Application of airborne LiDAR technology in geological hazard investigation in Huangpu District, Guangzhou City
-
摘要:
近年来,机载LiDAR技术快速发展,其能够“穿透”地面植被,获取地面真实高程,对于精准获取地质灾害隐患点具有重要意义。为查明广州黄埔区地质灾害发育特征,文章基于机载LiDAR技术获取了黄埔区总面积为526.5 km2的三维点云和数字正射影像等数据,结合传统人工现场调查手段,查明项目范围内的典型地质灾害发育特征。解译结果表明:调查区内地质灾害呈面状和线状分布,主要集中在中北部山区丘陵地带,其他地区零星分布或无分布,崩塌及危岩体类地质灾害435处、滑坡及不稳定斜坡类地质灾害
1027 处,极端天气情况下可能诱发的低频泥石流灾害66处,以滑坡及不稳定斜坡类灾害为主;此外,区内地质灾害发育规律与地形地貌、地质条件、工程活动及降雨等因素具有较强的关联性,其中降雨诱发地质灾害较为显著,灾害多发生在月降雨量650~700 mm区间。研究表明,机载LiDAR技术能够实现研究区内地质灾害的识别,对指导识灾避灾减灾工作具有较好的指导作用和应用价值。Abstract:In recent years, airborne LiDAR technology has developed rapidly, allowing for the penetration of ground vegetation and the accurate acquisition of ground elevation, which is of great significance for precisely identifying geological hazard points. In order to understand the development characteristics of geological disasters in Huangpu District, Guangzhou, this study utilized airborne LiDAR technology to obtain three-dimensional point cloud and digital orthophoto images covering a total area of 526.5 km2 within district. Combined with traditional manual field investigation methods, the study identified the typical geological disaster development characteristics within the project scope. The interpretation results indicate that geological disasters within the investigation area are distributed in both surface and linear patterns, mainly concentrated in the hilly areas of the central and northern parts, with scattered or no distribution in other areas. There are 435 instances of geological disasters such as collapses and dangerous rock masses,
1027 instances of geological disasters such as landslides and unstable slopes, and 66 instances of low-frequency debris flow disasters that may be induced under extreme weather conditions, with landslides and unstable slope disasters being predominant. Additionally, the development pattern of geological disasters in the area exhibits a strong correlation with topography, geological conditions, engineering activities, and rainfall. Rainfall is notably significant in inducing geological hazards, with disasters occurring mainly within the range of monthly rainfall between 650 and 700 mm. The study demonstrates that airborne LiDAR technology can achieve the identification of geological disasters within the study area, providing valuable guidance and application value for guiding disaster identification, prevention, mitigation, and management. -
0. 引言
绞东滑坡位于林芝市巴宜区鲁朗镇老排龙地段。据历史影像推测,绞东滑坡首次滑塌时间约在2000年5月4日至2000年8月8日,见图1A区。2000年6月10日易贡湖溃决[1],随后形成的高速大流量洪水流对下游河道造成了巨大冲击[2],处于洪流下游回型弯区域的绞东滑坡受洪峰冲击,斜坡稳定性出现波动(文章认为,绞东滑坡首滑大概率为易贡湖溃决形成的洪流冲击所诱发),至今该滑坡仍处于活动状态,对其下方帕隆藏布以及雅鲁藏布江河道造成威胁。
易贡滑坡灾情发生后,国内外有关学者对灾害链模拟[2], 滑坡机理[3-6]、动力学等方面进行了研究,对易贡滑坡流域内其它潜在的隐患区(体)辐射较少,对绞东滑坡的研究为空白,而绞东滑坡地处帕隆藏布左岸,一旦大规模滑塌将有堵塞帕隆藏布的风险,进而影响雅鲁藏布江及下游两岸人民的生命财产安全,因此对绞东滑坡进行深入研究具有重要的应用价值。
鉴于绞东滑坡发生至今一直存在的活动性以及潜在威胁对象的重要性,文中借助RS、GIS对绞东滑坡堵江风险展开了评估,为下一步预防与治理提供思路。
1. 绞东滑坡基本情况
绞东滑坡后缘高程2030~2092 m,前缘高程1585~1590 m,最大落差达515 m,主滑方向214°。滑体长260~640 m,前缘横向宽约200~350 m,滑体厚度5~12 m,已发生两次滑塌事件,体积共约51.5×104 m3,推测仍有100×104 m3以上潜在滑体。综合判断,绞东滑坡为大型顺向浅表层滑坡。
1.1 地质环境背景
绞东滑坡位于帕隆藏布河道北东侧山坡中上部,地形起伏大、切割深。滑坡面基岩大面积出露,后缘外侧近山脊,地形稍缓。坡面整体坡向210°~280°,坡度30°~40°。已有滑面呈负地形地貌,降雨时滑坡后缘和两侧坡体形成的水流均向滑坡区汇集,为滑坡的形成提供了有利条件。
滑坡区出露的地层为一套蛇绿混杂岩构造岩片,滑坡中上部为混杂带基质,下部为石英片岩岩片。区内岩层倾向总体在220°~280°,倾角较大,在70°~82°。区内构造线主要方向为南东向,构造规模大小不一,断层破碎带发育、断层面倾角通常大于60°、性质为正断兼小规模走滑。
1.2 绞东滑坡特征分析
为理清绞东滑坡的危险性,必要对滑坡特征进行进一步分析,尤其是潜在滑体规模、分布位置等。由于研究区域位于深切割无人区内,滑坡实测数据难以获得,依据现有的影像资料和DEM资料亦难以直接获得滑坡体规模。为有效估算滑体规模,在前人研究的基础上引入缺乏实地测量数据区域的高位滑坡体规模估算方法。
近年来,研究人员对滑坡碎屑流运动的距离有诸多研究[7-11],其中郑光等[11]首次建立了滑坡碎屑流和岩体势能之间的基本公式,并加以验证,结果符合性较好。具体公式如下:
(1) 式中:L——碎屑流运动水平滑移距离;
d——碎屑体最大粒径;
B——滑面宽度;
α——滑面倾角;
μ——摩擦系数;
V——滑坡体体积;
H——滑坡体最大垂直滑移距离。
由于绞东滑坡所在斜坡面已发生两次滑坡灾害,根据遥感影像可直接获取L和B的值,并可估测d的值,而根据DEM则可获取H和α的值,μ则可依据HEIM[12]1932年提出的μ=H/L计算。
由上可知,在已知L、H、B、d、α、μ 的前提下,计算滑坡体体积V则成为可能,因此式(1)可改写为:
(2) 将绞东滑坡已知数据代入式(2),计算结果见表1。
通过表1 计算可以看到,基于式(2)计算得到的滑坡体体积与现场估算的滑坡体体积接近率超过90%。在缺乏准确资料的情况下,利用式(2)进行滑坡体规模估算是可行的。当然,文中的检验数据有限,该模型的通用性尚待进一步检验。
根据前文,在缺乏准确资料的情况下,通过模型计算得到了绞东滑坡两个滑体的体积,而滑体平均厚度则可根据h平均=V/S计算得到,其中h平均为滑体平均厚度,S为滑体表面积(表2)。
表 1 高位滑坡体体积计算模型检验计算表Table 1. Check calculation table of high-level landslide volume calculation model参数 L
/mB
/mH
/md
/mα
/(°)μ V计算
/m3V现场估算
/m3接近率
/%北侧滑体 728 15 515 1.5 40 0.71 16143 15000 92.92 南侧滑体 579 218 428 1.5 35 0.74 544436 500000 91.84 表 2 高位滑坡体平均厚度计算表Table 2. Calculation table of average thickness of high-level landslide mass滑坡体 V现场估算/m3 S投影面积/m2 S表面积/m2 h平均/m 北侧滑体 15000 16359 19971 0.75 南侧滑体 500000 65199 79593 6.28 1.3 潜在滑坡体分布位置及规模分析
绞东滑坡斜坡区已发生两次滑坡事件。为进一步分析滑坡影像特征,绘制了滑坡三维影像图(图2)。
根据图2可直观发现,北侧滑体(A区)主体以崩滑为主,InSAR监测显示的形变迹象较弱,实地堆积体较少,至目前尚未形成大规模崩滑现象;南侧滑体(C区)已发生滑动,堆积体较多,InSAR监测显示其滑面仍存在明显形变迹象;中部区域(B区)左侧为已滑坡区,右侧为沟谷带,其形态上符合潜在滑坡形貌。
综合A、B、C三个区域的活动特性,考虑其地质环境的一致性,认为B区可能存在和C区相似的地表活动性,而C区已发生滑坡,则本文关注的再发灾害的重点区域应该为B区。
结合遥感影像和DEM,获取B区的参数,潜在滑区表面积284648 m2,参照计算C区的滑坡体平均厚度,则可知B区潜在滑体体积为1787592 m3。
2. 绞东滑坡活动性分析
根据历史光学影像,自首滑后,于2014年(具体时间未知)在绞东滑坡南侧约500 m处的钢郎一带再次发生滑塌事件,见图3C、图4C区。此次滑塌虽未在绞东滑坡原址,但二者在空间上同属一个微斜坡单元,故认为是同一个滑坡。
依据光学影像获取绞东滑坡两次活动的时间节点,由于光学传感器的成像特点,仅据此难以获取更详细的滑坡活动信息。为进一步探索绞东滑坡的活动性,选用2019—2020年共22景Sentinel-1A降轨数据,22景日期见图3横坐标。基于POD精密定轨星历数据对原始数据进行了修正,再结合ALOS 12.5m DEM数据采用PS-InSAR对滑坡区域进行形变分析(图4)。
由图4可知,绞东滑坡存在两处已滑塌区域,目前均存在活动迹象,其中南侧滑坡体形变速率总体较高。对南侧滑坡体进一步分析,平均形变速率−34.09 mm/a,最大形变速率为−96.13 mm/a,形变速率≥50 mm/a的PS点共10个,其中除一个点位于后缘下方约180 m处外,其余9个点集中分布于滑体中下部,形变速率突出(LOS方向即视线方向,正代表靠近LOS方向,负代表远离LOS方向)。为充分反映滑坡体活动情况,文章对绞东滑坡的平均形变量进行时序分析(图3),发现,A区与C区自2019年10月3日至2020年4月24日之间相对稳定,之后出现形变迹象;B区自2019年10月3日至2020年7月29日呈持续形变迹象,在2020年4月24日至2020年7月5间有加速形变趋势。
综合分析表明,绞东滑坡所在斜坡坡体目前仍处于不稳定状态,滑坡再发性较高。
3. 绞东滑坡堵江风险性
绞东滑坡直接威胁对象为帕隆藏布以及雅鲁藏布江河道,在理清绞东滑坡斜坡区潜在高危区域后,进一步分析其堵江风险至关重要。
3.1 绞东滑坡潜在堵江类型分析
由前文可知,B区和C区具有相似的地质环境背景,假设B区在某刻发生了滑坡灾害,认为其滑面倾角、碎屑流最大粒径以及摩擦系数均与C区相同,即α=35°,d=1.5 m,μ=0.74。同时,根据遥感影像和DEM测算,再发滑坡的H=457 m,B=297 m,代入式(1),可求得
=713.2 m即,假定该次推测滑体碎屑流前部无地形阻挡,则碎屑流最大滑移平距为713.2 m(图5)。
图5为绞东滑坡潜在滑区(B区)地形示意图。由图5可知,潜在滑区前部为河道区,宽约90 m,之后便是缓坡区。假设B区全部滑坡,碎屑流倾泻而下,必然覆盖现有河道区,止于对岸斜坡1588 m高程点(无地形阻挡下碎屑流终止点与实际地形的交汇点)以下。基于该假设,则B区全部滑坡时会造成河道完全堵塞。
3.2 绞东滑坡潜在堵江坝体分析
前文可知,若绞东滑坡B区全部滑坡则会造成河道完全堵塞,因此对堰塞坝体高度有必要进一步分析。目前常见的堰塞坝高度估算方法主要为一般经验公式法和离散元软件PFC模拟[13-14],吴建川等[4]认为基于PFC软件模拟可获得更准确的数据。有鉴于此,本文引用梁承洋[13]基于PFC计算得出的冰碛物滑坡堵江坝高快速评估表(表3)来快速评估绞东滑坡潜在堵江坝体的最小坝高。
表 3 滑坡堵河最小坝高快速评估表Table 3. Quick evaluation table for minimum dam height of landslide blocking river河谷底宽
W/m河谷坡度
α/(°)不同松散堆积体体积V单位宽度下的坝体高度/m 2000 m3 4000 m3 6000 m3 8000 m3 40 30 18.71 31.93 40.33 47.36 35 22.28 33.43 44.79 52.52 40 23.26 34.53 48.73 55.73 80 30 14.37 26.86 33.41 41.71 35 14.67 28.33 35.84 45.68 40 15.04 31.71 38.07 49.17 120 30 11.26 18.05 28.06 36.23 35 11.39 19.51 32.76 37.38 40 11.97 21.61 34.00 39.19 绞东滑坡坡脚沟谷宽W约90 m,河谷坡度α约35°,B区潜在滑体体积V为1787592 m3,滑坡宽度B为297 m,对应的单位宽度体积为:V单位宽度= V总/B ≈6000 m3,根据表3,绞东滑坡潜在堵江坝体最小坝高大致在32~35 m。
综上,绞东滑坡B区斜坡若在同一时段全部滑坡,则存在造成帕隆藏布完全堵塞进而威胁下游雅鲁藏布江的风险。帕隆藏布是雅鲁藏布江的主要支流之一,一旦引起堵塞将引起系列严重后果。
4. 结论
(1)文中以绞东滑坡为例,利用历史遥感影像、DEM等数据,通过滑坡碎屑流和岩体势能之间的计算公式,估算了已滑滑坡的体积规模和平均厚度,并基于已滑滑坡预测潜在滑坡可能造成的灾情风险。本次针对绞东滑坡堵江风险评估的研究方法,可尝试应用于其他区域滑坡风险评估。
(2)绞东滑坡目前存在两个已滑滑区(A区、C区)和一个潜在滑区(B区),通过对潜在滑区分析,认为绞东滑坡B区尚存在1787592 m3潜在滑体,若该部分滑体在同一时段全部滑坡则存在堵塞帕隆藏布的风险,堵江堰塞坝最小坝高在32~35 m。
(3)持续开展InSAR监测,掌握绞东滑坡斜坡形变趋势,有助于绞东滑坡潜在灾情的早期识别,进而开展预防及治理工作。
-
表 1 主要解译内容及标志
Table 1 Main interpretation contents and symbols
类型 解译标志 滑坡 滑体位置、地貌部位、范围、形态、坡度、高程、沟谷发育状况、植被发育状况、总体滑动方向、与重要建筑物的关系等 崩塌 崩塌位置、形态、分布高程;崩塌堆积体的坡度、面积、发育方向、植被类型 泥石流 流域的边界、面积、形态、主沟长度、主沟纵降比、坡度;物源区水体分布、集水面积、地形坡度、岩性、植被覆盖程度、植物类别及分布状况,崩塌、滑坡、断裂、松散堆积物等不良现象,形成泥石流固体物质的分布范围;流通区沟床的横纵坡度、冲淤变化以及泥石流痕迹,阻塞地段堆积类型、跌水、急弯、卡口情况等 危岩体 危岩体多发生在节理裂隙发育岩质山坡与峡谷陡岸上,坡度通常在55°~75°,上陡下缓,表面坎坷不平,具粗糙感,偶出现巨大块石影像;危岩体上部外围有时可见到张节理形成的裂缝影像 不稳定斜坡 不稳定斜坡位置、形态、分布高程、堆积体面积、斜坡范围内InSAR形变数据分布 表 2 调查区内典型地质灾害解译影像及过程
Table 2 Typical geological hazards interpretation images and processes in the survey area
类别 崩塌 滑坡 泥石流 三维光学影像 三维数字高程模型 解译过程 崩塌多发育在陡峭山体或公路开挖边坡处,其物源区与堆积区交接处明显。在 LiDAR 数据上表现为滑源区坡度较大并可能伴随局部拉花,向堆积区过渡时则坡度突然变缓,有明显的陡缓交界线;堆积区呈现三角锥形或梨形,处于地形低处,表面粗糙度特征与环境差异较大,但新近堆积粗糙度大颗粒感明显,古老堆积则粗糙度小较光滑 对于光学影像,若坡面植被较多,通常无法进行滑坡识别;此时LiDAR 获取的数字高程模型能去除掉表面的干扰信息,很好地识别滑坡后缘的滑体缺失和前缘堆积体,滑坡后缘椅状地貌、滑坡下错迹象、滑坡表面粗糙度差异,因此滑坡边界十分清楚,关于滑坡的解译可很好体现机载LiDAR 数据区别于传统影像滑坡解译的优势 泥石流以发育地形、堆积扇和沟道范围内的不良地质体作为人工综合解译标志。泥石流沟谷为低于原有平面的负地形地貌,多为雨水汇聚通道;同时沟道内不良地质体的存在为泥石流提供可流动物源;在降雨条件下可流动物源沟道内汇聚并高速流向沟口形成堆积扇。研究区内泥石流堆积扇受人为改造程度严重,很难发现堆积扇范围边界 -
[1] 冯振,陈亮,王立朝,等. 区域地质灾害易发性评价的证据权法原理与实践[J]. 地质通报,2024,43(7):1255 − 1265. [FENG Zhen,CHEN Liang,WANG Lichao,et al. Principle and application of the weight-of-evidence method in regional landslide susceptibility assessment[J]. Geological Bulletin of China,2024,43(7):1255 − 1265. (in Chinese with English abstract)] FENG Zhen, CHEN Liang, WANG Lichao, et al. Principle and application of the weight-of-evidence method in regional landslide susceptibility assessment[J]. Geological Bulletin of China, 2024, 43(7): 1255 − 1265. (in Chinese with English abstract)
[2] 王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟——以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model:A case study of the high cut slope near damsite of a hydropower station in southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)] WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: A case study of the high cut slope near damsite of a hydropower station in southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)
[3] 贾会会,薛建志,郭利召,等. “空天地” 一体化技术在采空区形变监测中的应用[J]. 中国地质灾害与防治学报,2023,34(3):69 − 82. [JIA Huihui,XUE Jianzhi,GUO Lizhao,et al. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):69 − 82. (in Chinese with English abstract)] JIA Huihui, XUE Jianzhi, GUO Lizhao, et al. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 69 − 82. (in Chinese with English abstract)
[4] 张小红. 机载激光雷达测量技术理论与方法[M]. 武汉:武汉大学出版社,2007. [ZHANG Xiaohong. Theory and method of airborne LiDAR measurement technology[M]. Wuhan:Wuhan University Press,2007. (in Chinese)] ZHANG Xiaohong. Theory and method of airborne LiDAR measurement technology[M]. Wuhan: Wuhan University Press, 2007. (in Chinese)
[5] 薛强,张茂省,董英,等. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质,2023,50(3):926 − 942. [XUE Qiang,ZHANG Maosheng,DONG Ying,et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing:Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China,2023,50(3):926 − 942. (in Chinese with English abstract)] XUE Qiang, ZHANG Maosheng, DONG Ying, et al. Refinement risk identification of loess geo-hazards based on DEM and remote sensing: Taking Mizhi County in the Loess Plateau of northern Shaanxi as an example[J]. Geology in China, 2023, 50(3): 926 − 942. (in Chinese with English abstract)
[6] 韩娜娜,单新建,宋小刚. 高空间分辨率数字高程模型测量技术及其在活断层研究中的应用[J]. 地震学报,2017,39(3):436 − 450. [HAN Nana,SHAN Xinjian,SONG Xiaogang. VHR DEM measurement technology and its application in active fault research[J]. Acta Seismologica Sinica,2017,39(3):436 − 450. (in Chinese with English abstract)] HAN Nana, SHAN Xinjian, SONG Xiaogang. VHR DEM measurement technology and its application in active fault research[J]. Acta Seismologica Sinica, 2017, 39(3): 436 − 450. (in Chinese with English abstract)
[7] 孙鑫喆,唐声权. 光学遥感技术的发展及其在活动构造研究中的应用[J]. 地震地质,2016,38(1):211 − 220. [SUN Xinzhe,TANG Shengquan. The development of optical remote sensing technology and its application to the active tectonics research[J]. Seismology and Geology,2016,38(1):211 − 220. (in Chinese with English abstract)] SUN Xinzhe, TANG Shengquan. The development of optical remote sensing technology and its application to the active tectonics research[J]. Seismology and Geology, 2016, 38(1): 211 − 220. (in Chinese with English abstract)
[8] 许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)] XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957 − 966. (in Chinese with English abstract)
[9] 陈松,陈长敬,罗士新,等. 广州南沙厚覆盖区近地表地层结构分析: 基于二维地球物理多方法探测结果[J]. 地质通报,2023,42(1):168 − 179. [CHEN Song,CHEN Changjing,LUO Shixin,et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area: based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China,2023,42(1):168 − 179. (in Chinese with English abstract)] CHEN Song, CHEN Changjing, LUO Shixin, et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area: based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China, 2023, 42(1): 168 − 179. (in Chinese with English abstract)
[10] 邵延秀,张波,邹小波,等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,2017,39(6):1185 − 1197. [SHAO Yanxiu,ZHANG Bo,ZOU Xiaobo,et al. Application of uavls to rapid geological surveys[J]. Seismology and Geology,2017,39(6):1185 − 1197. (in Chinese with English abstract)] SHAO Yanxiu, ZHANG Bo, ZOU Xiaobo, et al. Application of uavls to rapid geological surveys[J]. Seismology and Geology, 2017, 39(6): 1185 − 1197. (in Chinese with English abstract)
[11] 刘圣伟,郭大海,陈伟涛,等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质,2012,39(2):507 − 517. [LIU Shengwei,GUO Dahai,CHEN Weitao,et al. The application of airborne LiDAR technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China,2012,39(2):507 − 517. (in Chinese with English abstract)] LIU Shengwei, GUO Dahai, CHEN Weitao, et al. The application of airborne LiDAR technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China, 2012, 39(2): 507 − 517. (in Chinese with English abstract)
[12] 康帅,张景发,崔效峰,等. 基于高精度地基LiDAR技术的活动断层错断地貌研究——以冷龙岭活动断裂带为例[J]. 地震,2017,37(3):61 − 71. [KANG Shuai,ZHANG Jingfa,CUI Xiaofeng,et al. Offset landform caused by active fault based on high precision terrestrial LiDAR data:A case study of the Lenglongling active fault zone[J]. Earthquake,2017,37(3):61 − 71. (in Chinese with English abstract)] KANG Shuai, ZHANG Jingfa, CUI Xiaofeng, et al. Offset landform caused by active fault based on high precision terrestrial LiDAR data: A case study of the Lenglongling active fault zone[J]. Earthquake, 2017, 37(3): 61 − 71. (in Chinese with English abstract)
[13] 陈涛,张培震,刘静,等. 机载激光雷达技术与海原断裂带的精细地貌定量化研究[J]. 科学通报,2014,59(14):1293 − 1304. [CHEN Tao,ZHANG Peizhen,LIU Jing,et al. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin,2014,59(14):1293 − 1304. (in Chinese with English abstract)] CHEN Tao, ZHANG Peizhen, LIU Jing, et al. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR[J]. Chinese Science Bulletin, 2014, 59(14): 1293 − 1304. (in Chinese with English abstract)
[14] 李显巨. 基于新型遥感数据的典型地质环境信息智能识别[D]. 武汉:中国地质大学,2016. [LI Xianju. Intelligent identification of typical geo-environmental information using new remote sensing data[D]. Wuhan:China University of Geosciences,2016. (in Chinese with English abstract)] LI Xianju. Intelligent identification of typical geo-environmental information using new remote sensing data[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)
[15] 佘金星,程多祥,刘飞,等. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震,2018,34(3):435 − 444. [SHE Jinxing,CHENG Duoxiang,LIU Fei,et al. Application of airborne LiDAR technology in geological disaster investigation:Taking the Jiuzhaigou Ms7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China,2018,34(3):435 − 444. (in Chinese with English abstract)] SHE Jinxing, CHENG Duoxiang, LIU Fei, et al. Application of airborne LiDAR technology in geological disaster investigation: Taking the Jiuzhaigou Ms7.0 earthquake in Sichuan Province as an example[J]. Earthquake Research in China, 2018, 34(3): 435 − 444. (in Chinese with English abstract)
[16] 董秀军,许强,佘金星,等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),2020,45(3):432 − 441. [DONG Xiujun,XU Qiang,SHE Jinxing,et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University,2020,45(3):432 − 441. (in Chinese with English abstract)] DONG Xiujun, XU Qiang, SHE Jinxing, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432 − 441. (in Chinese with English abstract)
[17] 罗达,林杭生,金钊,等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报,2019,10(3):213 − 226. [LUO Da,LIN Hangsheng,JIN Zhao,et al. Applications of UAV digital aerial photogrammetry and LiDAR in geomorphology and land cover research[J]. Journal of Earth Environment,2019,10(3):213 − 226. (in Chinese with English abstract)] LUO Da, LIN Hangsheng, JIN Zhao, et al. Applications of UAV digital aerial photogrammetry and LiDAR in geomorphology and land cover research[J]. Journal of Earth Environment, 2019, 10(3): 213 − 226. (in Chinese with English abstract)
[18] 曲雪妍,李媛,房浩,等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)] QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137 − 145. (in Chinese with English abstract)
[19] 郑史芳,黎治坤. 结合倾斜摄影技术的地质灾害监测[J]. 测绘通报,2018(8):88 − 92. [ZHENG Shifang,LI Zhikun. Geohazard monitoring based on tilt photography[J]. Bulletin of Surveying and Mapping,2018(8):88 − 92. (in Chinese with English abstract)] ZHENG Shifang, LI Zhikun. Geohazard monitoring based on tilt photography[J]. Bulletin of Surveying and Mapping, 2018(8): 88 − 92. (in Chinese with English abstract)
[20] 葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)] GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949 − 956. (in Chinese with English abstract)
[21] 杨航,辛宇佳,李建华,等. 广东莲花山花岗岩体锆石U-Pb年龄、地球化学特征及地质意义[J]. 地球学报,2022,43(2):211 − 223. [YANG Hang,XIN Yujia,LI Jianhua,et al. Zircon U-Pb ages and geochemical constraints of the Lianhuashan granitoids in Guangdong Province and their geological implications[J]. Acta Geoscientica Sinica,2022,43(2):211 − 223. (in Chinese with English abstract)] YANG Hang, XIN Yujia, LI Jianhua, et al. Zircon U-Pb ages and geochemical constraints of the Lianhuashan granitoids in Guangdong Province and their geological implications[J]. Acta Geoscientica Sinica, 2022, 43(2): 211 − 223. (in Chinese with English abstract)
-
期刊类型引用(2)
1. 杨云建,周学铖,何中海,李宗亮,蔡嘉伦,裴鹏,刘锦涛,匡伟. 多时相数字孪生滑坡变形监测方法与应用研究——以金沙江白格滑坡为例. 水文地质工程地质. 2024(02): 132-143 . 百度学术
2. 张彦锋,高杨,李滨,朱赛楠. 青藏高原混杂岩带及其地质灾害发育特征分析. 工程地质学报. 2023(03): 981-998 . 百度学术
其他类型引用(0)