ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

西藏林芝地区崩滑流灾害影响因子定量评价

余明威, 郭永刚, 苏立彬

余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价[J]. 中国地质灾害与防治学报,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
引用本文: 余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价[J]. 中国地质灾害与防治学报,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
YU Mingwei,GUO Yonggang,SU Libin. Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
Citation: YU Mingwei,GUO Yonggang,SU Libin. Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037

西藏林芝地区崩滑流灾害影响因子定量评价

基金项目: 西藏自治区重点研发计划项目(XZ202201ZY0034G);西藏自治区科技重大专项课题(XZ202201ZD0003G03);国家自然科学基金联合基金项目(U22A20596)
详细信息
    作者简介:

    余明威(1996—),男,江苏淮安人,硕士,主要从事西藏重大工程地表地质灾害链监测与冰川冰湖分析方面的研究。E-mail:708942514@qq.com

    通讯作者:

    郭永刚(1966—),男,黑龙江双城人,博士,教授,博士生导师,主要从事水利水电工程强震安全监测、重大工程地质灾害防治方面的研究。E-mail:1960373107@qq.com

  • 中图分类号: P694

Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region

  • 摘要:

    林芝地区地形复杂,断层活动强烈,水系分布广泛,气候条件多变,地质灾害频发,对整个林芝地区经济发展和工程建设的影响日趋显著。其中,滑坡、崩塌、泥石流是林芝地区最常见的几种地质灾害,为了定量分析林芝地区内灾害对影响因子敏感性,文章基于GIS与确定性系数分析法,选取了高程、坡向、地形起伏度、地形湿度指数等10个因子开展对崩滑流灾害敏感性分析。分析结果表明:(1)林芝地区崩滑流灾害影响因子敏感性区间为:高程在0.82~3.79 km,坡向为东向、东北向、南向、西向,地形起伏度在0~24 m/km2,距水系距离0~3 km,归一化植被指数0.47~0.81,距道路距离0~1.5 km,距活动断裂带距离0~3 km,多年平均降雨量61.38~175.37 mm,多年平均气温4.02~17.22 °C,灾害与影响因子之间表现出良好的相关性。(2)影响因子间敏感性大小:多年平均气温>距水系距离>高程>地形起伏度>距道路距离>归一化植被指数>多年平均降雨量>地形湿度指数>距活动断裂带距离>坡向。研究结果对林芝地区工程建设与防灾减灾工作提供参考。

    Abstract:

    The Nyingchi area exhibits complex topography, high fault activity, an extensive water systems distribution, variable climatic conditions, and frequent geological hazards. These factors have a significantly growing impact on the economic development and engineering construction in the entire Nyingchi area. Among these hazards, landslides, collapses, and debris flows are the most common geological hazards in Nyingchi area. In order to quantitatively analyze the sensitivity of hazards in the Nyingchi area to the impact factors, this study, based on GIS and the certainty coefficient analysis method, selected ten factors, including elevation, slope aspect, topographic relief, and topographic humidity index, to conduct sensitivity analysis on landslide, rockfall and debris flow hazards. The analysis results show that: (1) The sensitive range of factors influencing landslide, rockfall and debris flow hazards in the Nyingchi area include elevation between 0.82 and 3.79 km; slope aspects facing eastward, northeastward, southward, and westward; topographic relief ranging from 0 to 24 m/km2; distances from the water system within 0 to 3 km; normalized vegetation index ranging from 0.47 to 0.81; distances from the road wihtin 0 to 1.5 km; distances from the active fault zone within 0 to 3 km; annual average rainfall ranging from 51.15 to 146.14 mm; annual average temperatures between 4.02 and 17.22 °C. There exists a strong correlation between hazards and these impact factors. (2) Sensitivity among influencing factors follows this order: annual average temperature > distance from water system > elevation > topographic relief > distance from road > normalized vegetation index > average annual rainfall > topographic humidity index > distance from the active fault > aspect. The research results provide references for engineering construction and hazards prevention and mitigation work in the Nyingchi area.

  • 藏东南地区位于喜马拉雅山脉东段,区域地质结构复杂,山川水系众多,大深断层密布。在全球气候变化与极端天气、人类活动频繁、地质板块活动剧烈的多重因素影响下,成为我国崩塌、滑坡等地质灾害最为严重的区域之一[12],大深断裂带、水系分布、土地利用、人类活动等是滑坡、崩塌等地质灾害易发性评价的主要影响因素,也成为评价因子选取重要的参考依据[34]。随着3S技术的发展,空间数据处理能力大幅提升,目前研究地质灾害以定量分析为主流,通过对灾害定量评价分析方法的组合使用,在研究地质灾害敏感性分析中取得了良好效果。如杨命青等[5]基于灾害发生学原理并建立敏感性评价模型对龙门山区地质孕灾因子进行敏感性分析;范林峰等[6]基于网格单元划分对湖北恩施市地质灾害进行了分析;陈玉等[7]采用概率指数模型和信息量模型对芦山地质灾害进行敏感性分析;林金煌等[8]采用空间主成分分析法,并结合全局Monran’I指数、局部Monran’I指数对闽三角城市群进行灾害敏感性评价;赵银兵等[9]采用层次分析法和敏感性系数法两种方法对京津冀地区地质环境进行区划并进行评价;薛永安等[10]分别采用CF模型、SVM模型、随机森林模型(RF)、CF-SVM模型4种方法对县域国土空间地质灾害敏感性进行评价。

    西藏地区是中国地质灾害频发最严重的省(区)之一,随着西部大开发的深入,林芝地区的地质灾害对当地社会与经济发展的影响日趋显著。一些学者已经对西藏部分地区开展了相关的灾害敏感性研究,王盈等[11]基于地质灾害解译基础上,对藏东南雅江流域灾害点发育规律及影响因素进行分析;韩用顺等[12]以藏东南地区为例,使用证据权-投影寻踪模型对藏东南地区地质灾害点的分布特征与发育规律进行分析与评价;熊德清等[13]以日喀则地区喜马拉雅山脉地震带为研究对象,采用地质灾害解译方法对地质灾害分布特征与发育规律以及影响因素进行综合分析;黄艳婷等[14]通过研究藏东南地区泥石流灾害,采用层次分析法对藏东南地区泥石流灾害对降雨敏感度的危险性评价;支泽民等[15]基于随机森林模型,选取断层密度、地形起伏度、坡度等10个因子作为评价因素,分析了各因子之间的相关性,最终对西藏昌都地区地质灾害易发性进行分析与评价。虽然前人已经在西藏地区开展了众多对灾害易发敏感性研究工作,但多为某一流域或在某一区域,鲜有针对林芝地区地质灾害进行敏感性分析研究。

    本文以林芝地区为研究区域,以区内崩滑流灾害为研究对象,基于确定性系数模型,选取相关影响因子,由于研究区域内断裂带活动频繁,雅鲁藏布江等水系内水流量巨大,水库蓄水后,时常会诱发不同规模的地震,导致崩滑流灾害发生次数不断上升。人类工程活动的频繁,导致道路沿线山体稳定性被破坏,为崩滑流灾害创造了丰富的固体物质来源。降雨量丰富与温度变化,导致水系周边时常发生暴雨型崩滑流灾害。由于西藏地区海拔变化差异大、气候恶劣、岩石风化严重,导致研究区域内由于土壤分布、气温、降水、植被覆盖垂直分布化明显,因此高程、坡向、地形起伏度等地形条件因素对研究区域内崩滑流灾害的发生有较强的影响。降雨量分布差异化使植被覆盖度和地形湿度指数对崩滑流灾害的影响较为显著,因此对林芝地区崩滑流灾害影响因子敏感性进行分析与评价。研究结果可以对藏东南地区工程建设与防灾减灾工作提供参考。

    雅鲁藏布江流经藏东南林芝地区,林芝地区海拔800~7500 m,平均海拔3100 m,总面积114870 km2。气候上,该区域由于受到孟加拉湾带来的暖湿气流作用,形成了热带、亚热带、温带、寒带气候并存的多种气候带[1617]。年平均气温8.7 °C,降雨月份主要集中于6—8月份,年平均降水量在650 mm[1819]

    林芝地区发育的地质灾害主要包括崩塌、滑坡、泥石流这3种类型,根据西藏地质灾害详细调查数据库,截至2020年底,林芝地区发育崩滑流灾害点共计782处。其中滑坡229处,崩塌126处,泥石流427处,主要分布于活动断裂带、水系以及道路两侧。该区域地质灾害灾情等级以小型为主,但是所造成的险情等级的大小各有不同,对于工程设施、居民财产造成的威胁已不容忽视(图1)。

    图  1  林芝地区崩滑流灾害分布图
    Figure  1.  Distribution map of landslide, rockfall and debris flow hazards in Nyingchi area

    确定性系数方法属于概率函数统计方法,该方法可以通过已发生的灾害建立选定影响因子之间的关系,通过计算确定性系数来表征灾害易发性对选定的影响因子的敏感度,计算公式如下:

    CFij={PiPjPPSPiPj(1PPS),PiPjPPSPiPjPPSPPS(1PiPj),PiPj<PPS (1)

    式中:CFij——第i个影响因子下第j个分级的确定性系 数值,用以表征对灾害敏感性,其值域为 [−1, 1],正值表示灾害发生确定性高,其 所在单元格代表为灾害易发单元,负值 代表为灾害发生确定性低,其所在单元 格发生单元格代表为灾害不易发灾害单 元,而当CF值趋近于0时,则表示该条 件概率趋近于先验概率,表明所在单元 格无法辨别是否为灾害易发区域;

    PiPj——第i个影响因子下第j个分级内灾害发生 的概率,用所在分级区间内灾害发育密度 表示/(处·km−2);

    PPS——表示为灾害在整个研究区中发生的先验 概率,用来表示为整个研究区域内灾害发 育平均密度/(处·km−2)。

    本文使用计算确定性系数标准差,以表征选定影响因子对灾害易发性敏感性大小,计算公式如下:

    CFi=1nj=1n(CFijCFij)2 (2)

    式中:CFi——第i个影响因子的确定性系数值,用以表征灾害对该选定的影响因子的敏感性,用可以衡量影响因子内部确定性系数值波动情况的CFij标准差来表示,值域为[0, 1],该值越大,表明该因子对灾害敏感性越高,反之,对灾害敏感性越低;

    n——第i个影响因子的分级数量;

    CFij——第i个影响因子下所有分级的确定性系 数平均值;

    CFij——如式(1)所示。

    (1)高程

    研究区域内高程0.02~7.30 km,不同高程分级范围内气候条件、人类工程建设强度不同,均会影响地质灾害的发生。本文以自然断点法将研究区域高程划分为10级(表1),见图2(a)。高程分类敏感性分布见图3(a),表明:高程分级与崩滑流灾害存在“双峰分布”关系,发生灾害的高程主要集中在2.77~3.31 km,灾害数量占比为29.05%。CFij为正值的区间,表明该区间内灾害易发区;其中1.54~2.19 km的CFij最大,为灾害高易发区。高程大于3.79 km的CFij值均小于−0.5,为灾害低易发区。

    表  1  影响因子分类标准及确定性系数值
    Table  1.  Classification standard for impact factors and value of certainty factors
    影响因子 因子分级 灾害点/处 PiPj/(处·km−2 CFij CFi
    高程/km 0.02~0.82 24 0.00383 −0.425 0.66
    0.82~1.54 63 0.00967 0.307
    1.54~2.19 154 0.02208 0.702
    2.19~2.77 104 0.01277 0.474
    2.77~3.31 226 0.02027 0.666
    3.31~3.79 141 0.01021 0.344
    3.79~4.22 50 0.00306 −0.540
    4.22~4.63 10 0.00053 −0.920
    4.63~5.04 5 0.00028 −0.957
    >5.04 1 0.00009 −0.986
    坡向 平面 74 0.00579 −0.137 0.21
    80 0.00629 −0.063
    东北 91 0.00690 0.027
    98 0.00745 0.098
    东南 83 0.00640 −0.046
    115 0.00804 0.163
    西南 86 0.00662 −0.014
    西 84 0.00691 0.028
    西北 71 0.00583 −0.132
    地形起伏度/(m·km−2 0~24 385 0.01582 0.572 0.64
    24~42 206 0.00508 −0.242
    42~58 130 0.00389 −0.418
    58~76 49 0.00339 −0.493
    76~101 10 0.00286 −0.573
    101~145 2 0.00689 0.027
    145~257 0 0.00000 −1.000
    257~602 0 0.00000 −1.000
    >602 0 0.00000 −1.000
    地形湿度指数 0.47~4.58 105 0.00305 −0.545 0.50
    4.58~5.96 216 0.00493 −0.265
    5.96~7.64 190 0.00796 0.154
    7.64~10.07 151 0.01598 0.576
    10.07~13.65 77 0.02164 0.685
    >13.65 43 0.03604 0.808
    归一化植被指数 0.01~0.18 4 0.00033 −0.950 0.55
    0.18~0.33 7 0.00068 −0.899
    0.33~0.47 33 0.00295 −0.560
    0.47~0.60 89 0.00738 0.088
    0.60~0.70 131 0.00984 0.315
    0.70~0.81 273 0.01456 0.535
    0.81~0.91 244 0.00634 −0.057
    距道路距离/km 0~0.3 242 0.27615 0.969 0.57
    0.3~0.6 55 0.06455 0.890
    0.6~0.9 30 0.03577 0.807
    0.9~1.2 21 0.02534 0.730
    1.2~1.5 10 0.01244 0.457
    >1.5 424 0.00378 −0.436
    距水系距离/km 0~1.5 431 0.05304 0.868 0.68
    1.5~3 225 0.03093 0.778
    3~4.5 30 0.00420 −0.372
    4.5~6 17 0.00241 −0.639
    6~7.5 29 0.00419 −0.374
    >7.5 50 0.00063 −0.906
    距活动断裂带距离/km 0~3 493 0.00806 0.688 0.44
    3~6 117 0.00297 −0.375
    6~9 70 0.00284 −0.402
    9~12 32 0.00225 −0.526
    12~15 16 0.00173 −0.636
    >15 52 0.00342 −0.280
    多年平均降雨量/mm 25.76~47.13 127 0.00749 0.099 0.54
    47.13~61.38 199 0.00422 −0.372
    61.38~78.30 206 0.01036 0.347
    78.30~99.67 67 0.00725 0.070
    99.67~123.72 77 0.01308 0.481
    123.72~149.54 64 0.01399 0.515
    149.54~175.37 37 0.00883 0.235
    175.37~201.19 5 0.00126 −0.812
    201.19~253.74 0 0.00000 −1.000
    多年平均温度/°C −21.52~−8.49 0 0.00000 −1.000 0.75
    −8.49~−5.32 1 0.00008 −0.988
    −5.32~−2.50 9 0.00048 −0.928
    −2.50~0.49 30 0.00162 −0.758
    0.49~4.02 87 0.00513 −0.237
    4.02~7.89 200 0.01475 0.539
    7.89~12.47 265 0.02312 0.704
    12.47~17.22 165 0.01741 0.609
    17.22~23.56 25 0.00218 −0.675
    下载: 导出CSV 
    | 显示表格
    图  2  崩滑流灾害影响因子分布图
    Figure  2.  Distribution map of impact factors for landslide, rockfall and debris flow hazards
    图  3  崩滑流灾害影响因子各分类敏感性分布图
    Figure  3.  Sensitivity distribution map of impact factors in each classification for landslide, rockfall and debris flow hazards

    (2)坡向

    坡向为坡面朝向,由于不同坡面的朝向不同,接受太阳辐射强度也不同,直接影响各坡向面土体强度与植被覆盖度,最终影响地区地质灾害的发生频率。将研究区的坡向划分为9类(表1),见图2(b)。坡向敏感性分布见图3(b),表明:在研究区域内,不同的坡向分区与崩滑流灾害的发生存在一定的关联性,CFij在东北向、东向、南向、西向为正值,其中南向的CFij值最大,属于灾害高易发区,南向受昼夜温差、蒸发与降雨等气候因素影响,使得植被发育较少、岩体物理风化较为严重,导致南向成为崩滑流灾害的高发区域。并且这区域内年均降雨量较大,见图2(i),进而导致不同坡向区域内均发生不同规模的崩滑流灾害。而在平面区域CFij值最小,属于灾害低易发区。

    (3)地形起伏度

    地形起伏度表示区域相对高差,指区域内海拔变化与平地比例表征的地形起伏状况。本文以自然断点法将研究区域划分为7级(表1),见图2(c)。地形起伏度分类敏感性分布见图3(c),表明:地形起伏度与崩滑流灾害整体呈下降关系,但在0~24 m/km2CFij值最大,该区域属于灾害高发区域,具有较高的灾害敏感性。而在其他分级区间内,CFij值均小于0,因此这些分级区间内所在的区域均为灾害低易发区域。

    (4)地形湿度指数

    地形湿度指数是研究指定区域内土壤在静态情况下含水量重要指标之一。一般情况下地形湿度指数越大,代表该地区土壤含水量越高,更容易饱和而产生径流,反之,则代表土壤越干。以自然断点法将研究区域划分为6级(表1),见图2(d)。地形湿度指数分类敏感性分布见图3(d),表明:地形湿度指数与崩滑流灾害整体呈正相关,随着地形湿度指数增大,地质灾害发育明显呈上升趋势,在>13.65范围内,地形湿度指数CFij值最大,为灾害高易发区。而在<5.96区间范围内,CFij值为负数,该区间范围内为灾害低易发区。

    (5)归一化植被指数

    归一化植被指数是研究区域内植被生长状况的重要指标,在研究气候变化和生态环境等领域有重要研究作用。以自然断点法将2000—2019年年均NDVI[20]划分为7级(表1),见图2(e)。植被覆盖指数分类敏感性分布见图3(e),表明:归一化植被覆盖指数与崩滑流灾害的发育具有密切关联,呈现较好正相关性,即随着NDVI指数增加,CFij呈现逐步递增趋势,区域内崩滑流灾害在0.70~0.81范围内,CFij值大于0.50,崩滑流灾害发生占比34.96%,为高易发区。而在0.01~0.18区间范围内,CFij值为−0.95,属于低易发区域,这主要是由于研究区域内降水量与蒸发量的分布极其不平衡造成的。

    (6)距道路距离

    林芝地区道路分布较为稀疏,随着人类工程活动的持续进行,该地区的道路里程逐年增加,持续的施工建设,使得当地地质条件与生态环境发生改变,为崩滑流灾害的发育提供了有利条件,以0.3 km设置缓冲范围,按照距最近道路距离的不同,由近到远划分为6级(表1),见图2(f)。距道路距离分类敏感性分布见图3(f),表明:距道路距离与崩滑流灾害发生呈显著负相关,随着距道路距离增加,崩滑流灾害发育明显呈递减趋势,但在0~0.3 km范围内,灾害发生数量最多,且CFij值最大,为灾害高易发区,而距道路大于1.5 km的区域,CFij值最小,为灾害低易发区。

    (7)距水系距离

    水系分布对崩滑流灾害具有控制作用,水系侵蚀周围岩壁形成临空面,降低周围岩壁的稳定性。林芝地区水系较为发达,主要水系为崩滑流灾害的发育提供的自然条件,以1.5 km设置缓冲范围,按照距水系距离不同,由近到远划分6级(表1),见图2(g)。距水系距离分类敏感性分布见图3(g),表明:距水系距离与崩滑流灾害发生呈显著负相关性,随着距水系距离增加,崩滑流灾害发育呈明显下降趋势,距水系距离在0~1.5 km区间范围内崩滑流灾害数量最多,占比54.22%,且CFij值最大,为灾害高易发区。距水系大于3 km区间范围内,CFij值均为负值,因此在该区间范围内均属于灾害低易发区。

    (8)距活动断裂带距离

    活动断裂带是地质灾害孕育的内动力,林芝地区内断层分布较为广泛,为崩滑流灾害的发育提供了有利条件。以Zelenin等[21]提供的欧亚大陆活动断层数据集,以3 km设置缓冲范围,按照与距离最近断裂带距离的不同,由近到远划分为6级(表1),见图2(h)。距活动断裂带距离分类敏感性分布见图3(h),表明:地质构造与崩滑流灾害发生具有显著的负相关性,随着距活动断裂带距离增加,崩滑流灾害发育呈明显下降趋势,在0~3 km区间范围内CFij值最大,数量占比63.20%,研究表明该区间内崩滑流灾害受活动断裂带控制明显,为灾害高易发区。距活动断裂带距离大于3 km的区域范围内,CFij值均小于0,说明该区间对灾害影响较小,活动断裂带对灾害控制程度低。

    (9)多年平均降雨量

    林芝地区的降水时空分布极不均匀,在空间分布上,降水分布呈现东多西少的趋势,时空降水分布决定了地质灾害发生的时空分布特征。以1901—2022年中国1 km分辨率逐月降水数据集[22],提取林芝地区1994—2022年降水数据,使用自然断点法,将林芝地区多年平均降雨量分为9级(表1),见图2(i)。多年平均降雨量分布敏感性分布见图3(i),表明:多年均降雨量在123.72~149.54 mm区间范围内,CFij值大于0.51,灾害发生确定性高,为灾害高易发区,多年平均降雨量与崩滑流灾害发育具有一定关联性。

    (10)多年平均温度

    气温作为气候因素中重要因子之一,高原温度变化对研究全球气候变化有着重要作用。以1901—2022年中国1 km逐月气温数据集[22],提取林芝地区1994—2022年多年平均气温数据,使用自然断点法,将林芝地区多年平均温度数据分9级(表1),见图2(j)。多年平均温度分布敏感性分布见图3(j),表明:多年平均温度变化与崩滑流灾害发育有明显的相关性,在7.89~12.47 °C区间范围内,灾害发育的数量最多,占比33.89%,灾害发生确定性高,为灾害高易发区,在高海拔气温偏低地区,灾害发生数量偏低,且CFij值均为负,这些区域均为灾害低易发区。

    通过分析各影响因子的分级与崩滑流灾害点的变化情况,研究发现各影响因子对崩滑流灾害的发生数量具有良好的分布特点。对于分析各影响因子的CFi值,可根据CFi值的大小进行排序,以此来确定影响因子对崩滑流灾害发生的敏感性。林芝地区崩滑流灾害主要分布在由流水冲击侵蚀严重的河谷地区以及活动断裂带附近,本文研究表明西藏地区崩滑流灾害敏感性区间为高程0.82~3.79 km,在东向、南向、东北向,地质构造距离0~3 km与吴森等[23]研究得出的敏感性区间相一致,在研究藏东南地区地质灾害空间分布中,发现灾害点密度与河流距离在0~3 km区间内,地质灾害点密度最大,并且在分析灾害点密度与断裂带距离相关关系,发现在0~3 km范围内,崩滑流灾害点密度最大。该研究所得出的崩滑流灾害的易发生区域与王盈等[11]研究所得出崩滑流灾害点分布区域基本相同。

    考虑到林芝地区的气候和水资源丰富等特点,本文选取了多年平均降雨量和归一化植被指数,由于林芝地区降水分布与植被覆盖度极不均匀,导致本文与刘福臻等[24]在研究工布江达县的地质灾害易发性评价中得出的降水强度在43.3~43.5 mm和归一化植被指数在0.11~0.28范围内的崩滑流灾害易发性区间结论有所差异。通过本文引入的气温和地形湿度指数的研究发现,气温和地形湿度指数对地表灾害敏感性评价中也具有一定作用[2529]

    (1)地质灾害在多种因素的共同作用下发育。因此,将CF法应用到地质灾害敏感性评价中,相较层次分析法等较为主观评价方法,CF法能够更加客观地计算各评价因子的敏感性系数,通过比较各影响因子的CFi值大小并进行排序,可以有效降低主观因素对评价结果的影响。

    (2)从地形地貌条件上分析,研究区域内崩滑流灾害在东向、东北向、南向、西向,地形起伏度在0~24 m/km2,高程在0.82~3.79 km范围内,崩滑流灾害敏感性较高。与其他地区不同,崩滑流灾害在地形湿度指数>5.96表现出敏感性开始逐步增高,这主要是由于林芝地区降雨量相比较西藏其他区域降雨量较为丰富,导致林芝地区土壤含水量较为丰富,土壤含水量约丰富便会在地下形成径流,使得地区地质岩土体抗剪强度降低,从而促进地区地质灾害的发生。

    (3)研究区域内崩滑流灾害受水系和活动断裂带分布控制显著,灾害发生沿水系和活动断裂带两侧分布较为明显,水系分布和活动断裂带与崩滑流灾害具有显著负相关性,随着距水系距离增加,崩滑流灾害发育呈现显著递减趋势,在0~3km范围内,水系分布对崩滑流灾害敏感性较高。距断裂带距离增加,崩滑流灾害发育也呈显著递减趋势,在0~3km范围内,活动断裂带对崩滑流灾害敏感性最高。

    (4)林芝地区崩滑流灾害呈现气温变化分布特征,崩滑流灾害在4.02~17.22 °C具有较高敏感性;在−21.52~4.02 °C敏感性呈现逐步递增趋势,当大于17.22 °C时,敏感性开始降低。

    (5)地质灾害发生与归一化植被指数有一定关系,在0.47~0.81具有较高敏感性,在归一化植被指数0.81~0.91区间内,灾害发生数量最高,因此,预测灾害发生并不能单纯依靠判断当地植被指数进行预判灾害发生可能性,而是要结合气温与降水变化以及土壤含水率进行综合研判才更加科学合理。

  • 图  1   林芝地区崩滑流灾害分布图

    Figure  1.   Distribution map of landslide, rockfall and debris flow hazards in Nyingchi area

    图  2   崩滑流灾害影响因子分布图

    Figure  2.   Distribution map of impact factors for landslide, rockfall and debris flow hazards

    图  3   崩滑流灾害影响因子各分类敏感性分布图

    Figure  3.   Sensitivity distribution map of impact factors in each classification for landslide, rockfall and debris flow hazards

    表  1   影响因子分类标准及确定性系数值

    Table  1   Classification standard for impact factors and value of certainty factors

    影响因子 因子分级 灾害点/处 PiPj/(处·km−2 CFij CFi
    高程/km 0.02~0.82 24 0.00383 −0.425 0.66
    0.82~1.54 63 0.00967 0.307
    1.54~2.19 154 0.02208 0.702
    2.19~2.77 104 0.01277 0.474
    2.77~3.31 226 0.02027 0.666
    3.31~3.79 141 0.01021 0.344
    3.79~4.22 50 0.00306 −0.540
    4.22~4.63 10 0.00053 −0.920
    4.63~5.04 5 0.00028 −0.957
    >5.04 1 0.00009 −0.986
    坡向 平面 74 0.00579 −0.137 0.21
    80 0.00629 −0.063
    东北 91 0.00690 0.027
    98 0.00745 0.098
    东南 83 0.00640 −0.046
    115 0.00804 0.163
    西南 86 0.00662 −0.014
    西 84 0.00691 0.028
    西北 71 0.00583 −0.132
    地形起伏度/(m·km−2 0~24 385 0.01582 0.572 0.64
    24~42 206 0.00508 −0.242
    42~58 130 0.00389 −0.418
    58~76 49 0.00339 −0.493
    76~101 10 0.00286 −0.573
    101~145 2 0.00689 0.027
    145~257 0 0.00000 −1.000
    257~602 0 0.00000 −1.000
    >602 0 0.00000 −1.000
    地形湿度指数 0.47~4.58 105 0.00305 −0.545 0.50
    4.58~5.96 216 0.00493 −0.265
    5.96~7.64 190 0.00796 0.154
    7.64~10.07 151 0.01598 0.576
    10.07~13.65 77 0.02164 0.685
    >13.65 43 0.03604 0.808
    归一化植被指数 0.01~0.18 4 0.00033 −0.950 0.55
    0.18~0.33 7 0.00068 −0.899
    0.33~0.47 33 0.00295 −0.560
    0.47~0.60 89 0.00738 0.088
    0.60~0.70 131 0.00984 0.315
    0.70~0.81 273 0.01456 0.535
    0.81~0.91 244 0.00634 −0.057
    距道路距离/km 0~0.3 242 0.27615 0.969 0.57
    0.3~0.6 55 0.06455 0.890
    0.6~0.9 30 0.03577 0.807
    0.9~1.2 21 0.02534 0.730
    1.2~1.5 10 0.01244 0.457
    >1.5 424 0.00378 −0.436
    距水系距离/km 0~1.5 431 0.05304 0.868 0.68
    1.5~3 225 0.03093 0.778
    3~4.5 30 0.00420 −0.372
    4.5~6 17 0.00241 −0.639
    6~7.5 29 0.00419 −0.374
    >7.5 50 0.00063 −0.906
    距活动断裂带距离/km 0~3 493 0.00806 0.688 0.44
    3~6 117 0.00297 −0.375
    6~9 70 0.00284 −0.402
    9~12 32 0.00225 −0.526
    12~15 16 0.00173 −0.636
    >15 52 0.00342 −0.280
    多年平均降雨量/mm 25.76~47.13 127 0.00749 0.099 0.54
    47.13~61.38 199 0.00422 −0.372
    61.38~78.30 206 0.01036 0.347
    78.30~99.67 67 0.00725 0.070
    99.67~123.72 77 0.01308 0.481
    123.72~149.54 64 0.01399 0.515
    149.54~175.37 37 0.00883 0.235
    175.37~201.19 5 0.00126 −0.812
    201.19~253.74 0 0.00000 −1.000
    多年平均温度/°C −21.52~−8.49 0 0.00000 −1.000 0.75
    −8.49~−5.32 1 0.00008 −0.988
    −5.32~−2.50 9 0.00048 −0.928
    −2.50~0.49 30 0.00162 −0.758
    0.49~4.02 87 0.00513 −0.237
    4.02~7.89 200 0.01475 0.539
    7.89~12.47 265 0.02312 0.704
    12.47~17.22 165 0.01741 0.609
    17.22~23.56 25 0.00218 −0.675
    下载: 导出CSV
  • [1] 王培清,徐国涛,何强. 西藏藏东南地区典型地质灾害成因及防治技术浅析[J]. 西藏大学学报(自然科学版),2013,28(1):16 − 20. [WANG Peiqing,XU Guotao,HE Qiang. Analysis on the causes of typical geological disasters in the southeastern Tibet and its prevention technology[J]. Journal of Tibet University,2013,28(1):16 − 20. (in Chinese with English abstract)]

    WANG Peiqing, XU Guotao, HE Qiang. Analysis on the causes of typical geological disasters in the southeastern Tibet and its prevention technology[J]. Journal of Tibet University, 2013, 28(1): 16 − 20. (in Chinese with English abstract)

    [2] 汪发武,陈也,刘伟超,等. 藏东南高位远程滑坡动力学特征及研究难点[J]. 工程地质学报,2022,30(6):1831 − 1841. [WANG Fawu,CHEN Ye,LIU Weichao,et al. Characteristics and challenges to dynamics of long-runout landslides with high-altitude in southeast Tibet[J]. Journal of Engineering Geology,2022,30(6):1831 − 1841. (in Chinese with English abstract)]

    WANG Fawu, CHEN Ye, LIU Weichao, et al. Characteristics and challenges to dynamics of long-runout landslides with high-altitude in southeast Tibet[J]. Journal of Engineering Geology, 2022, 30(6): 1831 − 1841. (in Chinese with English abstract)

    [3] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese with English abstract)

    [4] 胡凯衡,崔鹏,韩用顺,等. 基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价[J]. 中国水土保持科学,2012,10(1):12 − 18. [HU Kaiheng,CUI Peng,HAN Yongshun,et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation,2012,10(1):12 − 18. (in Chinese with English abstract)]

    HU Kaiheng, CUI Peng, HAN Yongshun, et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation, 2012, 10(1): 12 − 18. (in Chinese with English abstract)

    [5] 杨命青,王万东,毋利军,等. 龙门山区震后山地灾害地质因素敏感性评价[J]. 中国安全科学学报,2010,20(10):3 − 7. [YANG Mingqing,WANG Wandong,WU Lijun,et al. Sensitivity assessment of geological factors to geological disasters after earthquake in Longmen Mountain area[J]. China Safety Science Journal,2010,20(10):3 − 7. (in Chinese with English abstract)]

    YANG Mingqing, WANG Wandong, WU Lijun, et al. Sensitivity assessment of geological factors to geological disasters after earthquake in Longmen Mountain area[J]. China Safety Science Journal, 2010, 20(10): 3 − 7. (in Chinese with English abstract)

    [6] 范林峰,胡瑞林,周顺江,等. 地质灾害危险性评价因子对格网大小的敏感性与误差分析[J]. 工程地质学报,2012,20(2):152 − 159. [FAN Linfeng,HU Ruilin,ZHOU Shunjiang,et al. Sensitivity and error analysis of controlling factors due to variation of grid sizes in geohazard assessment[J]. Journal of Engineering Geology,2012,20(2):152 − 159. (in Chinese with English abstract)]

    FAN Linfeng, HU Ruilin, ZHOU Shunjiang, et al. Sensitivity and error analysis of controlling factors due to variation of grid sizes in geohazard assessment[J]. Journal of Engineering Geology, 2012, 20(2): 152 − 159. (in Chinese with English abstract)

    [7] 陈玉,郭华东,王钦军. 基于RS与GIS的芦山地震地质灾害敏感性评价[J]. 科学通报,2013,58(36):3859 − 3866. [CHEN Yu,GUO Huadong,WANG Qinjin. Geological disaster susceptibility assessment of the Lushan earthquake based on RS and GIS[J]. Chinese Sci Bull,2013,58(36):3859 − 3866. (in Chinese with English abstract)] DOI: 10.1360/972013-665

    CHEN Yu, GUO Huadong, WANG Qinjin. Geological disaster susceptibility assessment of the Lushan earthquake based on RS and GIS[J]. Chinese Sci Bull, 2013, 58(36): 3859 − 3866. (in Chinese with English abstract) DOI: 10.1360/972013-665

    [8] 林金煌,张岸,邓超,等. 闽三角城市群地质灾害敏感性评价[J]. 地球信息科学学报,2018,20(9):1286 − 1297. [LIN Jinhuang,ZHANG An,DENG Chao,et al. Sensitivity assessment of geological hazards in urban agglomeration of Fujian delta region[J]. Journal of Geo-Information Science,2018,20(9):1286 − 1297. (in Chinese with English abstract)]

    LIN Jinhuang, ZHANG An, DENG Chao, et al. Sensitivity assessment of geological hazards in urban agglomeration of Fujian delta region[J]. Journal of Geo-Information Science, 2018, 20(9): 1286 − 1297. (in Chinese with English abstract)

    [9] 赵银兵,陈利顶,孙然好,等. 基于资源利用和灾害风险的京津冀地区环境地质敏感性区划[J]. 生态学报,2022,42(6):2251 − 2264. [ZHAO Yinbing,CHEN Liding,SUN Ranhao,et al. Regionalization of environmental geological sensitivity in Beijing-Tianjin-Hebei Region based on resource utilization and disaster risk[J]. Acta Ecologica Sinica,2022,42(6):2251 − 2264. (in Chinese with English abstract)]

    ZHAO Yinbing, CHEN Liding, SUN Ranhao, et al. Regionalization of environmental geological sensitivity in Beijing-Tianjin-Hebei Region based on resource utilization and disaster risk[J]. Acta Ecologica Sinica, 2022, 42(6): 2251 − 2264. (in Chinese with English abstract)

    [10] 薛永安,王玉洁,朱婧聪,等. 县域国土空间斜坡地质灾害敏感性评价研究[J]. 自然灾害学报,2022,31(4):219 − 230. [XUE Yongan,WANG Yujie,ZHU Jingcong,et al. Study of slope geological hazard sensitivity evaluation in the county territory of territorial spatial[J]. Journal of Natural Disasters,2022,31(4):219 − 230. (in Chinese with English abstract)]

    XUE Yongan, WANG Yujie, ZHU Jingcong, et al. Study of slope geological hazard sensitivity evaluation in the county territory of territorial spatial[J]. Journal of Natural Disasters, 2022, 31(4): 219 − 230. (in Chinese with English abstract)

    [11] 王盈,金家梁,袁仁茂. 藏东南地区地质灾害空间分布及影响因素分析[J]. 地震研究,2019,42(3):428 − 437. [WANG Ying,JIN Jialiang,YUAN Renmao. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research,2019,42(3):428 − 437. (in Chinese with English abstract)]

    WANG Ying, JIN Jialiang, YUAN Renmao. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research, 2019, 42(3): 428 − 437. (in Chinese with English abstract)

    [12] 韩用顺,孙湘艳,刘通,等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J]. 山地学报,2021,39(5):672 − 686. [HAN Yongshun,SUN Xiangyan,LIU Tong,et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet,China[J]. Mountain Research,2021,39(5):672 − 686. (in Chinese with English abstract)]

    HAN Yongshun, SUN Xiangyan, LIU Tong, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China[J]. Mountain Research, 2021, 39(5): 672 − 686. (in Chinese with English abstract)

    [13] 熊德清,崔笑烽. 喜马拉雅山脉地震带主要地质灾害与地形地貌关系——以西藏日喀则地区为例[J]. 地质通报,2021,40(11):1967 − 1980. [XIONG Deqing,CUI Xiaofeng. The relationship between main geological hazard and topography in the Himalayan seismic belt:A case study in the Xigaze area,Tibet[J]. Geological Bulletin of China,2021,40(11):1967 − 1980. (in Chinese with English abstract)]

    XIONG Deqing, CUI Xiaofeng. The relationship between main geological hazard and topography in the Himalayan seismic belt: A case study in the Xigaze area, Tibet[J]. Geological Bulletin of China, 2021, 40(11): 1967 − 1980. (in Chinese with English abstract)

    [14] 黄艳婷,郭永刚. 考虑降雨敏感度的泥石流危险性评价——以藏东南地区为例[J]. 中国地质灾害与防治学报,2023,34(1):129 − 138. [HUANG Yanting,GUO Yonggang. Debris flow risk assessment considering different rainfall sensitivity:A case study in southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):129 − 138. (in Chinese with English abstract)]

    HUANG Yanting, GUO Yonggang. Debris flow risk assessment considering different rainfall sensitivity: A case study in southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 129 − 138. (in Chinese with English abstract)

    [15] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]

    ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)

    [16] 杨德宏. 川藏铁路昌都至林芝段主要工程地质问题分析[J]. 铁道标准设计,2019,63(9):16 − 22. [YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet railway[J]. Railway Standard Design,2019,63(9):16 − 22. (in Chinese with English abstract)]

    YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet railway[J]. Railway Standard Design, 2019, 63(9): 16 − 22. (in Chinese with English abstract)

    [17]

    LI Xiuping,WANG Lei,CHEN Deliang,et al. Large-scale circulation dominated precipitation variation and its effect on potential water availability across the Tibetan Plateau[J]. Environmental Research Letters,2023,18(7):074018. DOI: 10.1088/1748-9326/acdd15

    [18] 邓明枫,陈宁生,王涛,等. 藏东南地区日降雨极值的波动变化[J]. 自然灾害学报,2017,26(2):152 − 159. [DENG Mingfeng,CHEN Ningsheng,WANG Tao,et al. Fluctuation of daily rainfall extreme in southeastern Tibet[J]. Journal of Natural Disasters,2017,26(2):152 − 159. (in Chinese with English abstract)]

    DENG Mingfeng, CHEN Ningsheng, WANG Tao, et al. Fluctuation of daily rainfall extreme in southeastern Tibet[J]. Journal of Natural Disasters, 2017, 26(2): 152 − 159. (in Chinese with English abstract)

    [19] 周路旭, 刘建康, 陈龙. 藏东南交通干线(林芝段)冰湖溃决危险性分析与评价[J]. 自然灾害学报,2020,29(3):162 − 172. [ZHOU Luxu, LIU Jiankang, CHEN Long. Risk analysis and evaluation of glacier lake outburst in traffic route of southeast Tibet (Linzhi)[J]. Journal of Natural Disasters,2020,29(3):162 − 172. (in Chinese with English abstract)]

    ZHOU Luxu, LIU Jiankang, CHEN Long. Risk analysis and evaluation of glacier lake outburst in traffic route of southeast Tibet (Linzhi)[J]. Journal of Natural Disasters, 2020, 29(3): 162 − 172. (in Chinese with English abstract)

    [20] 徐新良. 中国年度植被指数(NDVI)空间分布数据集[R]. 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI),2018. [XU Xinliang. Spatial distribution dataset of annual Vegetation index (NDVI) in China[R]. Resources and Environmental Science Data Registration and Publication System (http://www.resdc.cn/DOI),2018.(in Chinese)]

    XU Xinliang. Spatial distribution dataset of annual Vegetation index (NDVI) in China[R]. Resources and Environmental Science Data Registration and Publication System (http://www.resdc.cn/DOI), 2018.(in Chinese)

    [21]

    ZELENIN E,BACHMANOV D,GARIPOVA S,et al. The active faults of eurasia database (AFEAD):The ontology and design behind the continental-scale dataset[J]. Earth System Science Data,2022,14(10):4489 − 4503. DOI: 10.5194/essd-14-4489-2022

    [22]

    PENG Shouzhang,DING Yongxia,LIU Wenzhao,et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data,2019,11(4):1931 − 1946. DOI: 10.5194/essd-11-1931-2019

    [23] 吴森,张文,刘民生. 西藏地区崩塌滑坡影响因子敏感性分析[J]. 中国地质灾害与防治学报,2023,34(3):109 − 117. [WU Sen,ZHANG Wen,LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):109 − 117. (in Chinese with English abstract)]

    WU Sen, ZHANG Wen, LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 109 − 117. (in Chinese with English abstract)

    [24] 刘福臻,戴天宇,王军朝,等. 耦合Random Forest算法与信息量模型的地质灾害易发性评价——以西藏自治区工布江达县为例[J]. 安全与环境学报,2023,23(7):2428 − 2438. [LIU Fuzhen,DAI Tianyu,WANG Junchao,et al. Geological hazard susceptibility evaluation by coupled Random Forest and information model:A case study of Gongbujiangda County,Tibet Autonomous Region[J]. Journal of Safety and Environment,2023,23(7):2428 − 2438. (in Chinese with English abstract)]

    LIU Fuzhen, DAI Tianyu, WANG Junchao, et al. Geological hazard susceptibility evaluation by coupled Random Forest and information model: A case study of Gongbujiangda County, Tibet Autonomous Region[J]. Journal of Safety and Environment, 2023, 23(7): 2428 − 2438. (in Chinese with English abstract)

    [25] 许模,蒋良文,李潇,等. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质,2021,48(5):13 − 22. [XU Mo,JIANG Liangwen,LI Xiao,et al. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):13 − 22. (in Chinese with English abstract)]

    XU Mo, JIANG Liangwen, LI Xiao, et al. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13 − 22. (in Chinese with English abstract)

    [26] 张佳佳,杨东旭,高波,等. 怒江干流云南段泥石流时空分异特征、驱动因素及演化趋势分析[J/OL]. 中国地质, 2024 (2024-05-20) [2023-12-23]. [ZHANG Jiajia,YANG Dongxu,GAO Bo,et al. Characteristics, driving factors of spatial and temporal variationsand tendencyof debris flows in the Yunnan section of the Nu River 1nainstreal[J/OL]. Geology in China, 2024 (2024-05-20). [2023-12-23]. https://kns.cnki.net/kcms2/article/abstract?v=At0rObma_qP-IQMrkV7KgQHjO9Wu8hUQ6wgbeDeMaNslD1xHuEuqcFfzXZifGuGY0M_WWqpC-DbWx7M5mFQ0l3txhW7HZthKbH2jIr4LmqRMybfBBHWCXXA90RjTUFSSkKXBWGOwiEBL8dVtWJGF3eZ0YN1wJ9Z0Mj-vzuL432cF864qzDnJ4oXoVMbeCxtw&uniplatform=NZKPT&language=CHS(in Chinese with English abstract)]

    ZHANG Jiajia, YANG Dongxu, GAO Bo, et al. Characteristics, driving factors of spatial and temporal variationsand tendencyof debris flows in the Yunnan section of the Nu River 1nainstreal[J/OL]. Geology in China, 2024 (2024-05-20). [2023-12-23]. https://kns.cnki.net/kcms2/article/abstract?v=At0rObma_qP-IQMrkV7KgQHjO9Wu8hUQ6wgbeDeMaNslD1xHuEuqcFfzXZifGuGY0M_WWqpC-DbWx7M5mFQ0l3txhW7HZthKbH2jIr4LmqRMybfBBHWCXXA90RjTUFSSkKXBWGOwiEBL8dVtWJGF3eZ0YN1wJ9Z0Mj-vzuL432cF864qzDnJ4oXoVMbeCxtw&uniplatform=NZKPT&language=CHS(in Chinese with English abstract)

    [27] 刘鑫,张文,李根,等. 高位远程崩滑碎屑流-泥石流灾害链的演变过程与影响范围预测——以“4•5” 四川洪雅县铁匠湾地质灾害链为例[J]. 吉林大学学报(地球科学版),2023,53(6):1799 − 1811. [LIU Xin,ZHANG Wen,LI Gen,et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain:Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1799 − 1811. (in Chinese with English abstract)]

    LIU Xin, ZHANG Wen, LI Gen, et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain: Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1799 − 1811. (in Chinese with English abstract)

    [28] 杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究——以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2):132 − 143. [YANG Yunjian,ZHOU Xuecheng,HE Zhonghai,et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on baige landslide in Jinsha river[J]. Hydrogeology & Engineering Geology,2024,51(2):132 − 143. (in Chinese with English abstract)]

    YANG Yunjian, ZHOU Xuecheng, HE Zhonghai, et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on baige landslide in Jinsha river[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 132 − 143. (in Chinese with English abstract)

    [29] 安雪莲,密长林,孙德亮,等. 基于不同评价单元的三峡库区滑坡易发性对比——以重庆市云阳县为例[J]. 吉林大学学报(地球科学版),2024,54(5):1629 − 1644. [AN Xuelian,MI Changlin,SUN Deliang,et al. Comparison of landslide susceptibility in Three Gorges Reservoir area based on different evaluation units:Take Yunyang County in Chongqing as an example[J]. Journal of Jilin University (Earth Science Edition),2024,54(5):1629 − 1644. (in Chinese with English abstract)]

    AN Xuelian, MI Changlin, SUN Deliang, et al. Comparison of landslide susceptibility in Three Gorges Reservoir area based on different evaluation units: Take Yunyang County in Chongqing as an example[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(5): 1629 − 1644. (in Chinese with English abstract)

图(3)  /  表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  24
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-11-18
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-06-11
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回