ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中巴经济走廊(国外段)泥石流易发性和危险性评价

车宏晓 常鸣 罗超鹏 王子亮

车宏晓,常鸣,罗超鹏,等. 中巴经济走廊(国外段)泥石流易发性和危险性评价[J]. 中国地质灾害与防治学报,2022,33(2): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202107016
引用本文: 车宏晓,常鸣,罗超鹏,等. 中巴经济走廊(国外段)泥石流易发性和危险性评价[J]. 中国地质灾害与防治学报,2022,33(2): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202107016
CHE Hongxiao, CHANG Ming, LUO Chaopeng, et al. Assessment of the susceptibility and hazard of debris flow in the China-Pakistan Economic Corridor (foreign section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202107016
Citation: CHE Hongxiao, CHANG Ming, LUO Chaopeng, et al. Assessment of the susceptibility and hazard of debris flow in the China-Pakistan Economic Corridor (foreign section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202107016

中巴经济走廊(国外段)泥石流易发性和危险性评价

doi: 10.16031/j.cnki.issn.1003-8035.202107016
基金项目: 第二次青藏高原综合科学考察研究资助(2019QZKK0902);国家重点研发计划(2018YFE0100100);地表过程与资源生态国家重点实验室开放课题资助项目(2021-KF-01)
详细信息
    作者简介:

    车宏晓(1995-),女,河南兰考人,硕士研究生,主要从事工程地质与地质灾害防治与预测方面的研究。E-mail:1445884899@qq.com

    通讯作者:

    常 鸣(1985-),男,博士,副教授。主要从事泥石流灾害物理实验、数值模拟及风险评价等方面的研究。E-mail:changmxq@126.com

  • 中图分类号: P642.23

Assessment of the susceptibility and hazard of debris flow in the China-Pakistan Economic Corridor (foreign section)

  • 摘要: 中巴经济走廊(CPEC)是“一带一路”建设的重要组成部分,主要涉及中国和巴基斯坦两个国家。近年来,受地震和全球气温升高等因素的影响,导致中巴经济走廊区域内崩塌、滑坡和泥石流等地质灾害频发,影响国家战略的实施及周边国家人民生命财产安全。因此,加强开展中巴经济走廊范围内泥石流灾害发育情况的详细调查、构建相应的数据库,分析其分布规律并进行泥石流危险性区划具有重要意义。文章聚焦于中巴经济走廊国外段部分,通过光学影像遥感解译、统计分析研究区内泥石流灾害发育及分布规律,选取高程、坡向、距断层距离、距水系距离、NDVI、地震峰值加速度(PGA)等6个评价指标,利用概率综合判别法和层次分析法构建区域泥石流易发性评价模型,叠加年平均降雨指标,实现了区域泥石流危险性区划,为中巴经济走廊重大交通工程建设提供服务。结果表明:研究区内泥石流危险性主要为极低危险性和低危险性,分别占比49.35%和25.41%,主要分布在印度河平原地区;中危险性占比10.75%,主要分布在西南部高原地区,降雨型泥石流最为发育;高危险性和极高危险性分别占比11.09%和3.41%,主要分布在北部高原地区,冰川型泥石流最为发育。随着地形变化,泥石流物源增多,受冰川消融和降雨的影响,泥石流发育危险性增高。
  • 图  1  研究区泥石流分布图

    Figure  1.  Distribution map of debris flow in study area

    图  3  泥石流流域解译实例

    Figure  3.  Debris flow basin interpretation example

    图  4  巴基斯坦泥石流分布图

    Figure  4.  Distribution map of debris flow in Pakistan

    图  5  泥石流在不同诱发因子上的分布柱状图

    Figure  5.  Histogram of the distribution of debris flow on different inducing factors

    图  6  泥石流易发性评价因子分级图

    Figure  6.  the evaluation factor classification map of debris flow susceptibility

    图  7  中巴经济走廊(国外段)泥石流易发性分布图

    Figure  7.  Distribution map of debris flow susceptibility in CPEC ( foreign section)

    图  8  ROC曲线验证评价模型精度图

    Figure  8.  Accuracy diagram of ROC curve verification and evaluation model

    图  9  中巴经济走廊(国外段)年平均降雨分布图

    Figure  9.  annual average rainfall distribution in CPEC(foreign section)

    图  10  中巴经济走廊(国外段)降雨侵蚀力分布图

    Figure  10.  Distribution of rainfall erosivity in CPEC(foreign section)

    图  11  中巴经济走廊(国外段)泥石流危险性分布图

    Figure  11.  Map of the hazard distribution of debris flow in CPEC(foreign section)

    表  1  中巴经济走廊(国外段)泥石流危险性分区结果

    Table  1.   Zoning results of debris flow hazards in CPEC(foreign section)

    危险性面积/ km2百分比/%
    低危险性572 575.449.35
    轻危险性294 740.425.41
    中危险性124 670.710.75
    高危险性128 717.811.09
    极高危险性39 600.13.41
    下载: 导出CSV
  • [1] LAUER B, GRANDIN R, KLINGER Y. Fault geometry and slip distribution of the 2013 mW 7.7 balochistan earthquake from inversions of SAR and optical data[J]. Journal of Geophysical Research:Solid Earth,2020,125(7):e2019JB018380.
    [2] ASIF R, BABAR K, FARASAT A, et al. Climate change induced extreme events in Hindukush Region: A case study of singul valley, District Ghizer, Gilgit-Baltistan, Pakistan[C]. International symposium on earth observation for arid and semi-arid environments. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2012.
    [3] 许凯凯. 巴基斯坦某电站近坝冲沟泥石流地质调查及其对坝影响评价[J]. 吉林水利,2019(1):39 − 43. [XU Kaikai. Geological survey of debris flow at a power station near dam in Pakistan and its impact on dam[J]. Jilin Water Resources,2019(1):39 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-2846.2019.01.012
    [4] 魏小佳, 裴向军, 蒙明辉. 中巴公路奥依塔克-布伦口段高寒山区泥石流特征[J]. 水土保持通报,2015,35(3):354 − 358. [WEI Xiaojia, PEI Xiangjun, MENG Minghui. Characteristics of debris flow at Aoyitake-Bulunkou section of Sino-Pakistan highway in alpine mountains[J]. Bulletin of Soil and Water Conservation,2015,35(3):354 − 358. (in Chinese with English abstract)
    [5] WASSON R J. A debris flow at reshūn, Pakistan Hindu Kush[J]. Geografiska Annaler Series A, Physical Geography,1978,60(3/4):151. doi: 10.2307/520438
    [6] LIAO L P, ZHU Y Y, ZOU D H S, et al. Key point of bridge damage caused by glacial debris flows along international Karakorum highway, Pakistan[J]. Applied Mechanics and Materials, 2012, 256/257/258/259: 2713 − 2723.
    [7] 姚兰飞, 钱德玲, 方成杰, 等. 基于灰色定权聚类模型的泥石流危险性评价[J]. 合肥工业大学学报(自然科学版),2017,40(6):803 − 808. [YAO Lanfei, QIAN Deling, FANG Chengjie, et al. Hazard assessment of debris flow based on grey fixed weight clustering model[J]. Journal of Hefei University of Technology (Natural Science),2017,40(6):803 − 808. (in Chinese with English abstract)
    [8] YANG Z Q, ZHU Y Y, ZOU D H S. Formation conditions and risk evaluation of glacial debris flow disasters along International Karakorum Highway (KKH)[C]//International confedence on debris flow hazards mitigation: mechanics, prediction, and assessment, proceedings. Fort Collins: American Society of Civil Engineers (ASCE), 2011.
    [9] 胡文俊, 杨建基, 黄河清. 印度河流域水资源开发利用国际合作与纠纷处理的经验及启示[J]. 资源科学,2010,32(10):1918 − 1925. [HU Wenjun, YANG Jianji, HUANG Heqing. Lessons and inspirations from international cooperation and dispute resolution on water resources development in the Indus River Basin[J]. Resources Science,2010,32(10):1918 − 1925. (in Chinese with English abstract)
    [10] 邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究: 以宁强县为例[D]. 西安: 西北大学, 2012

    QIU Haijun. Study on the regional landslide characteristic analysis and hazard assessment: a case study of Ningqiang County[D]. Xi'an: Northwest University, 2012. (in Chinese with English abstract)
    [11] 周超, 常鸣, 徐璐, 等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报·信息科学版,2020,45(11):1782 − 1791. [ZHOU Chao, CHANG Ming, XU Lu, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1782 − 1791. (in Chinese with English abstract)
    [12] LUO L G, PEI X J, HUANG R Q, et al. Landslide susceptibility assessment by GIS based on certainty factor and logistic regression model in Jiuzhaigou Scenic Area[J]. Journal of Engineering Geology, 2020,DOI:10. 13544/j. cnki. jeg. 2019-202
    [13] NAGARAJAN R, ROY A, VINOD KUMAR R, et al. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions[J]. Bulletin of Engineering Geology and the Environment,2000,58(4):275 − 287. doi: 10.1007/s100649900032
    [14] OHLMACHER G C, DAVIS J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69(3/4):331 − 343.
    [15] 崔传峰, 王俊豪, 崔志超, 等. 基于灰色可拓模型的洮河下游泥石流易发性评价[J]. 中国地质灾害与防治学报,2019,30(6):40 − 48. [CUI Chuanfeng, WANG Junhao, CUI Zhichao, et al. Evaluation of debris flow susceptibility in the lower reaches of Taohe River based on grey extension model[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):40 − 48. (in Chinese with English abstract)
    [16] DOU Jie, YAMAGISHI H, POURGHASEMI H R, et al. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan[J]. Natural Hazards,2015,78(3):1749 − 1776. doi: 10.1007/s11069-015-1799-2
    [17] 刘渊博, 牛瑞卿, 于宪煜, 等. 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报·信息科学版,2018,43(6):959 − 964. [LIU Yuanbo, NIU Ruiqing, YU Xianyu, et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2018,43(6):959 − 964. (in Chinese with English abstract)
    [18] TINTÓ-MOLINER A, MARTIN M. Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models[J]. SAR and QSAR in Environmental Research,2020,31(4):261 − 279. doi: 10.1080/1062936X.2020.1725116
    [19] TEHRANY M S, PRADHAN B, MANSOR S, et al. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types[J]. CATENA,2015,125:91 − 101. doi: 10.1016/j.catena.2014.10.017
    [20] CHANG M, TANG C, ZHANG D D, et al. Debris flow susceptibility assessment using a probabilistic approach: a case study in the Longchi area, Sichuan Province, China[J]. Journal of Mountain Science,2014,11(4):1001 − 1014. doi: 10.1007/s11629-013-2747-9
    [21] 张明, 王章琼, 白俊龙, 等. 基于ArcGIS的“三高”地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract)
    [22] CHANG M, CUI P, DOU X Y, et al. Quantitative risk assessment of landslides over the China-Pakistan economic corridor[J]. International Journal of Disaster Risk Reduction,2021,63(15):102441.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2682
  • HTML全文浏览量:  1803
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 录用日期:  2022-03-28
  • 修回日期:  2021-11-09
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回