Application of “Air-Space-Ground” integrated technology in early identification of landslide hidden danger: taking Lanzhou Pulantai Company Landslide as an example
-
摘要: 长时间序列SBAS-InSAR形变监测,能够减弱误差带来的影响,提高监测精度,有效识别地质灾害隐患。研究获取了兰州地区2019年9月至2020年4月的L波段升轨ALOS-2编程数据,利用"空-天-地"一体化地质灾害监测体系,基于小基线集(SBAS-InSAR)技术对兰州市普兰太有限公司滑坡进行了有效识别。经现场核查,滑坡宏观变形迹象明显,并与同期C波段Sentinel-1A升轨数据处理对比分析,表明基于L波段的SBAS-InSAR形变监测在兰州市典型滑坡早期识别中发挥了很好的作用,可以在区域滑坡早期识别中推广应用。
-
关键词:
- "空-天-地"一体化 /
- 早期识别 /
- 地质灾害 /
- SBAS-InSAR
Abstract: The deformation monitoring of SBAS-InSAR with long time series can reduce the influence of errors, improve the monitoring accuracy, and effectively identify the hidden danger of geological disasters.The programming data of L-band elevated orbit ALOS-2 in the main urban area of Lanzhou from September 2019 to April 2020 were obtained in this study. The landslide of Lanzhou Pulantai Co., Ltd. was effectively identified based on the small baseline set (SBAS-InSAR) technology by using the integrated geological disaster monitoring system of "integration of Air-Space-Ground".Through on-site verification, the macroscopic deformation signs of the landslide are obvious, and the comparison and analysis with the sentinel-1A orbit rising data processing of the C-band during the same period show that the Deformation monitoring of SBAS-InSAR based on the L-band plays a very good role in the early identification of typical landslides in Lanzhou City, and can be popularized and applied in the early identification of regional landslides. -
-
[1] 孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报, 2019, 37(5):737-746. [SUN P P, ZHANG M S, CHENG X J, et al. On the regularity of geological hazards on the loess plateau in China[J]. Mountain Research, 2019, 37(5):737-746.(in Chinese)]
[2] 冯乐涛, 宿星, 吴玮江, 等. 兰州市地质灾害分布规律及预警评价研究[J]. 甘肃科学学报, 2014, 26(5):63-67. [FENG L T, SU X, WU W J, et al. Distribution regularity and early warning evaluation of geological hazards in Lanzhou[J]. Journal of Gansu Sciences, 2014, 26(5):63-67.(in Chinese)]
[3] 庄飞舟. 兰州市地质灾害特征与防灾减灾对策[J]. 甘肃科技纵横, 2007, 36(3):32-33. [ZHUANG F Z. Characteristics of geological disasters in lanzhou and countermeasures for disaster prevention and mitigation[J]. Scienfic & Technical Information of Gansu, 2007, 36(3):32-33.(in Chinese)]
[4] 郭富赟. 兰州市地质灾害特征与风险管控对策[J]. 城市与减灾, 2019(3):59-63.[GUO F Y. Characteristics of geological disasters and risk control strategies in Lanzhou City[J]. City and Disaster Reduction, 2019 (3):59-63.(in Chinese)]
[5] 吴玮江, 李炳龙. 兰州市滑坡泥石流灾害与防治[J]. 西安地质学院学报, 1996(3):43-50.[WU W J, LI B L.The hazard and control of landslide and debrisflow in Lanzhou City[J]. Journal of Xi'an University of Engineering, 1996 ,18(3):43-50.(in Chinese)]
[6] 畅俊杰. 兰州市区滑坡泥石流危害、成因及其防治对策[J]. 水土保持研究, 2003, 10(4):250-252. [CHANG J J. Formative causes of landslide and debris flow in Lanzhou City and preventives[J]. Research of Soil and Water Conservation, 2003, 10(4):250-252.(in Chinese)]
[7] 李永进, 冯学才. 兰州市地质灾害特征与防灾战略[J]. 甘肃科学学报, 2003, 15(增刊1):30-33.[LI Y J, FENG X C. The characteristics of geological hazards and developing preventation strategy in Lanzhou urbanization[J]. Journal of Gansu Sciences, 2003, 15 (Sup1):30-33.(in Chinese)]
[8] 王志荣, 李永进, 冯学才. 兰州市地质灾害防治与开发利用[J]. 甘肃科学学报, 2000, 12(1):91-93. [WANG Z R, LI Y J, FENG X C. Geological hazard control and land-using and developing of Lanzhou City[J]. Journal of Gansu Sciences, 2000, 12(1):91-93.(in Chinese)]
[9] 张国安, 陈耿琦, 胡坚, 等. InNSAR在地震研究中的应用[J]. 华南地震, 2003, 23(1):68-73. [ZHANG G A, CHEN G Q, HU J, et al. Application of synthetic aperture radar interferometry(InSAR) in the research of seismology[J]. South China Journal of Seismology, 2003, 23(1):68-73.(in Chinese)]
[10] 云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报, 2020, 9(1):73-85. [YUN Y, LYU X L, FU X K, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1):73-85.(in Chinese)]
[11] 焦明连, 蒋廷臣. 基于InSAR技术矿区地表形变的监测[J]. 淮海工学院学报(自然科学版), 2008, 17(2):70-73.[JIAO M L, JIANG T C. Monitoring the deformation of mining areas based on InSAR[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2008, 17(2):70-73.(in Chinese)] [12] 梁伟锋, 王庆良. InSAR技术在火山监测研究中的应用[J]. 大地测量与地球动力学, 2003(4):122-126.[LIANG W F, WANG Q L. Application of InSAR technology in volcanic monitoring research[J]. JMT and Geodynamics, 2003 (4):122-126. (in Chinese)]
[13] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
[14] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
[15] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[16] 孙晓鹏, 鲁小丫, 学虎, 等. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3):123-129. [SUN X P, LU X Y, XUE H, et al. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing of Land resources, 2016, 28(3):123-129.(in Chinese)]
[17] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.[XU Q, DONG X J, LI W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.(in Chinese)] [18] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12):2039-2049.[ZHANG L, LIAO M S, DONG J, et al. Early detection of landslide hazards in mountainous areas of West China using time series SAR interferometry-a case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049.(in Chinese)] [19] 方达里. InSAR技术在安县地区地表形变监测中的应用研究[D]. 成都:成都理工大学, 2014.[FANG D L. Application of InSAR technology in surface deformation monitoring in Anxi County[D]. Chengdu:Chengdu University of Technology, 2014.(in Chinese)] [20] 杨亚彬, 李慧. 基于Sentinel-1A雷达影像的SBAS技术在地表形变中的应用[J]. 测绘工程, 2018, 27(8):42-48. [YANG Y B, LI H. Application of SBAS technology to the surface deformation based on Sentinel-1A radar image[J]. Engineering of Surveying and Mapping, 2018, 27(8):42-48.(in Chinese)]
[21] 张静, 张勤, 曲菲霏. 运城市地面沉降SBAS-InSAR监测和敏感性GIS分析[J]. 上海国土资源, 2012, 33(1):58-61. [ZHANG J, ZHANG Q, QU F F. Monitoring land subsistence using SBAS-InSAR and GIS to conduct sensitivity analysis in Yuncheng[J]. Shanghai Land & Resource, 2012, 33(1):58-61.(in Chinese)]
[22] 罗铖.基于SBAS-InSAR的西安地表沉降监测[D].西安:长安大学,2012.[LUO C. Monitoring of surface subsidence in Xi'an based on SBAS-InSAR[D]. Xi'an:Chang'an University,2012.(in Chinese)] [23] 梁涛. 利用短基线集InSAR技术监测矿区地表形变[J]. 测绘通报, 2014(增刊2):82-84.[LIANG T. Monitoring surface deformation in mining area by using short baseline set InSAR technology[J]. Bulletin of Surveying and Mapping, 2014(Sup2 ):82-84.(in Chinese)]
[24] 吴振宇, 马彦山. 无人机遥感技术在地质灾害调查中的应用[J]. 宁夏工程技术, 2012, 11(2):133-136. [WU Z Y, MA Y S. Application of remote sensing technology of UAV in the investigation of the geological disaster[J]. Ningxia Engineering Technology, 2012, 11(2):133-136.(in Chinese)]
[25] 包广兴. 关于崩塌、滑坡地质灾害监测现状的探讨[J]. 世界有色金属, 2019(10):208-210.[BAO G X. Discussion on the current situation of monitoring the geological disasters of collapse and landslide[J]. World Nonferrous Metals, 2019 (10):208-210.(in Chinese)]
-
期刊类型引用(7)
1. 贾丽娜,李瑞冬,魏新平. 基于InSAR技术的黄土滑坡及周边斜坡变形识别. 地下水. 2023(02): 121-124 . 百度学术
2. 何丽,吴先谭,陈欣,罗芳,何政伟,薛东剑,白文倩,康桂川,张雨祥. 基于SBAS-InSAR的西宁市滑坡识别和形变监测分析. 物探化探计算技术. 2023(06): 812-823 . 百度学术
3. 裴小龙,杨瀚文,宋东阳,杨斌,田野. 雅砻江中游楞古水电站夏日滑坡发育特征及稳定性分析. 中国地质灾害与防治学报. 2022(01): 75-82 . 本站查看
4. 吴明辕,罗明,刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别——以滇西北地区为例. 中国地质灾害与防治学报. 2022(03): 84-93 . 本站查看
5. 郭富赟,周小龙,火飞飙,张毅. 舟曲断裂带滑坡灾害效应与防治对策研究. 中国地质灾害与防治学报. 2022(06): 80-89 . 本站查看
6. 蒲虹宇,张立峰,何毅,陈宝山,陈毅,何旭. 甘肃通渭黄土滑坡二维形变时序监测. 中国地质灾害与防治学报. 2022(06): 114-124 . 本站查看
7. 戴嵩,魏冠军,梁斌. 控制点布设方案对无人机精度测量的影响及其应用——以西北地区某尾矿坝地表沉降监测为例. 中国地质灾害与防治学报. 2021(05): 113-120 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 457
- HTML全文浏览量: 191
- PDF下载量: 614
- 被引次数: 10