Assessment of the susceptibility and hazard of debris flow in the China-Pakistan Economic Corridor (foreign section)
-
摘要: 中巴经济走廊(CPEC)是“一带一路”建设的重要组成部分,主要涉及中国和巴基斯坦两个国家。近年来,受地震和全球气温升高等因素的影响,导致中巴经济走廊区域内崩塌、滑坡和泥石流等地质灾害频发,影响国家战略的实施及周边国家人民生命财产安全。因此,加强开展中巴经济走廊范围内泥石流灾害发育情况的详细调查、构建相应的数据库,分析其分布规律并进行泥石流危险性区划具有重要意义。文章聚焦于中巴经济走廊国外段部分,通过光学影像遥感解译、统计分析研究区内泥石流灾害发育及分布规律,选取高程、坡向、距断层距离、距水系距离、NDVI、地震峰值加速度(PGA)等6个评价指标,利用概率综合判别法和层次分析法构建区域泥石流易发性评价模型,叠加年平均降雨指标,实现了区域泥石流危险性区划,为中巴经济走廊重大交通工程建设提供服务。结果表明:研究区内泥石流危险性主要为极低危险性和低危险性,分别占比49.35%和25.41%,主要分布在印度河平原地区;中危险性占比10.75%,主要分布在西南部高原地区,降雨型泥石流最为发育;高危险性和极高危险性分别占比11.09%和3.41%,主要分布在北部高原地区,冰川型泥石流最为发育。随着地形变化,泥石流物源增多,受冰川消融和降雨的影响,泥石流发育危险性增高。Abstract: The China-Pakistan Economic Corridor (CPEC) is an important part of the "Belt and Road" construction, mainly involving China and Pakistan. In recent years, affected by factors such as earthquakes in Pakistan and rising global temperatures, disasters such as collapses, landslides and debris flow have occurred frequently in CPEC, affecting the implementation of the national strategy and the safety of people's lives and property in surrounding countries. Therefore, it is of great significance to strengthen the detailed investigation of the development of debris flow disasters within the scope of the China-Pakistan Economic Corridor, build a corresponding database, analyze their distribution laws, and carry out debris flow risk zoning. The article focuses on the foreign part of the CPEC, through optical image remote sensing interpretation and statistical analysis of the development and distribution of debris flow disasters in the regional study area, selects elevation, aspect, distance from fault, distance from water system, NDVI, seismic peak acceleration (PGA) 6 evaluation indicators, using probabilistic comprehensive discrimination method to construct a regional debris flow susceptibility evaluation model, superimposing annual average rainfall indicators, realizing regional debris flow hazard zoning, and providing services for the construction of major traffic projects in the CPEC. The results show that the debris flow risks in the study area are mainly very low hazard and low hazard, accounting for 49.35% and 25.41%, respectively, mainly distributed in the Indus River Plain; medium hazard accounts for 10.75%, mainly in the southwest. In the plateau area, rainfall-type debris flows are the most developed; high-hazard and extremely-high-hazard debris flows account for 11.09% and 3.41%, respectively, and are mainly distributed in the northern plateau area, where glacial debris flows are the most developed. With the change of topography, the source of debris flow increases, and the hazard of debris flow development increases due to the influence of glaciers ablation and rainfall.
-
表 1 中巴经济走廊(国外段)泥石流危险性分区结果
Table 1. Zoning results of debris flow hazards in CPEC(foreign section)
危险性 面积/ km2 百分比/% 低危险性 572 575.4 49.35 轻危险性 294 740.4 25.41 中危险性 124 670.7 10.75 高危险性 128 717.8 11.09 极高危险性 39 600.1 3.41 -
[1] LAUER B, GRANDIN R, KLINGER Y. Fault geometry and slip distribution of the 2013 mW 7.7 balochistan earthquake from inversions of SAR and optical data[J]. Journal of Geophysical Research:Solid Earth,2020,125(7):e2019JB018380. [2] ASIF R, BABAR K, FARASAT A, et al. Climate change induced extreme events in Hindukush Region: A case study of singul valley, District Ghizer, Gilgit-Baltistan, Pakistan[C]. International symposium on earth observation for arid and semi-arid environments. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2012. [3] 许凯凯. 巴基斯坦某电站近坝冲沟泥石流地质调查及其对坝影响评价[J]. 吉林水利,2019(1):39 − 43. [XU Kaikai. Geological survey of debris flow at a power station near dam in Pakistan and its impact on dam[J]. Jilin Water Resources,2019(1):39 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-2846.2019.01.012 [4] 魏小佳, 裴向军, 蒙明辉. 中巴公路奥依塔克-布伦口段高寒山区泥石流特征[J]. 水土保持通报,2015,35(3):354 − 358. [WEI Xiaojia, PEI Xiangjun, MENG Minghui. Characteristics of debris flow at Aoyitake-Bulunkou section of Sino-Pakistan highway in alpine mountains[J]. Bulletin of Soil and Water Conservation,2015,35(3):354 − 358. (in Chinese with English abstract) [5] WASSON R J. A debris flow at reshūn, Pakistan Hindu Kush[J]. Geografiska Annaler Series A, Physical Geography,1978,60(3/4):151. doi: 10.2307/520438 [6] LIAO L P, ZHU Y Y, ZOU D H S, et al. Key point of bridge damage caused by glacial debris flows along international Karakorum highway, Pakistan[J]. Applied Mechanics and Materials, 2012, 256/257/258/259: 2713 − 2723. [7] 姚兰飞, 钱德玲, 方成杰, 等. 基于灰色定权聚类模型的泥石流危险性评价[J]. 合肥工业大学学报(自然科学版),2017,40(6):803 − 808. [YAO Lanfei, QIAN Deling, FANG Chengjie, et al. Hazard assessment of debris flow based on grey fixed weight clustering model[J]. Journal of Hefei University of Technology (Natural Science),2017,40(6):803 − 808. (in Chinese with English abstract) [8] YANG Z Q, ZHU Y Y, ZOU D H S. Formation conditions and risk evaluation of glacial debris flow disasters along International Karakorum Highway (KKH)[C]//International confedence on debris flow hazards mitigation: mechanics, prediction, and assessment, proceedings. Fort Collins: American Society of Civil Engineers (ASCE), 2011. [9] 胡文俊, 杨建基, 黄河清. 印度河流域水资源开发利用国际合作与纠纷处理的经验及启示[J]. 资源科学,2010,32(10):1918 − 1925. [HU Wenjun, YANG Jianji, HUANG Heqing. Lessons and inspirations from international cooperation and dispute resolution on water resources development in the Indus River Basin[J]. Resources Science,2010,32(10):1918 − 1925. (in Chinese with English abstract) [10] 邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究: 以宁强县为例[D]. 西安: 西北大学, 2012QIU Haijun. Study on the regional landslide characteristic analysis and hazard assessment: a case study of Ningqiang County[D]. Xi'an: Northwest University, 2012. (in Chinese with English abstract) [11] 周超, 常鸣, 徐璐, 等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报·信息科学版,2020,45(11):1782 − 1791. [ZHOU Chao, CHANG Ming, XU Lu, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1782 − 1791. (in Chinese with English abstract) [12] LUO L G, PEI X J, HUANG R Q, et al. Landslide susceptibility assessment by GIS based on certainty factor and logistic regression model in Jiuzhaigou Scenic Area[J]. Journal of Engineering Geology, 2020,DOI:10. 13544/j. cnki. jeg. 2019-202 [13] NAGARAJAN R, ROY A, VINOD KUMAR R, et al. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions[J]. Bulletin of Engineering Geology and the Environment,2000,58(4):275 − 287. doi: 10.1007/s100649900032 [14] OHLMACHER G C, DAVIS J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69(3/4):331 − 343. [15] 崔传峰, 王俊豪, 崔志超, 等. 基于灰色可拓模型的洮河下游泥石流易发性评价[J]. 中国地质灾害与防治学报,2019,30(6):40 − 48. [CUI Chuanfeng, WANG Junhao, CUI Zhichao, et al. Evaluation of debris flow susceptibility in the lower reaches of Taohe River based on grey extension model[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):40 − 48. (in Chinese with English abstract) [16] DOU Jie, YAMAGISHI H, POURGHASEMI H R, et al. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan[J]. Natural Hazards,2015,78(3):1749 − 1776. doi: 10.1007/s11069-015-1799-2 [17] 刘渊博, 牛瑞卿, 于宪煜, 等. 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报·信息科学版,2018,43(6):959 − 964. [LIU Yuanbo, NIU Ruiqing, YU Xianyu, et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2018,43(6):959 − 964. (in Chinese with English abstract) [18] TINTÓ-MOLINER A, MARTIN M. Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models[J]. SAR and QSAR in Environmental Research,2020,31(4):261 − 279. doi: 10.1080/1062936X.2020.1725116 [19] TEHRANY M S, PRADHAN B, MANSOR S, et al. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types[J]. CATENA,2015,125:91 − 101. doi: 10.1016/j.catena.2014.10.017 [20] CHANG M, TANG C, ZHANG D D, et al. Debris flow susceptibility assessment using a probabilistic approach: a case study in the Longchi area, Sichuan Province, China[J]. Journal of Mountain Science,2014,11(4):1001 − 1014. doi: 10.1007/s11629-013-2747-9 [21] 张明, 王章琼, 白俊龙, 等. 基于ArcGIS的“三高”地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract) [22] CHANG M, CUI P, DOU X Y, et al. Quantitative risk assessment of landslides over the China-Pakistan economic corridor[J]. International Journal of Disaster Risk Reduction,2021,63(15):102441. -