ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

海底滑坡动力侵蚀机理研究:回顾与展望

殷跃平, 王文沛, 邢爱国, 黄波林, 李滨, 韩雷岩, 金少强, 杨勇, 张晨阳

殷跃平,王文沛,邢爱国,等. 海底滑坡动力侵蚀机理研究:回顾与展望[J]. 中国地质灾害与防治学报,2025,36(1): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202502015
引用本文: 殷跃平,王文沛,邢爱国,等. 海底滑坡动力侵蚀机理研究:回顾与展望[J]. 中国地质灾害与防治学报,2025,36(1): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202502015
YIN Yueping,WANG Wenpei,XING Aiguo,et al. Research on dynamic erosion mechanism of submarine landslide: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202502015
Citation: YIN Yueping,WANG Wenpei,XING Aiguo,et al. Research on dynamic erosion mechanism of submarine landslide: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202502015

海底滑坡动力侵蚀机理研究:回顾与展望

基金项目: 国家重点研发计划项目(2022YFC3004301);甘肃省联合科研基金项目(24JRRA800)
详细信息
    作者简介:

    殷跃平(1960—),男,贵州独山人,中国工程院院士,研究员,从事地质灾害防治与研究工作。E-mail:yyueping@mail.cgs.gov.cn

    通讯作者:

    王文沛(1985—),男,江苏扬中人,土木工程专业,博士,正高级工程师,主要从事地质灾害防治工作。E-mail:jcywangwenpei@mail.cgs.gov.cn

  • 中图分类号: P767;P642.22

Research on dynamic erosion mechanism of submarine landslide: Review and prospects

  • 摘要:

    海底滑坡会对海上风电、海底光缆、海洋平台等基础设施造成严重破坏,给“建设海洋强国”重大战略和保障海洋工程地质安全带来了严峻挑战。文章系统回顾了海底滑坡浊流地质灾害的研究历程,总结了国内外关于海底滑坡浊流链动特征、动力侵蚀类型、触发-演化-运移-侵蚀沉积机制、侵蚀理论模型及其对海底隆起、峡谷、盆地等复杂地貌的影响,提出了定量、多相、全过程、侵蚀-流态转化耦合的海底滑坡浊流动力侵蚀研究思路。最后,针对海上风电、海洋资源开发、海洋交通运输、海洋工程装备等重大工程的规划建设,展望了海底滑坡浊流基底易蚀结构地质模型和判识技术、滑坡-碎屑流-浊流灾害链复合、叠合及异构等全过程动力侵蚀力学模型及边界层动力侵蚀防控理论技术问题的研究方向。

    Abstract:

    The geological hazards of submarine landslides can cause serious damage to infrastructure such as offshore wind power, submarine optical cables, and marine platforms, posing a serious challenge to the major strategic task of building a maritime power and ensuring the geological safety of marine engineering. The article systematically reviews the research process of submarine landslide turbidity current geological hazards, summarizes the dynamic characteristics of submarine landslide-turbidity flow chain, dynamic erosion types, mechanisms of triggering, evolution, migration, erosion and sedimentation, theoretical models of erosion, and the influence of complex landforms such as uplift, canyons, and basins. A novel dynamic erosion approach is put forward of submarine landslide-turbidity flow chain, including quantitative, multiphase, whole process, erosion flow-state transformation. Finally, in view of the development of major projects such as offshore wind power, marine resource development, marine transportation, and marine engineering equipment, the geological model and identification technology are discussed of the erosion-prone structure of submarine landslide landslide-turbidity flow chain, as well as the composite, overlapping, and heterogeneous dynamic erosion mechanic model of the disaster chain, and the issues of prevention and control of boundary layer dynamic erosion.

  • 随着社会经济的快速发展,公路、铁路等交通设施建设工作不断向地质环境条件复杂的山区推进,这些线路不可避免地要通过一些自然斜坡和开挖、切坡形成的人工边坡,由边坡失稳造成的人民的生命和财产损失日益严重[13]。公路、铁路边坡长期处于车辆高强度振动环境之中,不可避免的受到频率、振幅随着时间作周期性或非周期性的振动荷载作用。在振动荷载的长期循环作用下,斜坡岩土体中的原生结构面可能扩大并产生新的破裂面,导致斜坡岩土体性能弱化,形成潜在滑动面或者贯通的结构面,影响边坡的稳定性[47]。国内外对斜坡岩土体动力响应研究很多,主要以爆破冲击荷载和地震荷载作用下边坡动态响应和稳定性分析为主[813],常用的研究方法有拟静力法、Newmark法、模型试验法、数值分析法和能量分析法等 [1415]。交通循环荷载具有小振幅、多循环的特点,动力响应十分复杂,目前国内外对交通循环荷载作用下土动力特性以及路基和隧道的动力响应研究较多,而对边坡动力响应研究相对较少[1619]。因此,研究斜坡岩土体在交通荷载作用下的动态响应规律,合理地评价交通荷载对斜坡岩土体的影响,具有十分重要的理论意义和工程应用价值。

    本文在前人研究的基础上,将交通荷载简化为半正弦波振动荷载,采用有限差分数值模拟软件,对不同条件交通循载作用下黄土边坡的动力响应规律进行分析。

    车辆荷载受发动机周期性振动、汽车变速引起的振动、路面不平整引起的车辆振动以及车辆轴重等因素影响,动力特性十分复杂,具有随机性、瞬时性、长期反复性等特点。受路面状况和车辆行驶速度的影响,车轮在路面某点处的作用时间为0.01~0.1 s,具有瞬时性;但是,在道路的寿命期限内,交通荷载作用又是一种循环往复的过程,具有长期反复性;并且受车辆因素影响,交通荷载作用充满了随机性。交通荷载的模拟方式可以分为恒载作用、移动恒载作用和振动移动荷载作用[20]。根据问题研究的侧重面不同,可采用经验简化模拟来满足研究需要。受汽车本身振动特性和道路结构的影响,轮胎在路面行驶时受力并不均匀,时大时小,呈现出一种波动的状态,当汽车轮迹通过路面上某点时,这个过程可以用加载和卸载的组合形式来表示[2122]。交通荷载的变化用多个半正弦波的形式来表达,如图1所示。

    图  1  半正弦波荷载示意图
    Figure  1.  Schematic diagram of half-sine wave load

    图中每个波形代表一次荷载作用,t0表示荷载的间隔,当车辆距离监测点较远时,监测点所受应力趋近于零,当车辆逐渐驶向监测点时,应力逐渐增大,当车辆到达监测点时,应力到达峰值,此后随着车辆远去,应力逐渐变小并趋近于零,这个过程中监测点所受到的应力大小变化表现出了一个半正弦波形式,监测点所受荷载可用式(1)进行表示[2122]

    F(t)=p+q(t) (1)

    式中:p——静荷载;

    q(t)——动荷载,可由如下公式确定:

    q(t)=qmaxsin2(π2+πTt) (2)

    式中:qmax——车辆附加动荷载,幅值一般小于0.3p

    T——荷载周期/s,T=12 L/v

    v——车辆速度/(m·s−1);

    L——轮胎接触面的半径/m,一般取0.15 m。

    若取qmax=0.2p,则交通荷载可简化为如下表达式:

    F(t)=p+0.2psin2(π2+πTt) (3)

    黄土是在第四纪干旱、半干旱条件下形成的陆相疏松堆积物,是一种极其复杂的复合体,在我国广泛分布。在自然状态下,黄土具有较高的强度、较低的压缩性和较强的结构性,其颗粒主要由粉粒组成,具有多孔性,颗粒之间的胶结物质耐水性较差,在受到一定压力或与水作用后,其结构会迅速破坏并发生显著沉降,这些特性决定了黄土边坡研究的复杂性。本文以简单的黄土边坡概化模型为例,建立数值计算模型,模拟普通道路在坡肩时,不同车辆荷载作用下边坡的动力响应。边坡模型坡高20m,坡角45°,模型左侧边界高10 m,右侧边界高30 m,底部边界长35 m,道路位于距坡面2 m的坡肩,厚0.3 m,宽4 m(图2)。其中,在坡体表面从坡肩到坡脚每隔4 m设置S1、S2、S3、S4、S5、S6 6个监测点,在道路中心点下方0,2,4,6,8,10,12 m处设置I1、I2、I3、I4、I5、I6、I7七个监测点,对斜坡体内部和表面的加速度、速度和位移进行监测。

    图  2  边坡数值计算模型
    Figure  2.  Numerical calculation model of slope

    综合考虑前人研究成果和参数反演分析确定边坡岩土体的物理力学参数[2325],岩土体的物理力学参数如表1 所示。

    表  1  斜坡体物理力学参数表
    Table  1.  Physical and mechanical parameters of the slope
    岩土体 天然密度
    /(kg·m−3
    黏聚力
    /kPa
    内摩擦角
    /(°)
    体积模量
    /MPa
    剪切模量
    /MPa
    道路 2500 600 360
    斜坡体 1850 15 18 16.67 7.69
    下载: 导出CSV 
    | 显示表格

    车辆荷载作为一种随机荷载,过往车辆重量不一,速度不一,车辆时间间隔不一。考虑到边坡上方道路为普通公路,本文交通荷载中轴载取20,40,60,80,100 kN 5种工况,速度则取20,40,60,80 km/h 4种工况。为了简化,本文考虑车辆连续作用下边坡的动力响应,车辆荷载的间隔t0取0。

    为了能精确模拟振动波在斜坡体中的传播过程及斜坡的动力响应机制,数值模型网格单元的尺寸必须小于振动波最高频率时波长的1/10~1/8,最高频率所对应的波长λ可用以下公式计算[26]

    λ=Csfmax (4)
    Cs=Gρ (5)

    式中:fmax——输入波的最高频率/s,fmax=1T

    Cs——S波在介质中的传播速度/(km·h-1);

    ρ——介质的密度,取1850 kg/m3

    G——剪切模量,取7.69 MPa。

    T=12 L/v,轮胎接触面的半径L=0.15 m,速度20,40,60,80 km/h对应的周期分别:0.324,0.162,0.108,0.081 s,其中80 km/h的周期最小为0.081 s,根据式(4)(5)可以推导出模型允许输入的网格最大尺寸为0.52~0.65 m,综合考虑计算速度与模拟精度,本文采用0.5 m的网格间距。

    黄土力学行为复杂,在外力的作用下,不仅产生弹性变形,还会产生不可恢复的塑性变形。因此,本文的黄土边坡模型采用弹塑性本构关系,屈服准则采用Mohr-Coulomb强度准则。道路由于结构材料均匀、产生变形较小,则采用弹性本构关系。在模拟过程中,首先约束两侧边界水平方向的位移和底部边界竖直方向的位移,使得模型在自重条件下达到平衡状态。在动力分析过程时,去掉模型道路顶部的静力约束条件,边坡模型四周设置为自由场边界,假设汽车在道路中央行驶,轮胎间距为2 m,轮胎宽度0.2 m,在道路中央两侧1 m处,施加宽度为0.2 m的交通荷载,交通荷载连续施加100个周期。阻尼则采用局部阻尼来再现能量损失。

    (1)潜在滑动面分析

    坡体内部受应力作用会产生不同程度的塑性变形,斜坡体(潜在)滑动面可根据剪应变增量的变化来判断,斜坡的变形破坏多沿剪应变增量发生较大变化的部位发生,剪应变增量不发生变化或者较小的部位,一般不会有潜在滑动面的产生。由斜坡体剪应变增量云图可知(图3),在天然状态下,坡体内部产生局部塑性变形,潜在滑动带呈圆弧状从坡脚逐渐向坡顶方向发展,尚未延伸到坡顶,圆弧状应变带在坡脚处剪切应变增量最大。加载轴载100 kN、速度为60 km/h车辆循环荷载后,剪应变增量带向上延伸。施加荷载与未施加荷载的应力应变对比表明:边坡受汽车循环荷载的影响,有发展为滑移面的可能,边坡的失稳最先从坡脚处的剪切破坏开始。

    图  3  不同状态下边坡最大剪应变增量图
    Figure  3.  Increment diagram of maximum shear stress of slope under different states

    (2)竖直方向的加速度、速度、位移变化规律

    本文对轴载100 kN、速度为60 km/h车辆通过道路中央时道路以下0,2,4,6,8,10,12 m不同深度竖向最大加速度、速度和位移随时间的变化规律进行分析(图4)。从图4可以看出,竖向最大加速度、速度时程曲线变化规律类似,在车辆循环荷载作用下,随着深度的增加,变形逐渐减小。监测到不同深度处竖向位移最大值分别为7.16,6.30,5.58,4.91,4.45,4.18,3.96 mm,其随深度的增减逐渐减小。结果表明:轴载100 kN、速度为60 km/h车辆循环荷载作用下,道路下方边坡内部竖向最大加速度、速度和位移沿深度方向衰减,衰减速度逐渐减缓并趋于稳定,车辆循环荷载引起的振动影响深度约为10 m左右,10 m以下车辆循环荷载对土体的扰动较小,最大动应力发生在作用荷载的下部。

    图  4  最大加速度、速度与深度关系
    Figure  4.  Relationship between maximum acceleration, velocity and depth

    本文分析了车辆速度为60 km/h,轴载为20,40,60,80,100 kN 5种工况下斜坡的动力响应规律。通过分析不同轴载作用下边坡表面和内部各监测点的竖向最大加速度、速度和位移的变化规律(图5),结果表明:各轴载作用下,从边坡坡肩到坡脚(从S1到S6)或道路下方随深度的增加(从I1到I7),边坡上监测点远离荷载源,监测点动力响应减弱,竖向最大加速度、速度和位移都表现为逐渐减小的趋势,并且离震源越近的点动力响应越敏感,最大加速度、最大速度的衰减的幅度越大,随着与震源距离的增加衰减幅度逐渐减小。随着车辆轴载的增大,边坡表面和内部的各个监测点的竖向最大加速度、最大速度和最大位移都呈逐渐增大的趋势,其增大的幅度也呈现出离震源越近,增大幅度越大。

    图  5  不同轴载的车辆荷载作用下各监测点的竖向最大加速度、最大速度、最大位移的变化规律
    Figure  5.  The variation patterns of vertical maximum acceleration, maximum velocity and maximum displacement of each monitoring point under different axle loads

    本文分析在100 kN轴载下,行车速度为20,40,60,80 km/h 4种工况条件下斜坡的动力响应规律。通过对边坡表面和内部各监测点的不同行车速度下竖向最大加速度、速度和位移进行监测(图6),结果表明:各行车速度下,边坡表面和内部各监测点的竖向最大加速度、速度和位移变化规律基本相同,都随着与动荷载距离的增加呈逐渐减小的趋势。随行车速度的增加,坡体内部监测点的竖向最大加速度和速度都而逐渐增大,但这种情况只发生在了距坡表10 m范围内,超过10 m后不同车速下的竖向最大速度、加速度都趋向于稳定,位移则随着行车速度的增加而逐渐减小,这主要是因为速度减小,汽车与斜坡体作用时间增加,道路下方坡体的沉降量增加。随行车速度的增加,边坡表面监测点的竖向最大加速度和速度的规律出现波动,但整体还是呈现为逐渐增大,坡表位移与坡体内部监测点位移规律一致,随着行车速度的增加而逐渐减小。

    图  6  不同速度的车辆荷载作用下各监测点的竖向最大加速度、最大速度、最大位移的变化规律
    Figure  6.  The variation patterns of vertical maximum acceleration, maximum velocity, and maximum displacement of each monitoring point under different vehicle loads at different speeds

    (1)在天然状态下,斜坡体内部会产生局部的塑性变形,剪应变增量带从坡脚呈圆弧状向坡中延伸,施加轴载100 kN、速度为60 km/h交通荷载后,剪应变增量带向坡顶延伸发展,边坡受汽车循环荷载的影响,有发展为滑移面的可能,并且最先从坡脚处的剪切破坏开始。

    (2)在轴载100 kN、速度为60 km/h交通荷载作用下,边坡道路下方竖向最大加速度、速度和位移会随着深度的增加而不断衰减。车辆振动荷载对边坡的影响范围大约10 m左右,最大动应力产生在荷载的下部。

    (3)在车辆速度为60 km/h不同轴载情况下,随着距荷载源距离的不断增大,竖向最大加速度、速度及位移逐渐减小,并且振动衰减幅度也随着距离的增大而逐渐减小。随着车辆轴载的逐渐增大,边坡斜坡表面和内部监测点的竖向最大速度、加速度和位移呈现逐渐增大的规律。

    (4)在100 kN轴载不同速度情况下,随着距荷载源距离的不断增大,竖向最大加速度、速度和位移呈逐渐减小趋势。随着车速增加,坡体内部和表面竖向最大加速度和速度都逐渐增大,最大位移则随着车速的增大而逐渐减小。

    (5)值得注意的是,本文以黄土边坡概化模型为例,分析了交通荷载作用下黄土边坡动力响应的普适性规律。但是,考虑到黄土的水敏性和动荷载的振动促渗作用的影响,在后续研究中将进一步结合实际黄土边坡监测数据,并考虑降雨影响,深入剖析交通荷载作用下黄土边坡的动力响应特征与规律。

  • 图  1   广义滑坡分类[35]

    Figure  1.   Classification of landslides[35]

    图  2   海底滑坡浊流链特征[4,3940, 98]

    Figure  2.   Chain characteristics of submarine landslide-debris flow- turbidity current[4,3940, 98]

    图  3   泥质碎屑流和砂质碎屑流的运动模式[94]

    Figure  3.   Patterns of clay debris flow and sandy debris flow[94]

    图  4   高密度浊流(超临界基底层)体动力学特征

    Figure  4.   Dynamics characteristics of high-density turbidity current (supercritical base layer)

    图  5   基底动力侵蚀颗粒力学模型

    Figure  5.   Modelling of forces acting on an eroding particle

    图  6   颗粒动力侵蚀基底模型

    Figure  6.   A ball particle causing erosion of a surface

    图  7   浊流流线分类[51]

    Figure  7.   Streamline classification of the turbid currents[51]

  • [1]

    CHOI C E,YU Jiantao,ZHANG Jiaqi. Review of the missing link between field and modeled submarine debris flows:Scale effects of physical modeling[J]. Earth Science Reviews,2024,258:104911. DOI: 10.1016/j.earscirev.2024.104911

    [2]

    MIDDLETON G. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences,1993,21:89 − 114. DOI: 10.1146/annurev.ea.21.050193.000513

    [3]

    YIN Yueping,LI Bin,GAO Yang,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. DOI: 10.1016/j.jrmge.2022.11.001

    [4]

    FISHER R V. Submarine volcaniclastic rocks[J]. Geological Society,London,Special Publications,1984,16(1):5 − 27. DOI: 10.1144/GSL.SP.1984.016.01.02

    [5]

    LOCAT J,LEE H J. Submarine landslides:Advances and challenges[J]. Canadian Geotechnical Journal,2002,39(1):193 − 212. DOI: 10.1139/t01-089

    [6]

    BÖTTNER C,STEVENSON C J,ENGLERT R,et al. Extreme erosion and bulking in a giant submarine gravity flow[J]. Science Advances,2024,10(34):2584. DOI: 10.1126/sciadv.adp2584

    [7]

    PIPER D J W,COCHONAT P,MORRISON M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake:Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology,1999,46(1):79 − 97. DOI: 10.1046/j.1365-3091.1999.00204.x

    [8]

    VANNESTE M,SULTAN N,GARZIGLIA S,et al. Seafloor instabilities and sediment deformation processes:The need for integrated,multi-disciplinary investigations[J]. Marine Geology,2014,352:183 − 214. DOI: 10.1016/j.margeo.2014.01.005

    [9]

    REN Zhiyuan,ZHAO Xi,LIU Hua. Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory[J]. Physics of Fluids,2019,31(5):056601. DOI: 10.1063/1.5087245

    [10] 年廷凯,沈月强,郑德凤,等. 海底滑坡链式灾害研究进展[J]. 工程地质学报,2021,29(6):1657 − 1675. [NIAN Tingkai,SHEN Yueqiang,ZHENG Defeng,et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology,2021,29(6):1657 − 1675. (in Chinese with English abstract)]

    NIAN Tingkai, SHEN Yueqiang, ZHENG Defeng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657 − 1675. (in Chinese with English abstract)

    [11]

    HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. Terrestrial,Atmospheric and Oceanic Sciences,2008,19(6):767. DOI: 10.3319/TAO.2008.19.6.767(PT)

    [12] 吴时国,秦志亮,王大伟,等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报,2011,54(12):3184 − 3195. [WU Shiguo,QIN Zhiliang,WANG Dawei,et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics,2011,54(12):3184 − 3195. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5733.2011.12.018

    WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3184 − 3195. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5733.2011.12.018

    [13]

    LI Wei,LI Yan,OMOSANYA K O L,et al. Quantitative and geomorphologic parameterization of megaclasts within mass-transport complexes,offshore Taranaki Basin,New Zealand[J]. GSA Bulletin,2022,135(7/8):1828 − 1843.

    [14]

    STAGNA M D,MASELLI V,VAN VLIET A. Large-scale submarine landslide drives long-lasting regime shift in slope sediment deposition[J]. Geology,2023,51(2):167 − 173. DOI: 10.1130/G50463.1

    [15]

    KARSTENS J,HAFLIDASON H,BERNDT C,et al. Revised Storegga Slide reconstruction reveals two major submarine landslides 12,000 years apart[J]. Communications Earth & Environment,2023,4(1):55.

    [16]

    SUN Qiliang,WANG Qing,SHI Fengyan,et al. Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change[J]. Communications Earth & Environment,2023,434:P107745.

    [17]

    BLASIO F,ELVERHØI A,ENGVIK L,et al. Understanding the high mobility of subaqueous debris flows[J]. Norw J Geol,2006,86(3):275 − 284.

    [18] 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    [19] 张明,殷跃平,吴树仁,等. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报,2010,18(6):805 − 817. [ZHANG Ming,YIN Yueping,WU Shuren,et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology,2010,18(6):805 − 817. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2010.06.001

    ZHANG Ming, YIN Yueping, WU Shuren, et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 2010, 18(6): 805 − 817. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.06.001

    [20]

    HANCE J J. Submarine slope stability[D]. Austin:The University of Texas at Austin,2003:1 − 15.

    [21] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534 − 1551. (in Chinese with English abstract)

    [22]

    FAN Xuanmei,XU Qiang,ALONSO-RODRIGUEZ A,et al. Successive landsliding and damming of the Jinsha River in eastern Tibet,China:Prime investigation,early warning,and emergency response[J]. Landslides,2019,16(5):1003 − 1020. DOI: 10.1007/s10346-019-01159-x

    [23] 王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)]

    WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 1 − 9. (in Chinese with English abstract)

    [24] 冯文凯,张国强,白慧林,等. 金沙江“10•11” 白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415 − 425. [FENG Wenkai,ZHANG Guoqiang,BAI Huilin,et al. A preliminary analysis of the formation mechanism and development tendency of the huge baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415 − 425. (in Chinese with English abstract)]

    FENG Wenkai, ZHANG Guoqiang, BAI Huilin, et al. A preliminary analysis of the formation mechanism and development tendency of the huge baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology, 2019, 27(2): 415 − 425. (in Chinese with English abstract)

    [25]

    WANG Wenpei,YIN Yueping,ZHU Sainan,et al. Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige,Tibet,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):1765 − 1779. DOI: 10.1007/s10064-019-01664-2

    [26] 何可,王玉峰,程谦恭,等. 高速远程滑坡底部裹挟机理研究现状及展望[J]. 工程地质学报,2024,32(3):904 − 917. [HE Ke,WANG Yufeng,CHENG Qiangong,et al. Research on the substrate entrainment dynamics of rock avalanches:State-of-the-art[J]. Journal of Engineering Geology,2024,32(3):904 − 917. (in Chinese with English abstract)]

    HE Ke, WANG Yufeng, CHENG Qiangong, et al. Research on the substrate entrainment dynamics of rock avalanches: State-of-the-art[J]. Journal of Engineering Geology, 2024, 32(3): 904 − 917. (in Chinese with English abstract)

    [27]

    CROSTA G B,IMPOSIMATO S,RODDEMAN D. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology,2009,109(1/2):135 − 145.

    [28]

    MILNE J. Sub-oceanic changes[J]. The Geographical Journal,1897,10(2):129. DOI: 10.2307/1774597

    [29]

    PUDASAINI S P,KRAUTBLATTER M. The mechanics of landslide mobility with erosion[J]. Nature Communications,2021,12(1):6793. DOI: 10.1038/s41467-021-26959-5

    [30]

    SASSA S,SEKIGUCHI H. Liqsedflow:Role of two-phase physics in subaqueous sediment gravity flows[J]. Soils and Foundations,2010,50(4):495 − 504. DOI: 10.3208/sandf.50.495

    [31]

    HUNGR O. A model for the runout analysis of rapid flow slides,debris flows,and avalanches[J]. Canadian Geotechnical Journal,1995,32(4):610 − 623. DOI: 10.1139/t95-063

    [32]

    HUNGR O. Simplified models of spreading flow of dry granular material[J]. Canadian Geotechnical Journal,2008,45(8):1156 − 1168. DOI: 10.1139/T08-059

    [33] 殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [YIN Yueping,WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese with English abstract)]

    YIN Yueping, WANG Wenpei. A dynamic erosion plowing model of long Run-out landslides initialized at high locations[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1513 − 1521. (in Chinese with English abstract)

    [34]

    CAMPBELL C. Granular material flows – An overview[J]. Powder Technology,2006,162(3):208 − 229. DOI: 10.1146/annurev.fl.22.010190.000421

    [35]

    CAMPBELL C S. Self-lubrication for long runout landslides[J]. The Journal of Geology,1989,97(6):653 − 665. DOI: 10.1086/629350

    [36]

    ZHOU G G D,SUN Q C. Three-dimensional numerical study on flow regimes of dry granular flows by DEM[J]. Powder Technology,2013,239:115 − 127. DOI: 10.1016/j.powtec.2013.01.057

    [37]

    HU Wei,XU Qiang,MCSAVENEY M,et al. The intrinsic mobility of very dense grain flows[J]. Earth and Planetary Science Letters,2022,580(Sup C):117389. DOI: 10.1016/j.jpgl.2022.117389

    [38]

    ILSTAD T,DE BLASIO F V,ELVERHØI A,et al. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology,2004,213(1/2/3/4):481 − 497.

    [39]

    MOHRIG D,MARR J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology,2003,20(6/7/8):883 − 899.

    [40]

    TALLING P J. On the frequency distribution of turbidite thickness[J]. Sedimentology,2001,48(6):1297 − 1329. DOI: 10.1046/j.1365-3091.2001.00423.x

    [41]

    TALLING P J,PEAKALL J,SPARKS R S J,et al. Experimental constraints on shear mixing rates and processes:Implications for the dilution of submarine debris flows[J]. Geological Society,London,Special Publications,2002,203(1):89 − 103. DOI: 10.1144/GSL.SP.2002.203.01.06

    [42]

    TALLING P J,AMY L A,WYNN R B,et al. Beds comprising debrite sandwiched within co-genetic turbidite:Origin and widespread occurrence in distal depositional environments[J]. Sedimentology,2004,51(1):163 − 194. DOI: 10.1111/j.1365-3091.2004.00617.x

    [43]

    ILSTAD T,ELVERHØI A,ISSLER D,et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio:A laboratory study using particle tracking[J]. Marine Geology,2004,213(1/2/3/4):415 − 438.

    [44] 钟广法. 超临界浊流之地貌动力学和沉积特征[J]. 沉积学报,2023,41(1):52 − 72. [ZHONG Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica,2023,41(1):52 − 72. (in Chinese with English abstract)]

    ZHONG Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica, 2023, 41(1): 52 − 72. (in Chinese with English abstract)

    [45]

    TALLING P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow:Deposits,theoretical and experimental analyses,and generalized models[J]. Geosphere,2013,9(3):460 − 488. DOI: 10.1130/GES00793.1

    [46]

    TALLING P J,PAULL C K,PIPER D J W. How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve?Direct observations from monitoring of active flows[J]. Earth-Science Reviews,2013,125:244 − 287. DOI: 10.1016/j.earscirev.2013.07.005

    [47]

    ABREU V,SULLIVAN M,PIRMEZ C,et al. Lateral accretion packages (LAPs):An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology,2003,20(6/7/8):631 − 648.

    [48]

    BREIEN H,DE BLASIO F V,ELVERHOI A,et al. Transport mechanisms of sand in deep-marine environments—insights based on laboratory experiments[J]. Journal of Sedimentary Research,2010,80(11):975 − 990. DOI: 10.2110/jsr.2010.079

    [49]

    ZHAO Enjin,DONG Youkou,TANG Yuezhao,et al. Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents[J]. Ocean Engineering,2021,222:108553. DOI: 10.1016/j.oceaneng.2020.108553

    [50] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52 − 65. [WANG Dawei,BAI Hongxin,WU Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science,2018,33(1):52 − 65. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2018.01.0052

    WANG Dawei, BAI Hongxin, WU Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52 − 65. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2018.01.0052

    [51]

    KNELLER B,MCCAFFREY W. Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope; deflection,reflection,and facies variation[J]. Journal of Sedimentary Research,1999,69(5):980 − 991. DOI: 10.2110/jsr.69.980

    [52] 谈明轩,朱筱敏,耿名扬,等. 沉积物重力流流体转化沉积—混合事件层[J]. 沉积学报,2016,34(6):1108 − 1119. [TAN Mingxuan,ZHU Xiaomin,GENG Mingyang,et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica,2016,34(6):1108 − 1119. (in Chinese with English abstract)]

    TAN Mingxuan, ZHU Xiaomin, GENG Mingyang, et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1108 − 1119. (in Chinese with English abstract)

    [53] 葛智渊,许鸿翔. 浊流对复杂构造地貌的水动力和沉积响应[J]. 古地理学报,2023,25(5):1090 − 1117. [GE Zhiyuan,XU Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography (Chinese Edition),2023,25(5):1090 − 1117. (in Chinese with English abstract)] DOI: 10.7605/gdlxb.2023.05.084

    GE Zhiyuan, XU Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(5): 1090 − 1117. (in Chinese with English abstract) DOI: 10.7605/gdlxb.2023.05.084

    [54]

    TALLING P J,ALLIN J,ARMITAGE D A,et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research,2015,85(2):153 − 169. DOI: 10.2110/jsr.2015.03

    [55]

    REN Yupeng,ZHANG Yi,XU Guohui,et al. The failure propagation of weakly stable sediment:A reason for the formation of high-velocity turbidity currents in submarine canyons[J]. Journal of Oceanology and Limnology,2023,41(1):100 − 117. DOI: 10.1007/s00343-022-1285-0

    [56]

    HUANG Heqing,IMRAN J,PIRMEZ C. Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms[J]. Journal of Hydraulic Engineering,2008,134(9):1199 − 1209. DOI: 10.1061/(ASCE)0733-9429(2008)134:9(1199)

    [57]

    HUANG H,IMRAN J,PIRMEZ C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research:Oceans,2007,112(C1):C01014.

    [58]

    TALLING P J,BAKER M L,POPE E L,et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications,2022,13(1):4193. DOI: 10.1038/s41467-022-31689-3

    [59] 王玉峰,林棋文,李坤,等. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报,2021,43(1):164 − 181. [WANG Yufeng,LIN Qiwen,LI Kun,et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment,2021,43(1):164 − 181. (in Chinese with English abstract)]

    WANG Yufeng, LIN Qiwen, LI Kun, et al. Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 164 − 181. (in Chinese with English abstract)

    [60]

    JOHN MURRAY. The report on the scientific results of the voyage of h. m. s challenger during the years 1873-76[M].Shanghai:East China Normal University Press,2018:1 − 7.

    [61]

    SAXOV S. Marine slides-some introductory remarks[C]//In:Saxov,S.,Nieuwenhuis,J. K. Marine Slides and Other Mass Movements. NATO Conference Series,Boston,MA, Springer,1982.

    [62] 湖泊及流域学科发展战略研究秘书组. 湖泊及流域科学研究进展与展望[J]. 湖泊科学,2002,14(4):289 − 300. [The Research Group of the Development Strategy of Limnology and Watershed Sciences. The development review and future prospect of the research in limnology and watershed sciences[J]. Journal of Lake Science,2002,14(4):289 − 300. (in Chinese)] DOI: 10.18307/2002.0401

    The Research Group of the Development Strategy of Limnology and Watershed Sciences. The development review and future prospect of the research in limnology and watershed sciences[J]. Journal of Lake Science, 2002, 14(4): 289 − 300. (in Chinese) DOI: 10.18307/2002.0401

    [63]

    HEIM A. Bergsturz und menschenleben[M]. Zütich:Naturforschenden Gesellschaft,1932:218.

    [64]

    FISHER R V,SMITH A L,ROOBOL M J. Destruction of St. Pierre,Martinique,by ash-cloud surges,may 8 and 20,1902[J]. Geology,1980,8(10):472. DOI: 10.1130/0091-7613(1980)8<472:DOSPMB>2.0.CO;2

    [65]

    HEEZEN B C,EWING W M. Turbidity currents and submarine slumps,and the 1929 Grand Banks [Newfound land] earthquake[J]. American Journal of Science,1952,250(12):849 − 873. DOI: 10.2475/ajs.250.12.849

    [66]

    KUENEN P H,MIGLIORINI C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology,1950,58(2):91 − 127. DOI: 10.1086/625710

    [67]

    BATES R L,JACKSON J A. Glossary of geology (2nd)[M]. Virginia:American Geological Institute,1980:751.

    [68]

    MULDER T,ZARAGOSI S,JOUANNEAU J M,et al. Deposits related to the failure of the Malpasset Dam in 1959 An analogue for hyperpycnal deposits from jökulhlaups[J]. Marine Geology,2009,260(1/2/3/4):81 − 89.

    [69] 刘锡清. 中国海洋环境地质学[M]. 北京:海洋出版社,2006:15 − 18. [LIU Xiqing. Marine environmental geology of China [M]. Beijing:Marine Ocean Publishing House,2006:15 − 18. (in Chinese)]

    LIU Xiqing. Marine environmental geology of China [M]. Beijing: Marine Ocean Publishing House, 2006: 15 − 18. (in Chinese)

    [70] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552 − 558. [XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science,2013,28(5):552 − 558. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2013.05.0552

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552 − 558. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2013.05.0552

    [71] 朱超祁,贾永刚,刘晓磊,等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质,2015,35(6):153 − 163. [ZHU Chaoqi,JIA Yonggang,LIU Xiaolei,et al. Classification and genetic machanism of submarine landslide:A review[J]. Marine Geology & Quaternary Geology,2015,35(6):153 − 163. (in Chinese with English abstract)]

    ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: A review[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153 − 163. (in Chinese with English abstract)

    [72]

    TAPPIN D R,WATTS P,MCMURTRY G M,et al. The sissano,Papua new Guinea tsunami of July 1998—Offshore evidence on the source mechanism[J]. Marine Geology,2001,175(1/2/3/4):1 − 23.

    [73]

    BOUMA A H. Sedimentology of some Flysch deposits; a graphic approach to facies interpretation[M]. Amsterdam:Elsevier,1962:168.

    [74]

    DOTT R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963,47(1):104 − 128.

    [75]

    KUENEN P H. Emplacement of flysch-type sand beds[J]. Sedimentology,1967,9(3):203 − 243. DOI: 10.1111/j.1365-3091.1967.tb02039.x

    [76]

    MIDDLETON G V,HAMPTON M A. Sediment gravity flows:Mechanics of flow and deposition[C]//MIDDLETON G V,BOUMA A H,eds. Turbidites and Deep-Water Sedimentation. Los Angeles,California:SEPM Pacific Section,1973:1 − 38.

    [77]

    MOORE D G. Submarine slides[M].Developments in Geotechnical Engineering. Elsevier,1978,14:563 − 604.

    [78]

    DAMUTH J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology,1979,7:520 − 523.

    [79]

    LOWE D. Sediment gravity flows:Their classification and some problems of application to natural flows and deposits [J]. Special Publications,1979,27:75 − 82.

    [80]

    SHANMUGAM G. High-density turbidity currents; are they sandy debris flows?[J]. Journal of Sedimentary Research,1996,66(1):2 − 10. DOI: 10.1306/D426828E-2B26-11D7-8648000102C1865D

    [81]

    MULDER T,COCHON P. Classification of offshore mass movements[J]. SEPM Journal of Sedimentary Research,1996,66(1):43 − 57.

    [82] 贾永刚,单红仙. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报,2000,11(1):1 − 5. [JIA Yonggang,SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of morden Yellow River[J]. The Chinese Journal of Geological Hazard and Control,2000,11(1):1 − 5. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2000.01.001

    JIA Yonggang, SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of morden Yellow River[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.01.001

    [83]

    MIDDLETON G V. Experiments on density and turbidity currents:Iii. deposition of sediment[J]. Canadian Journal of Earth Sciences,1967,4(3):475 − 505. DOI: 10.1139/e67-025

    [84]

    HAMPTON M A. The role of subaqueous debris flow in generating turbidity currents[J]. SEPM Journal of Sedimentary Research,1972,42(3):475 − 505.

    [85]

    BRITTER R E,SIMPSON J E. Experiments on the dynamics of a gravity current head[J]. Journal of Fluid Mechanics,1978,88(2):223 − 240. DOI: 10.1017/S0022112078002074

    [86]

    SASSA K. Geotechnical model for the motion of landslides[J]. Special Lecture of 5th International Symposium onLandslides, Lausanne,1988,1(7):37 − 55.

    [87]

    GARCIA M,PARKER G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research:Oceans,1993,98(C3):4793 − 4807. DOI: 10.1029/92JC02404

    [88]

    WOODS A W,BURSIK M I. A laboratory study of ash flows[J]. Journal of Geophysical Research:Solid Earth,1994,99(B3):4375 − 4394. DOI: 10.1029/93JB02224

    [89] 赵连军,张红武. 黄河下游河道水流摩阻特性的研究[J]. 人民黄河,1997,19(9):17 − 20. [ZHAO Lianjun,ZHANG Hongwu. Study of flow frictional characteristics in the lower Yellow River channel[J]. Yellow River,1997,19(9):17 − 20. (in Chinese with English abstract)]

    ZHAO Lianjun, ZHANG Hongwu. Study of flow frictional characteristics in the lower Yellow River channel[J]. Yellow River, 1997, 19(9): 17 − 20. (in Chinese with English abstract)

    [90]

    MOHRIG D,ELLIS C,PARKER G,et al. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin,1998,110(3):387 − 394. DOI: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2

    [91]

    MARR J G,HARFF P A,SHANMUGAM G,et al. Experiments on subaqueous sandy gravity flows:The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin,2001,113(11):1377 − 1386. DOI: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2

    [92]

    MULDER T,ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology,2001,48(2):269 − 299. DOI: 10.1046/j.1365-3091.2001.00360.x

    [93]

    FELIX M,PEAKALL J. Transformation of debris flows into turbidity currents:Mechanisms inferred from laboratory experiments[J]. Sedimentology,2006,53(1):107 − 123. DOI: 10.1111/j.1365-3091.2005.00757.x

    [94]

    ELVERHOI A,BREIEN H,DE BLASIO F V,et al. Submarine landslides and the importance of the initial sediment composition for Run-out length and final deposit[J]. Ocean Dynamics,2010,60(4):1027 − 1046. DOI: 10.1007/s10236-010-0317-z

    [95]

    POSTMA G,KLEVERLAAN K,CARTIGNY M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences,and consequences for the Bouma facies model[J]. Sedimentology,2014,61(7):2268 − 2290. DOI: 10.1111/sed.12135

    [96]

    POSTMA G,CARTIGNY M J B. Supercritical and subcritical turbidity currents and their deposits:A synthesis[J]. Geology,2014,42(11):987 − 990. DOI: 10.1130/G35957.1

    [97]

    MANICA R. Sediment gravity flows:Study based on experimental simulations[M].Hydrodynamics - Natural Water Bodies,Prof. Harry Schulz (Ed.) InTech,2012:263 − 286.

    [98]

    HAUGHTON P,DAVIS C,MCCAFFREY W,et al. Hybrid sediment gravity flow deposits–classification,origin and significance[J]. Marine and Petroleum Geology,2009,26(10):1900 − 1918. DOI: 10.1016/j.marpetgeo.2009.02.012

    [99]

    IMRAN J,HARFF P,PARKER G. A numerical model of submarine debris flow with graphical user interface[J]. Computers & Geosciences,2001,27(6):717 − 729.

    [100]

    MCDOUGALL S,HUNGR O. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal,2005,42(5):1437 − 1448. DOI: 10.1139/t05-064

    [101]

    LU Yang,LIU Xiaolei,XIE Xiaotian,et al. Particle-scale analysis on dynamic response of turbidity currents to sediment concentration and bedforms[J]. Physics of Fluids,2024,36(3):033316. DOI: 10.1063/5.0191219

    [102]

    KANG Chao,CHAN D. A progressive entrainment runout model for debris flow analysis and its application[J]. Geomorphology,2018,323:25 − 40. DOI: 10.1016/j.geomorph.2018.09.003

    [103]

    WANG Wenpei,YIN Yueping,WEI Yunjie,et al. Investigation and characteristic analysis of a high-position rockslide avalanche in Fangshan District,Beijing,China[J]. Bulletin of Engineering Geology and the Environment,2021,80(3):2069 − 2084. DOI: 10.1007/s10064-020-02098-x

    [104] 孙永福,黄波林,赵永波. 基于物理试验的海底滑坡涌浪研究[J]. 水文地质工程地质,2018,45(1):116 − 122. [SUN Yongfu,HUANG Bolin,ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology,2018,45(1):116 − 122. (in Chinese with English abstract)]

    SUN Yongfu, HUANG Bolin, ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 116 − 122. (in Chinese with English abstract)

    [105]

    STRAUSS M,GLINSKY M E. Turbidity current flow over an erodible obstacle and phases of sediment wave generation[J]. Journal of Geophysical Research:Oceans,2012,117(C6):C06007.

    [106]

    SOUTTER E L,BELL D,CUMBERPATCH Z A,et al. The influence of confining topography orientation on experimental turbidity currents and geological implications[J]. Frontiers in Earth Science,2021,8:540633. DOI: 10.3389/feart.2020.540633

    [107]

    CHEN Chanmao,HOLLINGSWORTH J,CLARK M K,et al. Erosional cascade during the 2021 melamchi flood[J]. Nature Geoscience,2024,18(1):32 − 36.

    [108]

    SINCLAIR H D,TOMASSO M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research,2002,72(4):451 − 456. DOI: 10.1306/111501720451

  • 期刊类型引用(3)

    1. 孙嘉琪,古远,陈欣欣,祁明静,丁琛. 基于时序InSAR的广州典型沉降区特征及成因分析. 地质装备. 2024(05): 43-48 . 百度学术
    2. 万鹏,韩贤权,谭勇,秦朋. 基于云计算的引调水工程星载TD-InSAR地表形变监测. 长江科学院院报. 2024(10): 206-214 . 百度学术
    3. 纪振付,罗奕,张国沅,李建颖. 汕头市谷饶地区地面沉降特征及成因分析. 云南地质. 2024(04): 598-603 . 百度学术

    其他类型引用(2)

图(7)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  47
  • PDF下载量:  127
  • 被引次数: 5
出版历程
  • 收稿日期:  2025-02-03
  • 修回日期:  2025-02-10
  • 录用日期:  2025-02-13
  • 网络出版日期:  2025-02-16
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回