Spatio-temporal differentiation of landslide after the Ms6.5 Ludian earthquake in Yunnan Province
-
摘要:
2014年8月3日云南鲁甸发生的Ms6.5级地震触发了大量滑坡,受强烈地震触发的滑坡震后恢复速度慢、恢复难度大且具有扩大复发的可能,会对道路、水体、生态环境造成长期影响,因此,探究其长时间时空分异具有必要性。以受地震影响的314 km2为研究区域,首先基于ENVI深度学习方法提取震后滑坡并编制其多时相数据清单,在此基础上,从滑坡时空分布特征、滑坡时空面积变化特征以及滑坡活动演化进行时空分异分析。结果表明:(1)地震后,滑坡数量和面积急剧增加,在随后的8 a时间内,总体呈现逐渐减少趋势,地震触发滑坡以面积小于0.01 km2的小型滑坡为主,集中分布于河谷两侧,同时距震中
2000 m、地震烈度Ⅸ级范围内分布较为明显;(2)随时间推移,震后滑坡活动率总体表现为逐渐减弱趋势,截至2022年7月,地震触发滑坡只有6.08%的滑坡仍处于活动状态,表明地震对滑坡的影响已经逐渐减弱;(3)地震后滑坡的活动演化可以分为3个阶段:滑坡强活动期(2014年8月—2016年7月)、中等活动期(2016年8月—2021年8月)、弱活动期(2021年9月—2022年7月)。Abstract:A large number of landslides were triggered by the Ms6.5 magnitude earthquake that occurred in Ludian, Yunnan Province, on August 3, 2014. Landslides triggered by strong earthquakes exhibit slow post-earthquake recovery, high recovery difficulty, and tend to recur and expand, which can have long-term impacts on roads, water bodies, and ecological environments. Therefore, it is necessary to explore their long-time spatial and temporal variability. Taking the 314 km2 area affected by the earthquake as the study area, post-earthquake landslides were first extracted and a multi-temporal data list was compiled using the ENVI deep learning method. Based on this, the spatial-temporal differentiation analysis was carried out focusing on the spatio-temporal distribution characteristics of landslides, changes in spatio-temporal area, and the evolution of landslide activities. The results show that: (1) following the earthquake, the number and area of landslides increased dramatically, gradually decreasing over the subsequent 8 years. Earthquake-triggered landslides were primarily small-scale, with an area of less than 0.01 km2, concentrated on both sides of the river valley, and distributed more prominently within 2 000 meters from the epicenter and within seismic intensity Ⅸ; (2) over time, the post-earthquake landslide activity rate generally showed a gradual weakening trend, with only 6.08% of the earthquake-triggered landslides still active as of July 2022, indicating a gradual weakening of the earthquake's impact on landslides; (3) the activity evolution of post-earthquake landslides can be divided into three phases: the period of strong landslide activity (August 2014-July 2016), the period of moderate activity (August 2016-August 2021), and the period of weak activity (September 2021-July 2022).
-
0. 引言
据统计,季节性寒区面积在我国国土面积中占比为75%,而在自然界中具有层状构造的岩石约占陆地面积的三分之二,在中国更是占到77%以上[1],说明在寒区工程中面临更多的层状岩石冻融破坏问题,在冻融环境下,温度下降使岩石内部孔隙水冻结,体积膨胀,而固体介质遇冷收缩,致使冻胀力的产生,导致岩石内部原生孔隙和裂隙发展,同时产生新的孔隙,并破坏岩石内的胶结物;温度上升使岩石内部冰融化成水,并在岩石内部渗流迁移,形成裂隙通道并带走破坏后的胶结物质与颗粒,使岩石孔隙率进一步增大,进而导致岩石的损伤[2]。而对于层状岩石的层理面更易于发生冻融损伤,这对寒区工程稳定性存在一定的威胁,容易发生工程事故[3]。所以研究层状岩石受冻融作用后的力学特征,对寒区工程具有一定的指导意义。
层状岩石是指具有一组占绝对优势的结构面(层理面或者片理面)的岩体,与普通岩石相比具有一些特殊的特征。一些沉积岩(如砂岩、石灰石和页岩)和变质岩(如花岗岩、玄武岩和麻粒岩)具有明显的层理结构,声发射(acoustic emission,AE)技术可以有效、连续地实时监测脆性材料中细裂纹的产生和扩展,并实现裂纹的定位,已成为岩石变形和破坏的重要监测方法。Jia等[4]在不同次数的冻融循环后,测试了不同层理砂岩的P波速度、单轴抗压强度、拉伸强度和剪切强度。通过上述参数定义了几个各向异性指数,并分析了它们随冻融循环的变化;常森等[5]研究了冲击作用下冻融循环层理砂岩的强度、变形性质,针对性地对岩石的层理动荷载关系进行了力学响应的试验研究;张东明等[6]、Wang等[7]研究了含层理岩石在单轴压缩下损伤破坏声发射参数及能量耗散规律;姜德义等[8]、刘慧等[9]、宋彦琦等[10]、杨更社等[11]开展了不同冻融循环次数岩石单轴声发射试验,获得相应的物理力学参数,并分析声发射信号与冻融灰岩内部微裂纹活动的相关性; Qiao等[12]研究了冻融压缩荷载作用下非永久性节理岩石的断裂和声发射特征,结果表明,随着冻融循环次数的增加,材料的物理力学参数有不同程度的劣化;郑坤等[13 − 14]、付斌等[15]、王桂林等[16]、张艳博等[17]、蒋利松等[18]开展了岩石的声发射监测试验,获取了岩石的声发射累计振铃计数、累计能量计数等参数演化特征;赵娜等[19]、陈东升等[20]、何建华等[21]分析了岩石变形破坏过程中岩石损伤与声发射特征参数的变化情况。
综上,虽然学者对层状岩石的研究较多,但是对在冻融循环下层状岩石声发射特征研究还是相对较少。本文对层理砂岩进行了单轴压缩和声发射试验,研究了声发射振铃计数、振铃累计数、RA-AF值以及b值的演化特征。
1. 试样准备与试验方法
1.1 试样准备
砂岩试样取自四川省某露天矿区,该地气候寒冷,冬季寒冷漫长,昼夜温差大。试样表面呈黄色,层理发育明显。取样后经过切割、打磨等加工工序,根据ISRM标准,将试件制成50×100 mm、表面平行度小于0.02的标准圆柱体试件。由于层状岩石的力学特性在同一层面内大致相同,但在平行和垂直方向上差异较大。因此,仅选用平行和垂直于层理面的两种试样,平行层理试样和垂直层理试样分别简称为P试样和V试样,两种试样用声波测速仪筛选出波速相近,剔除波速离散度较高的试件,减小试验的离散程度。选出层理均匀、结构完整的试样后,将其分为8组试样,每组平行、垂直层理试样各一个,如图1所示。
1.2 试验方案和试验设备
将试样在模拟环境试验机内进行冻融循环,在试验机里−20 °C冻结6 h,然后在20 °C下融化6 h,如图2所示,循环次数分别为0,20,40,60次,每个循环次数设置两个平行组。先将所有试样在105 °C烘箱中干燥24 h后,留下两组(0次冻融循环)试样,直接进行单轴声发射试验,然后将剩下的试样真空饱水24 h后,放入环境模拟试验机分别进行冻融循环20,40,60次,其中将需要进行60次冻融循环的两组试样每隔20次冻融循环取出并烘干,同时对试样的波速、质量进行统计,最后进行单轴声发射试验。
加载系统采用DSZ-1000型应力应变三轴剪切渗透试验仪。加载试验设备由加载系统、声发射系统和观测系统组成。该设备由伺服液压动力系统、伺服介质控制系统和数据采集及控制系统组成,针对岩石和混凝土材料,该设备可以进行单轴、三轴应力应变试验,剪切试验,岩石力学流变试验,岩石力学渗透试验,温度条件下的岩石力学试验等。试验设备最大轴向力1000 kN,最大切向力300 kN,试验力测量精度小于±0.5%;声发射系统采用PIC-Express型声发射监测系统。该系统由1台计算机、1个软件、8个波形通道、8个放大器和探头组成;该系统支持多通道声发射信号检测,稳定性好,灵敏度高,传输高速。单轴轴向压缩试验加载采用位移控制方式,加载速率为0.05 mm/min,试样失去承载能力时停止加载。AE监测系统的主放大器设置为40 dB,阈值为40 dB。试验设备见图3。
2. 力学特性
2.1 冻融循环后试样孔隙发育
岩石在经过冻融循环后,岩石内部孔隙得到较好的发育,孔隙率和波速都能定量地反映出岩石内部孔隙的发育情况以及岩石质量的优劣程度[22]。在本次试验中将试样分别在0,20,40,60次冻融循环后取出烘干后测波速和称重,测完后将试样进行饱水24 h称重继续进行冻融循环直到60次,采用称重法计算试样的孔隙率[23],如式(1):
(1) 式中:n——岩石孔隙率/%;
——岩样饱和后的质量/g; ——干燥岩样的质量/g; ——水的密度/(g·cm−3);V——岩样块体体积/cm3。
根据60次冻融循环过程中所测得孔隙率和波速,对结果取平均值得到图4。如图所示平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。平行、垂直层理试样纵波波速岩石孔隙度增加、纵波波速降低可集中反应结构体密度的降低,进一步表明随着冻融循环次数的增加,岩石内部孔隙等微观缺陷数量也在增加,岩石本身存在孔隙,在冻融循环过程中,孔隙中的水冻结成冰,产生冻胀力,扩大了孔隙体积;在融化过程中,孔隙里面的冰消融,液态水在新增微孔隙的虹吸作用下不断补充进来,在这样的冻融循环过程中,试样的孔隙率逐渐变大,纵波波速逐渐变小。由于层理角度的不同,相同条件下,在图中可以看出,垂直组试样的纵波波速比水平组试样的纵波波速大,这是由于层理弱面角度不同而导致的,垂直组试样具有的层理弱面更利于纵波传播,这说明不同层理角度的试样具有各向异性。
2.2 力学性质及参数变化
图5为不同冻融循环次数下两组层理砂岩的单轴压缩应力-应变曲线,在图中可以看出两组试样的应力-应变曲线,整体变化趋势相近,可分为OA孔隙压密阶段,AB线弹性阶段,BC非稳定破裂发展阶段,CD峰后失稳破坏阶段,随着冻融循环次数的增加,可以看出两组试样的应力峰值降低,曲线都有向下压缩,向右拉伸的趋势。
图6为不同冻融循环次数试样应力峰值及最大轴向应变的变化趋势,在对比0到60次冻融循环后,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样。
岩石在低温冻结下,水凝结成冰,体积会膨胀9%,这时会产生冻胀力,使试样内部孔隙发育,微裂纹开始产生;当温度升高时,冰融化,水在孔隙之间连通,形成水流通道,充满微裂纹空间。随着冻融循环作用的增强,试样内部微裂纹发育逐渐增强,直至微裂纹互相连接贯通。试样内部由于冻融损伤的累积,微观孔隙缺陷数量增多并造成了压密阶段增大,导致应力峰值降低,应变增加。所以两组试样的OA段孔隙压密阶段和CD段峰后破坏阶段明显变长,岩石从脆性破坏变为延性破坏的特征显著。但对比两组试样,平行组试样的峰后破坏阶段更加平缓,时间更长,这是由于层理方向不同。对于平行组试样,当轴向压力与层理面垂直时,在应力达到峰值时,平行层理弱面相对于垂直层理弱面能更充分发挥抵抗轴向压力的作用(表1)。
表 1 试样冻融前后应力、应变峰值变化情况Table 1. Peak stress and strain changes of samples before and after freeze-thaw冻融循环
次数应力峰值下降比例/% 应变峰值增加比例/% 平行层理试样 垂直层理试样 平行层理试样 垂直层理试样 20 37.9 13.4 13.4 16.5 40 41.3 29.1 33.7 30.4 60 57.5 52.8 40.7 35.7 3. 声发射特征参数研究
3.1 声发射振铃计数特征
声发射信号如果越过门槛值,就被定义为一次撞击,一个或若干个撞击构成一个AE事件,其主要作用是反映AE源(材料内部缺陷)的活跃度。事件率是单位时间内AE事件发生的次数,累计事件数则是单位时间内AE事件的累计叠加。因岩石在损伤破裂过程中1 s内对应若干个AE事件,故以1 s时间为单位,统计砂岩在单轴压缩试验全过程中AE事件率及其累计事件数,对比分析其演化特征[24 − 25]。
如图7、图8所示,两组不同层理砂岩在不同冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,所以可整体分析将其分为三个阶段,平静阶段、阶梯式增长阶段、骤增阶段。
(1) 平静阶段振铃计数和振铃累计数增长缓慢,声发射事件较少,原生缺陷渐进压密使得岩样内部整体趋于完整,不具备发生明显声发射活动条件。
(2) 阶梯式增长阶段处在砂岩的弹性阶段及非稳定破裂发展阶段振铃计数及振铃累计数显著增长,其中振铃累计数多呈阶段式增长。这是随着应力的增加,岩石内部开始产生微裂纹,更利于声发射事件的发生。
(3) 骤增阶段声发射信号显著增强。此时应力达到峰值,试样内部微裂纹连接贯通,同时试样外部出现宏观裂纹,试样破坏前声发射的信号多且间隔时间短,声发射接收信号灯此时长亮,是试样破坏的前兆特征。
岩石的劣化程度与AE事件数有明显的变化关系,随着冻融循环次数的增加,可以看到两组试样的平静阶段相对一个完整试验过程逐渐变短,阶梯增长阶段逐渐变长,试样在冻融循环作用下,内部孔隙之间发生联通,向外扩张,使岩石的抗压强度下降,在轴向应力增大时,AE事件也更容易发生;每个试样的对应的骤增阶段都很明显,说明试样在破坏时AE事件大量发生,声发射信号显著增强,是一个明显的破坏前兆特征。
3.2 声发射b值演化特征
AE监测中使用较多的是借鉴于地震学中的破裂源参数统计指标,主要有b值以及对该统计指标的进一步统计分析。b值(b-value)起源于地震学中的 Gutenberg Richter(G-R)关系,即区域地震中大于M级的累计次数N的对数,与M级呈线性关系,如式(2)所示。
(2) 式中,a和b是常数。在分析AE参数时,通常可以用振幅(A)除以20来表示声发射震级M,即 M=A/20。在计算b值时,A的单位是dB[26]。
在监测压缩岩石过程发生的小破裂事件和大断裂事件的相对数量可以用b值表示,并且可以代表 AE事件的规模分布,因此,在分析和预测岩石破裂的前兆中被广泛利用[27]。声发射b值与岩石内部裂纹萌生扩展过程密切相关,b值较大时对应大量弱声发射事件产生,说明小破裂占据主导,而当b值迅速降低时,则说明岩石内部大破裂开始增加或裂纹扩展的速度突增。
在图9中可以得知两组不同层理砂岩的声发射b值变化有很大的区别,说明不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,随着冻融循环次数的增加,b值变化明显,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变大,说明这些阶段以微破裂或者小破裂为主导,而在60次冻融循环后b值又变小,说明此时由微破裂转为大破裂。垂直组试样声发射b值变化与平行组试样相反呈正“V”型,在经过20,40次冻融循环后,b值都随着冻融循环次数的增加而变小,说明在这些阶段垂直层理砂岩以大破裂为主,在60次冻融循环后,b值开始变大,这时岩石在冻融循环作用下,内部微破裂增多,产生的微裂纹相互连接贯通,岩石整体劣化程度高,以微破裂为主导。
对于平行层理岩石,层理弱面与外界环境的接触程度更高,试件侧面平行层理弱面分布更广,更利于冻融损伤的累积。因此,随着冻融循环作用的加强,平行层理弱面劣化程度要高于垂直层理试样,这与前面两组试样的单轴抗压强度的变化结果一致。故在0~40次冻融循环作用下,由于平行层理试样的劣化程度高于垂直层理试样,故更可能发生大破裂,则b值变小。而在60次冻融循环后,试样内部得到充分劣化,又因为层理方向与轴向应力方向垂直,平行层理弱面相对于垂直层理弱面更能起到抵抗外力的作用,岩石内部以微破裂为主,则b值变大。
3.3 声发射RA-AF值演化特征
基于声发射参数特征判别法是使用上升时间与最大振幅的比值(risetime/amplitude,RA)与平均频率(average frequency,AF)来进行破裂类型的判断。一般而言,拉伸破坏对应的声发射事件具有较小的 RA值和较大的 AF值;与剪切破坏对应的声发射事件具有较大的RA值和较小的AF值。
图10显示了使用RA和AF的声发射参数方法对拉伸和剪切裂纹进行分类的方法[28]。对角线可以用来作为拉伸裂纹和剪切裂纹的分界直线,直线上侧的裂纹即为拉伸裂纹,直线下侧的裂纹则为剪切裂纹,而直线的斜率AF/RA称之为拉剪裂纹判断的阈值。
由图11、图12可知,我们可以看到对于不同冻融循环次数的平行层理砂岩的破坏模式主要以拉伸裂纹为主,带有少量的剪切裂纹或者复合裂纹,在经过20,40,60次冻融循环的试样同样是以拉伸裂纹为主,剪切裂纹或者复合裂纹的变化比较小,但是没有经过冻融循环处理的试样对照经过冻融循环作用的试样组,它的剪切裂纹或者复合裂纹较多,与图13试样的宏观破裂特征与其对应一致。对于垂直层理砂岩的破坏模式与平行层理砂岩有所区别,在未经过冻融处理的试样主要以拉伸裂纹和剪切裂纹为主,但随着冻融作用的加强,试样的拉伸裂纹逐渐增多,剪切裂纹逐渐减少,在经过60次冻融循环处理后,试样破坏基本以拉伸裂纹为主,这与图13试样在宏观上的拉伸破裂特征一致。
4. 结论
(1) 平行、垂直层理岩石的孔隙率都随着冻融循环次数的增加而增大,平行层理试样从14.99%增大到15.47%,垂直层理试样从14.34%增大到15.07%;而纵波波速随着冻融循环次数增加而变小,平行层理试样从2.785 km/h下降到2.555 km/h,垂直层理试样3.125 km/h下降到2.850 km/h。
(2) 在对比0到60次冻融循环后,水平层理试样的应力峰值下降了57.5%、应变增大40.7%,而垂直层理砂岩应力峰值下降52.8%、应变增大35.4%,平行组试样的抗压强度下降比例和应变增大比例都大于垂直组试样,说明平行组试样的劣化程度高于垂直组试样,
(3) 两组不同层理砂岩在冻融循环作用下的声发射振铃计数演化曲线趋势变化一致,可分为三个阶段:平静阶段、阶梯式增长阶段、骤增阶段。
(4) 不同层理方向的砂岩单轴破坏模式不同。平行组试样声发射b值变化呈倒“V”型,而垂直组试样声发射b值变化呈正“V”型,基于RA-AF值变化特征表明平行层理黄砂岩基本以拉伸破坏为主,而垂直层理砂岩在未处理时以拉伸破坏和剪切破坏为主,在60次冻融循环处理后,以拉伸破坏为主。
-
表 1 影像数据信息
Table 1 Image data information
日期 2014年
4月13日2014年
10月26日2015年
10月29日2016年
7月11日2017年
5月13日2018年
8月24日2019年
8月18日2020年
8月27日2021年
8月2日2022年
7月16日数据
来源资源3号
(ZY3)高分1号
(GF1)高分1号
(GF1)高分2号
(GF2)资源3号
(ZY3)高分1号
(GF1)高分2号
(GF2)高分1号
(GF1)高分2号
(GF2)高分1号B卫星
(GF1B)数量/景 1 1 1 2 1 1 1 1 4 2 分辨率/m 2.1 2 2 0.8 2.1 2 0.8 2 0.8 2 表 2 滑坡活动期分类标准
Table 2 Classification standard of landslide activity period
滑坡活动期 滑坡活动率/% 扩大滑坡面积/km2 新增滑坡面积/km2 震后滑坡强活动期 P>50 >1.5 >1 震后滑坡中等活动期 10<P≤50 >0.2且≤1.5 >0.2且≤1 震后滑坡弱活动期 P≤10 ≤0.2 ≤0.2 表 3 精度验证结果
Table 3 Accuracy verification results
区域 影像类型 Precision Recall CE OE F1 验证区域1 GF2 0.8614 0.8281 0.1386 0.1719 0.8444 验证区域2 ZY3 0.8573 0.8439 0.1427 0.1561 0.8506 验证区域3 ZY3 0.8650 0.7499 0.1350 0.2490 0.8034 验证区域4 GF2 0.8634 0.7561 0.1366 0.2439 0.8062 表 4 地震震后滑坡规模分布情况统计
Table 4 Statistical distribution of landslide scale after earthquake
2014年4月 2014年8月 2014年10月 2015年10月 2016年7月 2017年5月 2018年8月 2019年8月 2020年8月 2021年8月 2022年7月 小型滑坡/个 36 908 408 300 367 307 179 107 153 85 42 中型滑坡/个 25 64 56 37 54 37 27 25 24 9 8 大型滑坡/个 0 42 49 37 45 42 16 15 11 13 9 表 5 2014—2022年鲁甸地区降水统计
Table 5 Statistics of precipitation in Ludian area from 2014 to 2022
年份 2014 2015 2016 2017 2018 2019 2020 2021 2022 年降水量/mm 941.0 976.4 1107.1 955.4 879.7 721.9 794.5 742.2 861.4 表 6 滑坡活动面积变化及活动率统计
Table 6 Landslide activity area change and activity rate statistics
年月 恢复区域
/km2扩大面积
/km2新增面积
/km2活动面积
/km2活动率
/%2014年10月 2.81 2.08 0.80 2.88 55.78 2015年10月 3.23 1.27 0.77 2.03 39.44 2016年7月 3.41 1.52 1.10 2.63 50.98 2017年5月 3.21 1.07 0.90 1.97 38.28 2018年8月 4.20 0.73 0.50 1.23 23.79 2019年8月 4.39 0.48 0.44 0.91 17.70 2020年8月 4.27 0.36 0.44 0.80 15.48 2021年8月 4.55 0.33 0.22 0.55 10.67 2022年7月 4.50 0.20 0.11 0.31 6.08 -
[1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2011.02.001 HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145 − 151. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.02.001
[2] KEEFER D K. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions[M]//Geomorphology and Natural Hazards. Amsterdam:Elsevier,1994:265 − 284.
[3] 祁生文,许强,刘春玲,等. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报,2009,17(1):39 − 49. [QI Shengwen,XU Qiang,LIU Chunling,et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):39 − 49. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2009.01.005 QI Shengwen, XU Qiang, LIU Chunling, et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 39 − 49. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.005
[4] 田颖颖,许冲,徐锡伟,等. 2014年鲁甸Ms6.5地震震前与同震滑坡空间分布规律对比分析[J]. 地震地质,2015,37(1):291 − 306. [TIAN Yingying,XU Chong,XU Xiwei,et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian Ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):291 − 306. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2015.01.023 TIAN Yingying, XU Chong, XU Xiwei, et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian Ms6.5 earthquake[J]. Seismology and Geology, 2015, 37(1): 291 − 306. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.023
[5] ZOU Yu,QI Shengwen,GUO Songfeng,et al. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China[J]. Engineering Geology,2022,296:106477. DOI: 10.1016/j.enggeo.2021.106477
[6] 韩征,方振雄,傅邦杰,等. 同震崩塌滑坡的光学遥感影像多特征融合解译方法[J]. 中国地质灾害与防治学报,2022,33(6):103 − 113. [HAN Zheng,FANG Zhenxiong,FU Bangjie,et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):103 − 113. ( in Chinese with English abstract] HAN Zheng, FANG Zhenxiong, FU Bangjie, et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 103 − 113. ( in Chinese with English abstract
[7] 许冲,田颖颖,沈玲玲,等. 2015年尼泊尔廓尔喀Mw7.8地震滑坡数据库[J]. 地震地质,2018,40(5):1115 − 1128. [XU Chong,TIAN Yingying,SHEN Lingling,et al. Database of landslides triggered by 2015 Gorkha (Nepal) Mw7.8 earthquake[J]. Seismology and Geology,2018,40(5):1115 − 1128. (in Chinese with English abstract)] XU Chong, TIAN Yingying, SHEN Lingling, et al. Database of landslides triggered by 2015 Gorkha (Nepal) Mw7.8 earthquake[J]. Seismology and Geology, 2018, 40(5): 1115 − 1128. (in Chinese with English abstract)
[8] GUO Xinyi,FU Bihong,DU Jie,et al. Monitoring and assessment for the susceptibility of landslide changes after the 2017 Ms7.0 Jiuzhaigou earthquake using the remote sensing technology[J]. Frontiers in Earth Science,2021,9:43.
[9] 杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)] YANG Huayang, XU Xiangning, YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 20 − 29. (in Chinese with English abstract)
[10] 陈博,李振洪,黄武彪,等. 2022年四川泸定Mw6.6级地震诱发地质灾害空间分布及影响因素[J]. 地球科学与环境学报,2022,44(6):971 − 985. [CHEN Bo,LI Zhenhong,HUANG Wubiao,et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 luding (Sichuan,China)earthquake[J]. Journal of Earth Sciences and Environment,2022,44(6):971 − 985. (in Chinese with English abstract)] CHEN Bo, LI Zhenhong, HUANG Wubiao, et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw6.6 luding (Sichuan, China)earthquake[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 971 − 985. (in Chinese with English abstract)
[11] 范宣梅,王欣,戴岚欣,等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,2022,30(5):1504 − 1516. [FAN Xuanmei,WANG Xin,DAI Lanxin,et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,2022,30(5):1504 − 1516. (in Chinese with English abstract)] FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504 − 1516. (in Chinese with English abstract)
[12] 刘甲美,王涛,杜建军,等. 四川泸定Ms6.8级地震诱发崩滑灾害快速评估[J]. 水文地质工程地质,2023,50(2):84 − 94. [LIU Jiamei,WANG Tao,DU Jianjun,et al. Emergency rapid assessment of landslides induced by the Luding Ms6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology,2023,50(2):84 − 94. (in Chinese with English abstract)] LIU Jiamei, WANG Tao, DU Jianjun, et al. Emergency rapid assessment of landslides induced by the Luding Ms6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 84 − 94. (in Chinese with English abstract)
[13] 杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质,2022,49(2):355 − 368. [YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355 − 368. (in Chinese with English abstract)] YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355 − 368. (in Chinese with English abstract)
[14] 李明威,熊江,陈明,等. 汶川震区植被恢复与同震滑坡活动性动态演化分析[J]. 水文地质工程地质,2023,50(3):182 − 192. [LI Mingwei,XIONG Jiang,CHEN Ming,et al. Vegetation restoration and dynamic evolution analysis of landslide activity in the Wenchuan Earthquake area[J]. Hydrogeology & Engineering Geology,2023,50(3):182 − 192. (in Chinese with English abstract)] LI Mingwei, XIONG Jiang, CHEN Ming, et al. Vegetation restoration and dynamic evolution analysis of landslide activity in the Wenchuan Earthquake area[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 182 − 192. (in Chinese with English abstract)
[15] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)] LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)
[16] LIN Ching weei,LIU Shouheng,LEE Senyuan,et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan[J]. Engineering Geology,2006,86(2):87 − 101.
[17] SHAFIQUE M. Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake[J]. Geomorphology,2020,362:107228. DOI: 10.1016/j.geomorph.2020.107228
[18] CHEN Ming,TANG Chuan,XIONG Jiang,et al. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology,2020,367:107317. DOI: 10.1016/j.geomorph.2020.107317
[19] 许冲,徐锡伟,沈玲玲,等. 2014年鲁甸Ms6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质,2014,36(4):1186 − 1203. [XU Chong,XU Xiwei,SHEN Lingling,et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology,2014,36(4):1186 − 1203. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0253-4967.2014.04.020 XU Chong, XU Xiwei, SHEN Lingling, et al. Inventory of landslides triggered by the 2014 Ms6.5 Ludian earthquake and its implications on several earthquake parameters[J]. Seismology and Geology, 2014, 36(4): 1186 − 1203. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2014.04.020
[20] 张鹏飞. 地震滑坡的遥感影像自动提取研究[D]. 北京:中国地震局地质研究所,2021. [ZHANG Pengfei. Research on automatic extraction of remote sensing images of co-seismic landslides[D]. Beijing:Institute of Geology,China Earthquake Administration,2021. (in Chinese with English abstract)] ZHANG Pengfei. Research on automatic extraction of remote sensing images of co-seismic landslides[D]. Beijing: Institute of Geology, China Earthquake Administration, 2021. (in Chinese with English abstract)
[21] YANG Ruilin,ZHANG Feng,XIA Junshi,et al. Landslide extraction using mask R-CNN with background-enhancement method[J]. Remote Sensing,2022,14(9):2206. DOI: 10.3390/rs14092206
[22] 蒋涛,崔圣华,冉耀. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例[J]. 中国地质灾害与防治学报,2023,34(3):20 − 30. [JIANG Tao,CUI Shenghua,RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall:A case study of the Qianjin square landslide in Wanyuan City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):20 − 30. ( in Chinese with English abstract] JIANG Tao, CUI Shenghua, RAN Yao. Analysis of landslide mechanism induced by excavation and rainfall: A case study of the Qianjin square landslide in Wanyuan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 20 − 30. ( in Chinese with English abstract
[23] 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1):27 − 34. [HU Aiguo,ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):27 − 34. ( in Chinese with English abstract] HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27 − 34. ( in Chinese with English abstract
[24] HE Xiangli,XU Chong,QI Wenwen,et al. Landslides triggered by the 2020 Qiaojia Mw5.1 earthquake,Yunnan,China:distribution,influence factors and tectonic significance[J]. Journal of Earth Science,2021,32(5):1056 − 1068. DOI: 10.1007/s12583-021-1492-1
[25] 明小娜,周洋,钟玉盛,等. 2017年云南鲁甸Ms4.9地震房屋震害特征与烈度评定[J]. 地震研究,2017,40(2):295 − 302. [MING Xiaona,ZHOU Yang,ZHONG Yusheng,et al. Building damage characteristics and earthquake intensity evaluation of the Ludian Ms4.9 earthquake in 2017[J]. Journal of Seismological Research,2017,40(2):295 − 302. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0666.2017.02.017 MING Xiaona, ZHOU Yang, ZHONG Yusheng, et al. Building damage characteristics and earthquake intensity evaluation of the Ludian Ms4.9 earthquake in 2017[J]. Journal of Seismological Research, 2017, 40(2): 295 − 302. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0666.2017.02.017