特征及东南沿海地震形势分析[J]. 地震学报,1996(2):145 − 155. [CHEN Xiangxiong,YUAN Dingqiang,WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica,1996(2):145 − 155. (in Chinese with English abstract)]

    CHEN Xiangxiong, YUAN Dingqiang, WU Changjiang. Focal rupture characteristics of the Ms 7.3 earthquake in the south of Taiwan strait and analysis of seismic situation along the southeast coast[J]. Acta Seismological Sinica, 1996(2): 145 − 155. (in Chinese with English abstract)

    [11] 王卫民,赵连锋,李娟,等. 四川汶川8.0级地震震源过程[J]. 地球物理学报,2008,51(5):1403 − 1410. [WANG Weimin,ZHAO Lianfeng,LI Juan,et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan,China[J]. Chinese Journal of Geophysics,2008,51(5):1403 − 1410. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0001-5733.2008.05.013

    WANG Weimin, ZHAO Lianfeng, LI Juan, et al. Rupture process of the M 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 2008, 51(5): 1403 − 1410. (in Chinese with English abstract) DOI: 10.3321/j.issn:0001-5733.2008.05.013

    [12] 李锦轶,刘建峰,曲军峰,等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报,2019,35(10):2989 − 3016. [LI Jinyi,LIU Jianfeng,QU Junfeng,et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica,2019,35(10):2989 − 3016. (in Chinese with English abstract)] DOI: 10.18654/1000-0569/2019.10.04

    LI Jinyi, LIU Jianfeng, QU Junfeng, et al. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 2019, 35(10): 2989 − 3016. (in Chinese with English abstract) DOI: 10.18654/1000-0569/2019.10.04

    [13] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1 − 28. [PAN Guitang,XIAO Qinghui,LU Songnian,et al. Subdivision of tectonic units in China[J]. Geology in China,2009,36(1):1 − 28. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3657.2009.01.001

    PAN Guitang, XIAO Qinghui, LU Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2009.01.001

    [14] 李锦轶,张进,刘建峰,等. 中国大陆主要变形系统[J]. 地学前缘,2014,21(3):226 − 245. [LI Jinyi,ZHANG Jin,LIU Jianfeng,et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers,2014,21(3):226 − 245. (in Chinese with English abstract)]

    LI Jinyi, ZHANG Jin, LIU Jianfeng, et al. Major deformation systems in the Mainland of China[J]. Earth Science Frontiers, 2014, 21(3): 226 − 245. (in Chinese with English abstract)

    [15] 王涛,吴树仁,石菊松,等. 历史强震对渭河中游群发大型滑坡的诱发效应反演[J]. 地球学报,2015,36(3):352 − 360. [WANG Tao,WU Shuren,SHI Jusong,et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica,2015,36(3):352 − 360. (in Chinese with English abstract)]

    WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica, 2015, 36(3): 352 − 360. (in Chinese with English abstract)

    [16] 徐岳仁,张伟恒,李文巧,等. 1556年华县地震同震黄土滑坡密集区的发现及意义[J]. 地震地质,2018,40(4):721 − 737. [XU Yueren,ZHANG Weiheng,LI Wenqiao,et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology,2018,40(4):721 − 737. (in Chinese with English abstract)]

    XU Yueren, ZHANG Weiheng, LI Wenqiao, et al. Distribution characteristics of the AD 1556 Huaxian earthquake triggered disasters and its implications[J]. Seismology and Geology, 2018, 40(4): 721 − 737. (in Chinese with English abstract)

    [17] 张振中. 黄土地震灾害预测[M]. 北京:地震出版社,1999. [ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing:Seismological Press,1999. (in Chinese)]

    ZHANG Zhenzhong. Earthquake disaster prediction of loess[M]. Beijing: Seismological Press, 1999. (in Chinese)

    [18] 王亚强,王兰民,张小曳. GIS支持下的黄土高原地震滑坡区划研究[J]. 地理科学,2004,24(2):170 − 176. [WANG Yaqiang,WANG Lanmin,ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica,2004,24(2):170 − 176. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0690.2004.02.007

    WANG Yaqiang, WANG Lanmin, ZHANG Xiaoye. GIS based seismic landslide zonation of the Loess Plateau[J]. Scientia Geographica Sinica, 2004, 24(2): 170 − 176. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0690.2004.02.007

    [19] 王海科. 重大工程影响下黄土渗透特性与入渗机理研究[D]. 西安:长安大学,2023. [WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an:Changan University,2023. (in Chinese with English abstract)]

    WANG Haike. Study on seepage characteristics and infiltration mechanism of loess under the influence of major projects[D]. Xi’an: Changan University, 2023. (in Chinese with English abstract)

    [20] 王兰民,蒲小武,陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾,2019(3):33 − 40. [WANG Lanmin,PU Xiaowu,CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction,2019(3):33 − 40. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2019.03.009

    WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in Loess Plateau[J]. City and Disaster Reduction, 2019(3): 33 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2019.03.009

    [21] 王绅皓,谢婉丽,常一伦,等. 浸水作用下湿陷性黄土微观结构及分形特征研究[J]. 高校地质学报,2023,29(2):280 − 288. [WANG Shenhao,XIE Wanli,CHANG Yilun,et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities,2023,29(2):280 − 288. (in Chinese with English abstract)]

    WANG Shenhao, XIE Wanli, CHANG Yilun, et al. Microstructures and fractal characteristics of collapsible loess subjected to water immersion[J]. Geological Journal of China Universities, 2023, 29(2): 280 − 288. (in Chinese with English abstract)

    [22] 李维光,张继春. 地震作用下顺层岩质边坡稳定性的拟静力分析[J]. 山地学报,2007,25(2):184 − 189. [LI Weiguang,ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research,2007,25(2):184 − 189. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.02.009

    LI Weiguang, ZHANG Jichun. Equivalent static stability study on rock mass bedding slope under blasting[J]. Mountain Research, 2007, 25(2): 184 − 189. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.02.009

    [23] 邓东平,李亮,罗伟. 地震荷载作用下土钉支护边坡稳定性拟静力分析[J]. 岩土力学,2012,33(6):1787 − 1794. [DENG Dongping,LI Liang,LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics,2012,33(6):1787 − 1794. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.06.029

    DENG Dongping, LI Liang, LUO Wei. Stability analysis of slope protected by soil nailing under earthquake loads based on pseudo static method[J]. Rock and Soil Mechanics, 2012, 33(6): 1787 − 1794. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.06.029

    [24] 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价[J]. 工程科学学报,2022,44(3):440 − 450. [LI Boliang,ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering,2022,44(3):440 − 450. (in Chinese with English abstract)] DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013

    LI Boliang, ZHANG Fanyu. Three-dimensional stability evaluation of shallow loess landslides under rainfall and earthquake conditions[J]. Chinese Journal of Engineering, 2022, 44(3): 440 − 450. (in Chinese with English abstract) DOI: 10.3321/j.issn.1001-053X.2022.3.bjkjdxxb202203013

    [25] 赵振明,唐亚明,徐永,等. 山西大宁县典型滑坡体地貌特征与降雨和强震关系[J]. 地震工程学报,2020,42(6):1641 − 1649. [ZHAO Zhenming,TANG Yaming,XU Yong,et al. Geomorphic characteristics of typical landslides in Daning County,Shanxi Province,China,and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal,2020,42(6):1641 − 1649. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.06.1641

    ZHAO Zhenming, TANG Yaming, XU Yong, et al. Geomorphic characteristics of typical landslides in Daning County, Shanxi Province, China, and its relationship with rainfall and strong earthquakes[J]. China Earthquake Engineering Journal, 2020, 42(6): 1641 − 1649. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.06.1641

    [26]

    CLOSE U,MCCORMICK E. Where the mountains walked[J]. National Geographic Magazine,1922,41(5):445 − 464.

    [27] 王兰民. 黄土动力学[M]. 北京:地震出版社,2003. [WANG Lanmin. Loess dynamics[M]. Beijing:Seismological Press,2003. (in Chinese)]

    WANG Lanmin. Loess dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)

    [28] 李昭淑,崔鹏. 1556年华县大地震的次生灾害[J]. 山地学报,2007(4):425 − 430. [LI Zhaoshu,CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science,2007(4):425 − 430. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2007.04.007

    LI Zhaoshu, CUI Peng. The secondary disasters of great Huaxian earthquake in 1556[J]. Journal of Mountain science, 2007(4): 425 − 430. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.04.007

    [29] 吕艳,董颖,冯希杰,等. 1556年陕西关中华县特大地震地质灾害遗迹发育特征[J]. 工程地质学报,2014,22(2):300 − 308. [LYU Yan,DONG Ying,FENG Xijie,et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province,China[J]. Journal of Engineering Geology,2014,22(2):300 − 308. (in Chinese with English abstract)]

    LYU Yan, DONG Ying, FENG Xijie, et al. Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi Province, China[J]. Journal of Engineering Geology, 2014, 22(2): 300 − 308. (in Chinese with English abstract)

    [30]

    WANG T,WU S R,SHI J S,et al. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream[J]. Engineering Geology,2018,235:11 − 19. DOI: 10.1016/j.enggeo.2018.01.020

    [31] 徐岳仁,杜朋,李文巧,等. 1718年通渭M 7.5地震滑坡特征分析——黄土高原历史强震触发滑坡数据库的应用[J]. 地球物理学报,2020,63(3):1235 − 1248. [XU Yueren,DU Peng,LI Wenqiao,et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides:Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics,2020,63(3):1235 − 1248. (in Chinese with English abstract)] DOI: 10.6038/cjg2020N0146

    XU Yueren, DU Peng, LI Wenqiao, et al. A case study on AD 1718 Tongwei M 7.5 earthquake triggered landslides: Application of landslide database triggered by historical strong earthquakes on the Loess Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 1235 − 1248. (in Chinese with English abstract) DOI: 10.6038/cjg2020N0146

    [32]

    ZHUANG Jianqi,PENG Jianbing,XU Chong,et al. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake,Northwest of China[J]. Geomorphology,2018,314:1 − 12. DOI: 10.1016/j.geomorph.2018.04.012

    [33] 王磊,李孝波,苏占东,等. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J]. 地质力学学报,2019,25(4):536 − 543. [WANG Lei,LI Xiaobo,SU Zhandong,et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics,2019,25(4):536 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2019.25.04.052

    WANG Lei, LI Xiaobo, SU Zhandong, et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 2019, 25(4): 536 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2019.25.04.052

    [34] 冯卫,毕银强,唐亚明,等. 甘肃礼县至罗家堡断裂带沿线地质灾害分布规律及断层效应研究[J]. 自然灾害学报,2021,30(2):183 − 190. [FENG Wei,BI Yinqiang,TANG Yaming,et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters,2021,30(2):183 − 190. (in Chinese with English abstract)]

    FENG Wei, BI Yinqiang, TANG Yaming, et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters, 2021, 30(2): 183 − 190. (in Chinese with English abstract)

    [35] 王兰民,吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报,2013,35(3):401 − 412. [WANG Lanmin,WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal,2013,35(3):401 − 412. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian Ms6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0401

    [36] 许冲,吴熙彦,徐锡伟. 黄土高原及邻区的地震滑坡[J]. 工程地质学报,2016,26(增刊):260 − 273. [XU Chong,WU Xiyan,XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology,2016,26(Sup):260 − 273. (in Chinese with English abstract)]

    XU Chong, WU Xiyan, XU Xiwei. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 2016, 26(Sup): 260 − 273. (in Chinese with English abstract)

    [37] 黄雅虹. 地震作用下黄土斜坡的稳定性分析预测[J]. 西北地震学报,1998(3):53 − 59. [HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal,1998(3):53 − 59. (in Chinese with English abstract)]

    HUANG Yahong. Analysis and prediction for stability of loess slope under the effect of earthquakes[J]. Northwestern Seismological Journal, 1998(3): 53 − 59. (in Chinese with English abstract)

    [38] 马学宁. 地震作用下黑方台黄土滑坡稳定性分析及治理措施[J]. 湖南工程学院学报(自然科学版),2013,23(1):77 − 81. [MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition),2013,23(1):77 − 81. (in Chinese with English abstract)]

    MA Xuening. Stability analysis and control measures of earthquake-induced loess landslides in Heifangtai[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2013, 23(1): 77 − 81. (in Chinese with English abstract)

    [39] 张振中,郑恒利,王兰民. 黄土随机振动强度参数在地震滑坡分析中的应用[J]. 西北地震学报,1991(3):45 − 49. [ZHANG Zhenzhong,ZHEGN Hengli,WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal,1991(3):45 − 49. (in Chinese with English abstract)]

    ZHANG Zhenzhong, ZHEGN Hengli, WANG Lanmin. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal, 1991(3): 45 − 49. (in Chinese with English abstract)

    [40] 邹谨敞,邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震,1996(1):1 − 6. [ZHOU Jinchang,ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake,1996(1):1 − 6. (in Chinese with English abstract)]

    ZHOU Jinchang, ZHAO Shunmei. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 1996(1): 1 − 6. (in Chinese with English abstract)

    [41] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3 − 13. [XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):3 − 13. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2001.01.002

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3 − 13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002

    [42] 陈存礼,杨鹏,何军芳. 饱和击实黄土的动力特性研究[J]. 岩土力学,2007,28(8):1551 − 1556. [CHEN Cunli,YANG Peng,HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics,2007,28(8):1551 − 1556. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.08.005

    CHEN Cunli, YANG Peng, HE Junfang. Research on dynamic characteristics of saturated compacted loess[J]. Rock and Soil Mechanics, 2007, 28(8): 1551 − 1556. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.08.005

    [43]

    CHEN Huie,JIANG Yaling,NIU Cencen,et al. Dynamic characteristics of saturated loess under different confining pressures:A microscopic analysis[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):931 − 944. DOI: 10.1007/s10064-017-1101-9

    [44]

    WANG Qian,WANG Yan,MA Wenguo,et al. Dynamic characteristics of post-cyclic saturated loess[J]. Applied Sciences,2022,13(1):306. DOI: 10.3390/app13010306

    [45]

    CAREY J M,MCSAVENEY M J,PETLEY D N. Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading[J]. Landslides,2017,14(3):789 − 804. DOI: 10.1007/s10346-016-0746-y

    [46]

    WU Zhijian,XU Shiming,CHEN Dawei,et al. An experimental study of the influence of structural parameters on dynamic characteristics of loess[J]. Soil Dynamics and Earthquake Engineering,2020,132:106067. DOI: 10.1016/j.soildyn.2020.106067

    [47]

    WANG Ping,WANG Jun,CHAI Shaofeng,et al. Experimental study on dynamic strength regional characteristics of undisturbed loess based on the mohr-coulomb failure criterion[J]. Advanced Materials Research,2013,700:111 − 118. DOI: 10.4028/www.scientific.net/AMR.700.111

    [48]

    QIAO Feng,CHANG Chaoyu,BO Jingshan,et al. Study on the dynamic characteristics of loess[J]. Sustainability,2023,15(6):5428. DOI: 10.3390/su15065428

    [49]

    WEI Tingting,WU Zhijian,CHEN Yanping,et al. Three-dimensional characterization and quantitative research of Malan loess microstructure under seismic loading[J]. Frontiers in Earth Science,2023,10:1106168. DOI: 10.3389/feart.2022.1106168

    [50]

    WANG N Q,LIU X L,LUO,et al. Study on Dynamic Strength Characteristics of Malan Loess. Applied Mechanics and Materials[C]. 2nd International Conference on Civil Engineering,Architecture and Building Materials (CEABM 2012),2012,Yantai,PEOPLES R CHINA.

    [51]

    WANG N Q,LIU X L,BO H,et al. Test of Dynamic Strength Characteristics of Lishi Loess. Applied Mechanics and Materials [C]. International Conference on Sensors,Measurement and Intelligent Materials (ICSMIM 2012),2012,Guilin,PEOPLES R CHINA.

    [52]

    LIU Wei,WANG Qian,LIN Gaochao,et al. Effect of pre-dynamic loading on dynamic liquefaction of undisturbed loess[J]. Bulletin of Earthquake Engineering,2020,18(13):5779 − 5806. DOI: 10.1007/s10518-020-00917-w

    [53]

    WANG Haojie,SUN Ping,LIU Enlong,et al. Dynamic properties of Tianshui saturated remolded loess:A laboratory study[J]. Engineering Geology,2020,272:105570. DOI: 10.1016/j.enggeo.2020.105570

    [54]

    CHENG Xuansheng,LI Xinlei,NIE Jun,et al. Research on the dynamic parameters of loess[J]. Geotechnical and Geological Engineering,2019,37(1):77 − 93. DOI: 10.1007/s10706-018-0592-x

    [55] 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展[J]. 防灾科技学院学报,2021,23(2):46 − 53. [YAN Lingyong,LI Xiaobo,OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention,2021,23(2):46 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2021.02.006

    YAN Lingyong, LI Xiaobo, OUYANG Ganglei. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention, 2021, 23(2): 46 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2021.02.006

    [56] 刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安:长安大学,2012. [LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an:Changan University,2012. (in Chinese with English abstract)]

    LIU Kui. Study on formation mechanism of loess landslide induced by earthquake in Yuanzhou District of Guyuan City[D]. Xi’an: Changan University, 2012. (in Chinese with English abstract)

    [57]

    CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert-Huang transform method using a large-scale shaking table test[J]. Engineering Geology,2022,302:106630. DOI: 10.1016/j.enggeo.2022.106630

    [58] 王明轩,倪万魁. 喜家湾地震黄土滑坡形成机理[J]. 华北地震科学,2018,36(1):54 − 58. [WANG Mingxuan,NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences,2018,36(1):54 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-1375.2018.01.009

    WANG Mingxuan, NI Wankui. Study on the formation mechanism of Xijiawan loess landslide induced by earthquake[J]. North China Earthquake Sciences, 2018, 36(1): 54 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-1375.2018.01.009

    [59] 徐舜华,吴志坚,孙军杰,等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 地震工程学报,2013,35(3):471 − 476. [XU Shunhua,WU Zhijian,SUN Junjie,et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal,2013,35(3):471 − 476. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2013.03.0471

    XU Shunhua, WU Zhijian, SUN Junjie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms 6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471 − 476. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2013.03.0471

    [60] 王鼐,王兰民. 河谷地区黄土地震滑坡特征与影响因素分析[J]. 岩土工程学报,2013,35(增刊1):434 − 438. [WANG Nai,WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering,2013,35(Sup 1):434 − 438. (in Chinese with English abstract)]

    WANG Nai, WANG Lanmin. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 434 − 438. (in Chinese with English abstract)

    [61] 王立朝,侯圣山,董英,等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报,2024,35(3):108 − 118. [WANG Lichao,HOU Shengshan,DONG Ying,et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):108 − 118. (in Chinese with English abstract)]

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108 − 118. (in Chinese with English abstract)

    [62] 段玉石,薄景山,彭达,等. 地震诱发黄土滑坡分布特征分析——以1920年海原特大地震为例[J]. 应用基础与工程科学学报,1 − 17. [DUAN Yushi,BO Jingshan,PENG Da,et al. Distribution characteristics of earthquake-induced loess landslides:A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering,1 − 17. (in Chinese with English abstract)]

    DUAN Yushi, BO Jingshan, PENG Da, et al. Distribution characteristics of earthquake-induced loess landslides: A case study of the 1920 Haiyuan earthquake[J]. Journal of Basic Science and Engineering, 1 − 17. (in Chinese with English abstract)

    [63] 钱紫玲. 基于统计模型的黄土地震滑坡危险性评价[D]. 兰州:中国地震局兰州地震研究所,2023. [QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2023. (in Chinese with English abstract)]

    QIAN Ziling. Risk assessment of loess earthquake landslide based on statistical model[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2023. (in Chinese with English abstract)

    [64] 程小杰,杨为民,向灵芝,等. 基于Newmark模型的天水市北山地震黄土滑坡危险性评价[J]. 地质力学学报,2017,23(2):296 − 305. [CHENG Xiaojie,YANG Weimin,XIANG Lingzhi,et al. Risk assessment of seismic loess landslide based on newmark model in Beishan,Tianshui City[J]. Journal of Geomechanics,2017,23(2):296 − 305.(in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.02.013

    CHENG Xiaojie, YANG Weimin, XIANG Lingzhi, et al. Risk assessment of seismic loess landslide based on newmark model in Beishan, Tianshui City[J]. Journal of Geomechanics, 2017, 23(2): 296 − 305.(in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.02.013

    [65] 邓龙胜. 强震作用下黄土边坡的动力响应机理和动力稳定性研究[D]. 西安:长安大学,2010. [DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an:Changan University,2010. (in Chinese with English abstract)]

    DENG Longsheng. Study on dynamic response mechanism and dynamic stability of loess slope under strong earthquake[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)

    [66] 赵文琛. 强震作用下黄土斜坡动力响应特征与稳定性分析[D]. 兰州:中国地震局兰州地震研究所,2016. [ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou:China Earthquake Administration Lanzhou Institute of Seismology,2016. (in Chinese with English abstract)]

    ZHAO Wenchen. Dynamic response characteristics and stability analysis of loess slope under strong earthquake[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology, 2016. (in Chinese with English abstract)

    [67] 车福东,王涛,辛鹏,等. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报,2020,39(12):1981 − 1992. [CHE Fudong,WANG Tao,XIN Peng,et al. Dynamic response and deformation of loess landslide under near and far earthquakes:A case study of Liping Village landslide in Tianshui earthquake area,Gansu Province[J]. Geological Bulletin of China,2020,39(12):1981 − 1992. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2020.12.012

    CHE Fudong, WANG Tao, XIN Peng, et al. Dynamic response and deformation of loess landslide under near and far earthquakes: A case study of Liping Village landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981 − 1992. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2020.12.012

    [68] 常晁瑜,徐久欢,薄景山,等. 基于颗粒流的地震液化型滑坡运动学特征分析[J]. 地震工程与工程振动,2022,42(6):153 − 161. [CHANG Chaoyu,XU Jiuhuan,BO Jingshan,et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics,2022,42(6):153 − 161. ((in Chinese with English abstract)]

    CHANG Chaoyu, XU Jiuhuan, BO Jingshan, et al. Kinematic characteristics analysis of seismic liquefaction landslide based on particle flow[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(6): 153 − 161. ((in Chinese with English abstract)

    [69] 张子东,张晓超,任鹏,等. 非饱和黄土动力液化研究 ——以党家岔滑坡为例[J]. 地震工程学报,2021,43(5):1228 − 1237. [ZHANG Zidong,ZHANG Xiaochao,REN Peng,et al. Dynamic liquefaction of unsaturated loess:A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal,2021,43(5):1228 − 1237. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1228

    ZHANG Zidong, ZHANG Xiaochao, REN Peng, et al. Dynamic liquefaction of unsaturated loess: A case study of Dangjiacha landslide[J]. China Earthquake Engineering Journal, 2021, 43(5): 1228 − 1237. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1228

    [70] 吴志坚,陈豫津,王谦,等. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报,2019,41(S2):165 − 168. [WU Zhijian,CHEN Yujin,WANG Qian,et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering,2019,41(S2):165 − 168. (in Chinese with English abstract)] DOI: 10.11779/CJGE2019S2042

    WU Zhijian, CHEN Yujin, WANG Qian, et al. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165 − 168. (in Chinese with English abstract) DOI: 10.11779/CJGE2019S2042

    [71] 张晓超,裴向军,张茂省,等. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例[J]. 工程地质学报,2018,26(5):1219 − 1226. [ZHANG Xiaochao,PEI Xiangjun,ZHANG Maosheng,et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake:A case study in Dangjiacha,Ningxia Province[J]. Journal of Engineering Geology,2018,26(5):1219 − 1226. (in Chinese with English abstract)]

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake: A case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219 − 1226. (in Chinese with English abstract)

    [72] 国家地震局兰州地震研究所宁夏回族自治区地震队. 一九二〇年海原大地震[M]. 北京:地震出版社,1980. [Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing:Seismological Press,1980. (in Chinese)]

    Ningxia Hui Autonomous Region Seismological Team, Lanzhou Institute of Seismology, National Seismological Bureau. Haiyuan earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)

    [73] 彭建兵,王启耀,门玉明,等. 黄土高原滑坡灾害[M]. 北京:科学出版社,2019. [PENG Jianbing,WANG Qiyao,MEN Yuming,et al. Landslide disaster in Loess Plateau[M]. Beijing:Science Press,2019. (in Chinese)]

    PENG Jianbing, WANG Qiyao, MEN Yuming, et al. Landslide disaster in Loess Plateau[M]. Beijing: Science Press, 2019. (in Chinese)

    [74] 张振中,张冬丽,刘红玫. 黄土震陷灾害典型震例的综合研究(英文)[J]. 西北地震学报,2005,27(1):36 − 41. [ZHANG Zhenzhong,ZHANG Dongli,LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal,2005,27(1):36 − 41. (in English with Chinese abstract)]

    ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern seismological Journal, 2005, 27(1): 36 − 41. (in English with Chinese abstract)

    [75] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报,2020,42(1):1 − 19. [WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):1 − 19. (in Chinese with English abstract)] DOI: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1 − 19. (in Chinese with English abstract) DOI: 10.11779/CJGE202001001

    [76]

    SHANG H,NI W K,NIU F J,et al. Development characteristics and causes of seismic loess landslides in north-west China [J]. Disaster Advances,2013,6:24-38.

    [77]

    ZHONG Xiumei,XU Xiaowei,CHEN Wenkai,et al. Characteristics of loess landslides triggered by the 1927 Mw8.0 earthquake that occurred in Gulang County,Gansu Province,China[J]. Frontiers in Environmental Science,2022,10:973262. DOI: 10.3389/fenvs.2022.973262

    [78]

    LI Xiaobo,YAN Lingyong,WU Yiwen,et al. Distribution and characteristics of loess landslides induced by the 1654 Tianshui earthquake,Northwest of China[J]. Landslides,2023,20(12):2775 − 2790. DOI: 10.1007/s10346-023-02128-1

    [79] 陈永明,石玉成,刘红玫,等. 黄土地区地震滑坡的分布特征及其影响因素分析[J]. 中国地震,2005,21(2):235 − 243. [CHEN Yongming,SHI Yucheng,LIU Hongmei,et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China,2005,21(2):235 − 243. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4683.2005.02.011

    CHEN Yongming, SHI Yucheng, LIU Hongmei, et al. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China, 2005, 21(2): 235 − 243. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4683.2005.02.011

    [80] 王兰民,郭安宁,王平,等. 1920年海原大地震震害特征与启示[J]. 城市与减灾,2020(6):43 − 53. [WANG Lanmin,GUO Anning,WANG Ping,et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction,2020(6):43 − 53. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2020.06.007

    WANG Lanmin, GUO Anning, WANG Ping, et al. The characteristics and revelation of the Great Haiyuan Earthquake in 1920[J]. City and Disaster Reduction, 2020(6): 43 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2020.06.007

    [81] 王尚,梁庆国,乔向进,等. 基于小波包和反应谱的黄土边坡动力特征研究[J]. 地震工程学报,2023,45(1):94 − 102. [WANG Shang,LIANG Qingguo,QIAO Xiangjin,et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal,2023,45(1):94 − 102. (in Chinese with English abstract)]

    WANG Shang, LIANG Qingguo, QIAO Xiangjin, et al. Dynamic characteristics of loess slopes based on wavelet packet and response spectrum[J]. China Earthquake Engineering Journal, 2023, 45(1): 94 − 102. (in Chinese with English abstract)

    [82] 张兴臣,梁庆国,孙文,等. 地震作用下黄土边坡动力响应的时频特征分析[J]. 地震工程学报,2022,44(5):1090 − 1099. [ZHANG Xingchen,LIANG Qingguo,SUN Wen,et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal,2022,44(5):1090 − 1099. (in Chinese with English abstract)]

    ZHANG Xingchen, LIANG Qingguo, SUN Wen, et al. Time-frequency characteristics of dynamic responses of loess slopes under earthquake action[J]. China Earthquake Engineering Journal, 2022, 44(5): 1090 − 1099. (in Chinese with English abstract)

    [83] 张彬,邵帅,邵生俊,等. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报,2023,45(4):869 − 875. [ZHANG Bin,SHAO Shuai,SHAO Shengjun,et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):869 − 875. (in Chinese with English abstract)]

    ZHANG Bin, SHAO Shuai, SHAO Shengjun, et al. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869 − 875. (in Chinese with English abstract)

    [84] 孙文,梁庆国,乔向进,等. 不同失稳形态黄土边坡的动力响应研究[J]. 铁道学报,2022,44(6):123 − 130. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society,2022,44(6):123 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-8360.2022.06.015

    SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Study on dynamic response of loess slopes with different failure patterns[J]. Journal of the China Railway Society, 2022, 44(6): 123 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-8360.2022.06.015

    [85] 孙文,梁庆国,乔向进,等. 黄土边坡动力失稳的振动台试验研究[J]. 兰州交通大学学报,2021,40(2):15 − 22. [SUN Wen,LIANG Qingguo,QIAO Xiangjin,et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University,2021,40(2):15 − 22. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-4373.2021.02.003

    SUN Wen, LIANG Qingguo, QIAO Xiangjin, et al. Research on dynamic failure of loess slope by shaking table test[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 15 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4373.2021.02.003

    [86] 田欣欣,严武建,郑海忠,等. 地震作用下含暗穴高边坡黄土路基稳定性分析[J]. 地震工程学报,2022,44(1):72 − 78. [TIAN Xinxin,YAN Wujian,ZHENG Haizhong,et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal,2022,44(1):72 − 78. (in Chinese with English abstract)]

    TIAN Xinxin, YAN Wujian, ZHENG Haizhong, et al. Stability analysis of high-slope loess subgrade with hidden holes under earthquake[J]. China Earthquake Engineering Journal, 2022, 44(1): 72 − 78. (in Chinese with English abstract)

    [87] 万金侠,施艳秋,陈小云. 基于动土压力响应特性的黄土滑坡振动台试验研究[J]. 防灾减灾工程学报,2021,41(3):586 − 593. [WAN Jinxia,SHI Yanqiu,CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):586 − 593. (in Chinese with English abstract)]

    WAN Jinxia, SHI Yanqiu, CHEN Xiaoyun. Shaking table experiment of loess landslide based on dynamic earth pressure response characteristics[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 586 − 593. (in Chinese with English abstract)

    [88] 邵帅,邵生俊,李宁,等. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报,2021,43(2):245 − 253. [SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering,2021,43(2):245 − 253. (in Chinese with English abstract)]

    SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245 − 253. (in Chinese with English abstract)

    [89] 施艳秋,谢显龙,张玘恺,等. 基于小波变换的黄土滑坡动土压力响应及其频谱特性研究[J]. 岩石力学与工程学报,2020,39(12):2570 − 2581. [SHI Yanqiu,XIE Xianlong,ZHANG Qikai,et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2570 − 2581. (in Chinese with English abstract)]

    SHI Yanqiu, XIE Xianlong, ZHANG Qikai, et al. Study on spectrum characteristics of dynamic earth pressure of loess landslides based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2570 − 2581. (in Chinese with English abstract)

    [90] 陈金昌,王兰民,王平,等. 基于振动台试验的纯黄土边坡动力响应研究[J]. 地震工程学报,2020,42(2):529 − 535. [CHEN Jinchang,WANG Lanmin,WANG Ping,et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal,2020,42(2):529 − 535. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2020.02.529

    CHEN Jinchang, WANG Lanmin, WANG Ping, et al. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 2020, 42(2): 529 − 535. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2020.02.529

    [91] 夏坤,董林,蒲小武,等. 黄土塬地震动响应特征分析[J]. 岩土力学,2020,41(1):295 − 304. [XIA Kun,DONG Lin,PU Xiaowu,et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics,2020,41(1):295 − 304. (in Chinese with English abstract)]

    XIA Kun, DONG Lin, PU Xiaowu, et al. Earthquake response characteristics of loess tableland[J]. Rock and Soil Mechanics, 2020, 41(1): 295 − 304. (in Chinese with English abstract)

    [92] 张泽林,吴树仁,王涛,等. 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学,2018,39(7):2403 − 2412. [ZHANG Zelin,WU Shuren,WANG Tao,et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics,2018,39(7):2403 − 2412. (in Chinese with English abstract)]

    ZHANG Zelin, WU Shuren, WANG Tao, et al. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. Rock and Soil Mechanics, 2018, 39(7): 2403 − 2412. (in Chinese with English abstract)

    [93] 芮雪莲,裴向军,张晓超. 强震触发黄土滑坡发生机制试验[J]. 实验室研究与探索,2016,35(1):23 − 26. [RUI Xuelian,PEI Xiangjun,ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory,2016,35(1):23 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7167.2016.01.007

    RUI Xuelian, PEI Xiangjun, ZHANG Xiaochao. Laboratory study of the mechanism of loess landslide caused by violent earthquake[J]. Research and Exploration In Laboratory, 2016, 35(1): 23 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7167.2016.01.007

    [94] 张晓超,黄润秋,许模,等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学,2014,35(3):801 − 810. [ZHANG Xiaochao,HUANG Runqiu,XU Mo,et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics,2014,35(3):801 − 810. (in Chinese with English abstract)]

    ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801 − 810. (in Chinese with English abstract)

    [95]

    PEI Xiangjun,ZHANG Xiaochao,GUO Bin,et al. Experimental case study of seismically induced loess liquefaction and landslide[J]. Engineering Geology,2017,223:23 − 30. DOI: 10.1016/j.enggeo.2017.03.016

    [96] 胡成,卢坤林,朱大勇,等. 三维边坡拟静力抗震稳定性分析[J]. 岩石力学与工程学报,2011,30(增刊1):2904 − 2912. [HU Cheng,LU Kunlin,ZHU Dayong,et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011,30(Sup 1):2904 − 2912. (in Chinese with English abstract)]

    HU Cheng, LU Kunlin, ZHU Dayong, et al. Analysis of pseudo-static seismic stability for three-dimensional slope[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(Sup 1): 2904 − 2912. (in Chinese with English abstract)

    [97] 郑颖人,叶海林,黄润秋,等. 边坡地震稳定性分析探讨[J]. 地震工程与工程振动,2010,30(2):173 − 180. [ZHEGN Yingren,YE Hailin,HUANG Runqiu,et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration,2010,30(2):173 − 180. (in Chinese with English abstract)]

    ZHEGN Yingren, YE Hailin, HUANG Runqiu, et al. Study on the seismic stability analysis of a slope[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 173 − 180. (in Chinese with English abstract)

    [98] 刘春玲,祁生文,童立强,等. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报,2004(16):2730 − 2733. [LIU Chunling,QI Shengwen,TONG Liqiang,et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering,2004(16):2730 − 2733. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2004.16.014

    LIU Chunling, QI Shengwen, TONG Liqiang, et al. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(16): 2730 − 2733. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2004.16.014

    [99]

    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2):139 − 160. DOI: 10.1680/geot.1965.15.2.139

    [100]

    STEEDMAN R S,ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall[J]. Géotechnique,1990,40(1):103 − 112.

    [101] 李亮,褚雪松,庞峰,等. 地震边坡稳定性分析的拟静力方法适用性探讨[J]. 世界地震工程,2012,28(2):57 − 63. [LI Liang,CHU Xuesong,PANG Feng,et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering,2012,28(2):57 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6069.2012.02.010

    LI Liang, CHU Xuesong, PANG Feng, et al. Discussion on suitability of pseudo-static method in seismic slope stability analysis[J]. World Earthquake Engineering, 2012, 28(2): 57 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6069.2012.02.010

    [102]

    KARRAY M,HUSSIEN M N,DELISLE M C,et al. Framework to assess pseudo-static approach for seismic stability of clayey slopes[J]. Canadian Geotechnical Journal,2018,55(12):1860 − 1876. DOI: 10.1139/cgj-2017-0383

    [103]

    MENDEZ B,TASTAN E O,GUTIERREZ J. Performance-based slope stability analysis and the pseudo-static factor of safety[C]//Geotechnical Frontiers 2017. Orlando,Florida. Reston,VA:American Society of Civil Engineers,2017,278:390 − 399.

    [104]

    UTILI S,ABD A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(5):785 − 806. DOI: 10.1002/nag.2498

    [105]

    TERZAGHI K. Mechanisms of landslide[M]. Engineering Geology (Berdey) volume,1950,Geological Society of America.

    [106]

    KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.

    [107]

    SEED H B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Géotechnique,1979,29(3):215 − 263.

    [108]

    SEED H B. Stability of earth and rock-fill dams during earthquake[J]. Embankment-Dam Eng. 1973. Casagrande.

    [109] 中华人民共和国国家经济贸易委员会. 水工建筑物抗震设计规范:DL 5073—2000[S]. 北京:中国电力出版社,2001. [State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures:DL 5073—2000[S]. Beijing:China Electric Power Press,2001. (in Chinese)]

    State Economic and Trade Commission of the People’s Republic of China. Specifications for seismic design of hydraulic structures: DL 5073—2000[S]. Beijing: China Electric Power Press, 2001. (in Chinese)

    [110] 中华人民共和国国家标准编写小组. 铁路工程抗震设计规范:GB 50111—2006[S]. 北京:中国计划出版社, 2009. [The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering:GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)]

    The National Standards Compilation Group of People’s Republic of China. Code for seismic design of railway engineering: GB 50111—2006[S].Beijing: China Plan Press, 2009. (in Chinese)

    [111] 中华人民共和国交通部. 公路工程抗震设计规范:JTJ 004—1989[S]. 北京:人民交通出版社,1990. [Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering:JTJ 004—1989[S]. Beijing:China Communications Press,1990. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Specifications of earthquake resistant design for highway engineering: JTJ 004—1989[S]. Beijing: China Communications Press, 1990. (in Chinese)

    [112] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范(2016版):GB 50011—2010[S]. 北京: 中国建筑工业出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition):GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings (2016 edition): GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)

    [113] 梁承龙,刘芳. 地震作用下双层土裂缝边坡稳定性分析[J]. 地震工程学报,2022,44(5):1050 − 1058. [LIANG Chenglong,LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal,2022,44(5):1050 − 1058. (in Chinese with English abstract)]

    LIANG Chenglong, LIU Fang. Stability analysis of two-layered cracked slopes subjected to seismic excitation[J]. China Earthquake Engineering Journal, 2022, 44(5): 1050 − 1058. (in Chinese with English abstract)

    [114]

    FARSHIDFAR N, KESHAVARZ A, MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method[J]. Arabian Journal of Geosciences,2020,13(7):283.

    [115] 袁中夏,李德鹏,叶帅华. 地震和降雨条件下黄土高填方边坡稳定性分析[J]. 兰州理工大学学报,2022,48(4):119 − 125. [YUAN Zhongxia,LI Depeng,YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology,2022,48(4):119 − 125. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-5196.2022.04.018

    YUAN Zhongxia, LI Depeng, YE Shuaihua. Stability analysis of high fill slope with loess under earthquake and rainfall infiltration[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 119 − 125. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-5196.2022.04.018

    [116] 李旭东,王平,王丽丽,等. 强震作用下坡顶建筑荷载对边坡稳定性影响研究[J]. 地震工程学报,2021,43(5):1220 − 1227. [LI Xudong,WANG Ping,WANG Lili,et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal,2021,43(5):1220 − 1227. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2021.05.1220

    LI Xudong, WANG Ping, WANG Lili, et al. Influence of top building on the slope stability under strong earthquakes[J]. China Earthquake Engineering Journal, 2021, 43(5): 1220 − 1227. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2021.05.1220

    [117] 刘畅,张平松,杨为民,等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质,2020,53(4):176 − 185. [LIU Chang,ZHANG Pingsong,YANG Weimin,et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake,Tianshui,Gansu[J]. Northwestern Geology,2020,53(4):176 − 185. (in Chinese with English abstract)]

    LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslides in Shuiwan earthquake, Tianshui, Gansu[J]. Northwestern Geology, 2020, 53(4): 176 − 185. (in Chinese with English abstract)

    [118] 陈亚光. 宝兰客专天水市王家墩滑坡地震稳定性分析[J]. 地震工程学报,2019,41(6):1607 − 1614. [CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal,2019,41(6):1607 − 1614. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.06.1607

    CHEN Yaguang. Stability analysis of Wangjiadun landslide in Tianshui City under earthquake load[J]. China Earthquake Engineering Journal, 2019, 41(6): 1607 − 1614. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.06.1607

    [119] 闫东晗,薄景山,李孝波,等. 海原特大地震红土川滑坡拟静力强度折减法模拟分析[J]. 科学技术与工程,2019,19(28):50 − 55. [YAN Donghan,BO Jingshan,LI Xiaobo,et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering,2019,19(28):50 − 55. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2019.28.006

    YAN Donghan, BO Jingshan, LI Xiaobo, et al. Simulation analysis of Hongtuchuan landslide in Haiyuan earthquake quasi-static strength reduction method[J]. Science Technology and Engineering, 2019, 19(28): 50 − 55. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2019.28.006

    [120] 孙萍,祝恩珍,张帅,等. 地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J]. 现代地质,2019,33(1):218 − 226. [SUN Ping,ZHU Enzhen,ZHANG Shuai,et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area,Gansu Province[J]. Geoscience,2019,33(1):218 − 226.(in Chinese with English abstract)]

    SUN Ping, ZHU Enzhen, ZHANG Shuai, et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui Area, Gansu Province[J]. Geoscience, 2019, 33(1): 218 − 226.(in Chinese with English abstract)

    [121]

    ZENG X,STEEDMAN R S. On the behaviour of quay walls in earthquakes[J]. Géotechnique,1993,43(3):417 − 431.

    [122]

    CHOUDHURY D,NIMBALKAR S. Seismic passive resistance by pseudo-dynamic method[J]. Géotechnique,2005,55(9):699 − 702.

    [123]

    CHOUDHURY D,NIMBALKAR S S. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical & Geological Engineering,2006,24(5):1103 − 1113.

    [124]

    CHOUDHURY D,NIMBALKAR S. Seismic rotational displacement of gravity walls by pseudo-dynamic method:Passive case[J]. Soil Dynamics and Earthquake Engineering,2007,27(3):242 − 249. DOI: 10.1016/j.soildyn.2006.06.009

    [125]

    BAZIAR M H,SHAHNAZARI H,RABETI MOGHADAM M. Sliding stability analysis of gravity retaining walls using the pseudo-dynamic method[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2013,166(4):389 − 398. DOI: 10.1680/geng.10.00036

    [126]

    YAN Zuofei,DENG Yahong,HE Jia,et al. A pseudodynamic approach of seismic active pressure on retaining walls based on a curved rupture surface[J]. Mathematical Problems in Engineering,2020,2020:6462034.

    [127]

    GANESH R,KHUNTIA S,SAHOO J P. Seismic uplift capacity of shallow strip anchors:A new pseudo-dynamic upper bound limit analysis[J]. Soil Dynamics and Earthquake Engineering,2018,109:69 − 75. DOI: 10.1016/j.soildyn.2018.03.004

    [128]

    ZHAO Lianheng,YU Chenghao,LI Liang,et al. Rock slope reliability analysis using Barton-Bandis failure criterion with modified pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2020,139:106310. DOI: 10.1016/j.soildyn.2020.106310

    [129]

    MUNWAR BASHA B,SIVAKUMAR BABU G L. Reliability assessment of internal stability of reinforced soil structures:A pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2010,30(5):336 − 353. DOI: 10.1016/j.soildyn.2009.12.007

    [130]

    BASHA B M,BABU G L S. Seismic reliability assessment of internal stability of reinforced soil walls using the pseudo-dynamic method[J]. Geosynthetics International,2011,18(5):221 − 241. DOI: 10.1680/gein.2011.18.5.221

    [131]

    ZHOU X P,CHENG H. Stability analysis of three-dimensional seismic landslides using the rigorous limit equilibrium method[J]. Engineering Geology,2014,174:87 − 102. DOI: 10.1016/j.enggeo.2014.03.009

    [132]

    CHAKRABORTY D,CHOUDHURY D. Pseudo-static and pseudo-dynamic stability analysis of tailings dam under seismic conditions[J]. Proceedings of the National Academy of Sciences,India Section A:Physical Sciences,2013,83(1):63 − 71. DOI: 10.1007/s40010-013-0069-5

    [133] 阮晓波,孙树林,刘文亮. 锚固岩石边坡地震稳定性拟动力分析[J]. 岩土力学,2013,34(增刊1):293 − 300. [RUAN Xiaobo,SUN Shulin,LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics,2013,34(Sup 1):293 − 300. (in Chinese with English abstract)]

    RUAN Xiaobo, SUN Shulin, LIU Wenliang. Seismic stability of anchored rock slope using pseudo-dynamic method[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 293 − 300. (in Chinese with English abstract)

    [134]

    RUAN Xiaobo,SUN Shulin,LIU Wenliang. Effect of the amplification factor on seismic stability of expanded municipal solid waste landfills using the pseudo-dynamic method[J]. Journal of Zhejiang University SCIENCE A,2013,14(10):731 − 738. DOI: 10.1631/jzus.A1300041

    [135]

    ZHOU Xiaoping,QIAN Qihu,CHENG Hao,et al. Stability analysis of two-dimensional landslides subjected to seismic loads[J]. Acta Mechanica Solida Sinica,2015,28(3):262 − 276. DOI: 10.1016/S0894-9166(15)30013-6

    [136] 卢玉林,薄景山,陈晓冉,等. 考虑渗流和地震时的砂土边坡稳定性计算[J]. 重庆大学学报,2017,40(1):65 − 75. [LU Yulin,BO Jingshan,CHEN Xiaoran,et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University,2017,40(1):65 − 75. (in Chinese with English abstract)]

    LU Yulin, BO Jingshan, CHEN Xiaoran, et al. Calculation of sand slope stability with considering seepage and earthquake[J]. Journal of Chongqing University, 2017, 40(1): 65 − 75. (in Chinese with English abstract)

    [137] 邓亚虹,徐召,孙科,等. 一种考虑波动效应的拟动力地震边坡稳定性分析方法[J]. 地球科学与环境学报,2019,41(5):623 − 630. [DENG Yahong,XU Zhao,SUN Ke,et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment,2019,41(5):623 − 630. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-6561.2019.05.010

    DENG Yahong, XU Zhao, SUN Ke, et al. Pseudo-dynamic seismic slope stability analysis method considering wave propagation effects[J]. Journal of Earth Sciences and Environment, 2019, 41(5): 623 − 630. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2019.05.010

    [138] 杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)]

    YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)

    [139] 蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et,al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)]

    JIANG Qingjiang, DENG Yahong, YANG Nan, et, al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)

    [140] 宋桂锋,杜江梅,柯鉴,等. 基于拟动力法的顺层岩质边坡稳定性极限分析[J]. 地震工程学报,2019,41(4):931 − 938. [SONG Guifeng,DU Jiangmei,KE Jian,et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal,2019,41(4):931 − 938. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0844.2019.04.931

    SONG Guifeng, DU Jiangmei, KE Jian, et al. Stability limit analysis of bedding rock slopes based on pseudo-dynamic method[J]. China Earthquake Engineering Journal, 2019, 41(4): 931 − 938. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.04.931

    [141]

    BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering,2014,32(2):561 − 576. DOI: 10.1007/s10706-014-9734-y

    [142]

    CHANDA N,GHOSH S,PAL M. Seismic stability of slope using modified pseudo-dynamic method[J]. International Journal of Geotechnical Engineering,2019,13(6):548 − 559. DOI: 10.1080/19386362.2017.1372056

    [143]

    PAIN A,CHOUDHURY D,BHATTACHARYYA S K. Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure[J]. Geotextiles and Geomembranes,2017,45(5):471 − 486. DOI: 10.1016/j.geotexmem.2017.07.003

    [144]

    QIN Changbing,CHIAN S C. Impact of earthquake characteristics on seismic slope stability using modified pseudodynamic method[J]. International Journal of Geomechanics,2019,19(9):04019106. DOI: 10.1061/(ASCE)GM.1943-5622.0001489

    [145] 李雨浓,赵巍,刘畅,等. 基于修正拟动力法的抗滑桩加固边坡三维地震稳定性分析[J]. 中国公路学报,2024,37(1):44 − 54. [LI Yunnong,ZHAO Wei,LIU Chang,et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp,2024,37(1):44 − 54. (in Chinese with English abstract)]

    LI Yunnong, ZHAO Wei, LIU Chang, et al. 3D seismic stability analysis of slopes reinforced with stabilizing piles based on a modified pseudo-dynamic method[J]. China J. Highw. Transp, 2024, 37(1): 44 − 54. (in Chinese with English abstract)

    [146]

    CHEN Guanghui,ZOU Jinfeng,SHENG Yuming,et al. Three-dimensional seismic bearing capacity assessment of heterogeneous and anisotropic slopes[J]. International Journal of Geomechanics,2022,22(9):04022148. DOI: 10.1061/(ASCE)GM.1943-5622.0002493

    [147] 张磊,孙树林,储浩,等. 基于改进拟动力法的主动土压力分析研究[J]. 河北工程大学学报(自然科学版),2017,34(3):32 − 37. [ZHANG Lei,SUN Shulin,CHU Hao,et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition),2017,34(3):32 − 37. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-9469.2017.03.007

    ZHANG Lei, SUN Shulin, CHU Hao, et al. Active earth pressure of retaining wall based on modified pseu-do-dynamic method[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2017, 34(3): 32 − 37. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-9469.2017.03.007

    [148] 陈立伟,安彦勇,赵靓,等. 基于改进拟动力法的沿河岩石边坡地震抗倾覆稳定性分析[J]. 水道港口,2023,44(5):819 − 827. [CHEN Liwei,AN Yanyong,ZHAO Jing,et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor,2023,44(5):819 − 827. (in Chinese with English abstract)]

    CHEN Liwei, AN Yanyong, ZHAO Jing, et al. Analysis of seismic anti overturning stability of rock slope along the river based on improved pseudo dynamic method[J]. Journal of Waterway and Harbor, 2023, 44(5): 819 − 827. (in Chinese with English abstract)

图(4)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  56
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-04-25
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-07-28
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回