ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

西藏地区冰崩灾害研究进展

张议芳, 刘阳, 苏鹏程, 韦方强, 黄海涛, 陈乔

张议芳,刘阳,苏鹏程,等. 西藏地区冰崩灾害研究进展[J]. 中国地质灾害与防治学报,2023,34(2): 132-145. DOI: 10.16031/j.cnki.issn.1003-8035.202110022
引用本文: 张议芳,刘阳,苏鹏程,等. 西藏地区冰崩灾害研究进展[J]. 中国地质灾害与防治学报,2023,34(2): 132-145. DOI: 10.16031/j.cnki.issn.1003-8035.202110022
ZHANG Yifang,LIU Yang,SU Pengcheng,et al. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 132-145. DOI: 10.16031/j.cnki.issn.1003-8035.202110022
Citation: ZHANG Yifang,LIU Yang,SU Pengcheng,et al. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 132-145. DOI: 10.16031/j.cnki.issn.1003-8035.202110022

西藏地区冰崩灾害研究进展

基金项目: 西藏自治区自然资源厅防治能力体系建设项目(2020-0890-2);西藏自治区日喀则市科技计划项目(RKZ2020kj01);浙江省岩石力学与地质灾害重点实验室开放基金(ZJRMG-2019-01)
详细信息
    作者简介:

    张议芳(1995-),女,四川宜宾人,硕士研究生,主要从事地质灾害监测预警研究。E-mail: zhangyifang@cigit.ac.cn

    通讯作者:

    陈 乔(1982-),男,四川遂宁人,博士研究生,副研究员,主要从事岩石力学、声学,地质灾害预警研究。E-mail:chenqiao@cigit.ac.cn

  • 中图分类号: P694

Advances in the study of glacier avalanches in Tibet

  • 摘要: 随着全球气候的变暖,青藏高原地区冰川消融、退缩加剧,稳定性降低,增加了冰崩灾害的发生频率。西藏地区作为青藏高原的主体部分,其冰川的稳定影响着我国及周边国家的水源及生命财产安全。文章通过梳理国内外冰崩的研究现状,整理了西藏地区冰崩灾害的定义;从地形因素、构造运动和气候作用角度分析了冰崩形成机制;归纳分析了冰崩—冰湖溃决—泥石流链式灾害、冰崩—堵溃—泥石流链式灾害、冰崩—直接型泥石流(山洪)灾害3种类型冰崩灾害链的特征;阐述了目前冰崩灾害监测预警的手段及特点,认为多种监测方式联合是冰崩灾害监测的发展趋势,展望了冰崩灾害的研究体系,以期能为后续的研究工作提供思路。
    Abstract: With the global warming, glaciers in the Qinghai-Tibet Plateau are melting and retreating rapidly, and the stability of glaciers are decreasing. As the main part of the Qinghai-Tibet Plateau, stability of glaciers affect the safety of water, life and property in China and neighboring countries. This paper summarized the research status of ice avalanches at home and abroad, and reorganized the definition of ice avalanche disasters in Tibet; Analyzed the formation mechanism of ice avalanche from the topography, tectonic movement and climate; Summarized and analyzed the characteristics of three types of ice avalanche disaster chains. Ice avalanche- glacial lake outburst- debris flow chain disaster, ice avalanche-blocking and outburst - debris flow chain disaster, ice avalanche-debris flow (flash flood) chain disaster; Described the current methods and characteristics of ice avalanche disasters monitoring and warning, and it is believed that the trend is for a combination of multiple monitoring methods for ice avalanche disaster monitoring. The research system of ice avalanche disasters is prospected in order to provide ideas for future research work.
  • 秦巴山区地质环境复杂,地壳运动强烈,岩土体结构类型多样,具有自然灾害种类多、强度大和成灾重等特点[1],因此该地区已经成为我国地质灾害发生最频繁的地区之一。在秦巴山区发生的地质灾害以滑坡、泥石流和崩塌为主,其中滑坡占比相对较高,依据前人调查成果可知[24],该区境内变质岩残坡积土分布广泛,该类土体在开挖坡脚等人类工程活动影响下,极易诱发浅层堆积层滑坡,该类滑坡占秦巴山区灾害总数的90%以上[5],是该地区内发生频率最高的地质灾害,已经严重危及人民群众的生命和财产安全,制约了当地经济社会的发展,因此亟需开展堆积层滑坡机理的研究,为当地减灾防治工作提供理论依据。

    开挖坡脚会造成边坡的卸荷现象,严重影响边坡的稳定性[68]。学者们对边坡的开挖行为进行了大量研究,马春驰等[9]认为开挖导致边坡中的应力分布不平衡,土体中的软弱部位会产生屈服与变形现象。曹春山等[10]研究表明工程切坡开挖会恶化场地的地形地貌条件,改变了水文地质条件使得古土壤力学行为出现分化,导致了滑坡发生。陈涛等[11]认为开挖增大了坡体的临空面,坡体下部土体的抗滑作用减小,使土体产生卸荷效应。彭建兵等[12]通过研究人工开挖造成坡体应力卸荷来揭示滑坡应力场和位移场的改变与其变形破坏之间的关系。以上学者只是对开挖型滑坡的现象进行了分析,但在理论上的探讨还有所欠缺,因此对边坡开挖过程中的受力情况进行分析,总结其演化规律,并对开挖诱发型堆积层滑坡机理进行研究,对于此类滑坡的防治具有重要的意义[1316]

    由于秦巴山区堆积层滑坡物质组成以碎石土为主,应开展大型剪切试验,该试验可以较好地反映堆积层碎石土真实的抗剪强度规律[1719]。本研究选取柞水县小岭镇岭丰村三组矿洞滑坡碎石土进行了一系列大型直剪试验,研究了滑带土试样在不同法向应力、含水率和干密度下的剪切强度变化规律,在此基础上利用Midas GTS NX有限元软件对坡体开挖过程进行了模拟分析,通过室内试验与数值模拟相结合的方法,揭示了典型开挖诱发型堆积层滑坡的发生机理。

    岭丰村三组矿洞滑坡位于秦巴山区柞水县小岭镇岭丰村三组,由当地居民开挖坡脚修建道路诱发,是典型的开挖型堆积层滑坡。该坡体于2015年3月被开挖,并发生了小型溜滑;2020年9月由于持续强降雨导致滑坡范围进一步扩大,发生整体失稳,该滑坡发生后,明显可以看到堆积层与基岩面的滑带有较大面积的擦痕,滑带土体为堆积层碎石土,湿度大,滑体堆积于坡脚呈松散状。

    经野外调查,岭丰村三组矿洞滑坡平面形态呈圈椅状,滑动方向为130°(图1),平均坡度为37°。滑坡前缘高程1013 m,后缘高程为1050 m,相对高差为37 m。滑坡前部宽36 m,后部宽23 m,面积约1252 m2,滑坡体积为3644 m3。该滑坡后缘陡坎发育拉张裂隙,最大长度约21 m,最大宽度约0.5 m,可见剥、坠落迹象,滑体上树木歪斜、倾倒,部分路基被冲毁。

    图  1  岭丰村三组矿洞滑坡平面图
    Figure  1.  Plan view of the mine cave-in landslide at Lingfeng Village group 3

    试验样品取自滑坡堆积体内的碎石土(图2),根据室内试验得到的碎石土天然干密度(ρd)为1.4 g/cm3,天然含水率为10.6%,饱和含水率为19.4%,通过颗分试验所获取的试样颗粒级配累计曲线如图3所示。

    图  2  岭丰村三组矿洞滑坡(镜向:274°)
    Figure  2.  Mine cave-in landslide in Lingfeng Village group 3 (Lens direction: 274°)
    图  3  矿洞滑坡碎石土级配曲线
    Figure  3.  Grading curves of gravelly soils in mine cave landslides

    采用TT-ADS型全自动单联直剪仪进行滑带土的直剪试验,样品室内试验剪切盒由剪切上盒和剪切下盒组成,如图4所示,剪切上盒、下盒的尺寸均为150 mm×150 mm×100 mm(长×宽×高)。

    图  4  试验仪器及试验材料
    注:a为TT-ADS型全自动单联直剪仪;b为滑坡样品土;c为试验盒。
    Figure  4.  Test apparatus and materials

    干密度和含水率是影响碎石土剪切强度的主要因素,本文试验设计了一系列考虑不同干密度(1.3,1.4,1.5 g/cm3)和不同含水率下,5%、10.6%(天然)、15%、19.4%(饱和)的剪切试验,用以探索两种因素对碎石土剪切强度的影响规律,具体的试验方案见表1所示。制样过程中,根据剪切盒的尺寸以及干密度的大小,量取相应重量的碎石土,分3次装填压样以保障此干密度下样品的压实程度。

    表  1  本次试验方案
    Table  1.  Large-scale direct shear test program
    试样编号 含水率/% 干密度/(g·cm−3
    S01 5.0 1.5
    S02 10.6 1.5
    S03 15.0 1.5
    S04 19.4 1.5
    S05 5.0 1.4
    S06 10.6 1.4
    S07 15.0 1.4
    S08 19.4 1.4
    S09 5.0 1.4
    S10 10.6 1.3
    S11 15.0 1.3
    S12 19.4 1.3
    下载: 导出CSV 
    | 显示表格

    根据滑带深度、土的容重以及试验仪器的实际情况,设定试验法向压力(σ)分别为100,200,300 kPa,考虑不同含水率和不同干密度组合,共36组剪切试验。试验的剪切速率设置为0.8 mm/min,最大剪切位移设置为25 mm,剪力控制设定为恒速,试验数据时间存储间隔2 s。

    图5是相同干密度、不同含水率下碎石土剪切应力随剪切位移变化的关系曲线,可见随着剪切位移的增加剪切应力呈不断增大趋势,同时不同含水率下的剪切应力与剪切位移曲线基本上均呈现出应变硬化的特征。当剪切位移较小时,剪切应力与剪切位移呈线性增长的趋势,随着剪切位移的增加,曲线的增长速率变缓,但总体上仍呈现增大的趋势。参考规范[20],本文剪切强度试验结果取应变达到12%对应的剪切应力值。由于不同含水率(ω)下的直剪曲线变化规律一致,故本文选择ω=10.6%的情况进行分析,当法向应力从200 kPa增加到300 kPa时,剪切应力峰值(τMax)从136.8 kPa增加到197.9 kPa,增加了44.66%。这主要是由于在法向应力作用下土体被压实,土颗粒之间的接触密实、土颗粒之间的摩擦增大,从而导致剪切时阻力增大,故表现出剪切应力峰值随着法向应力的增加而增大。

    图  5  相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力与剪切位移变化曲线
    Figure  5.  Variation curves of shear stress and shear displacement under the same dry density (ρd=1.4 g/cm3) and different moisture content

    相同干密度、不同含水率下的剪切应力峰值如图6所示,可以看出在相同法向应力下,不同含水率下的剪切应力峰值是随着含水率的增加而逐渐降低,而抗剪强度降低的幅度随着法向应力的增大而增大。当含水率为定值时,剪切应力的峰值随着法向应力的增大而增大。

    图  6  相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力峰值变化规律
    Figure  6.  Variation of peak shear stress under the same dry density (ρd=1.4 g/cm3) and different moisture content

    根据库伦公式得到在相同干密度下各试样的黏聚力(c)和内摩擦角(φ)与含水率的关系如图7所示,随着试样含水率增大,黏聚力始终呈下降趋势,但下降幅度却有明显减小(含水率从5%增加至10.6%黏聚力下降了4 kPa,而含水率从15%增加至19.4%黏聚力只下降了1.4 kPa)。这是由于随着含水率的增加,试样中的碎石土中的粉质黏土土颗粒间胶结程度减小[21],导致试样的黏聚力下降。而在试样饱和或接近饱和状态时,土颗粒间胶结作用大幅度减小。同样,试样的φ也随着含水率的增加呈下降趋势,含水率越大,水分起到润滑作用,土颗粒间摩擦力减小,咬合作用减小。

    图  7  相同干密度下(ρd=1.4 g/cm3)抗剪强度指标与含水率关系曲线
    Figure  7.  Shear strength index versus moisture content at the same dry density (ρd=1.4 g/cm3)

    在探究干密度对碎石土剪切强度影响规律时,保持样品含水率不变,为10.6%(天然含水率),以排除含水率对试验结果的影响。图8是不同干密度下碎石土剪切应力随剪切位移变化的关系曲线,整体上剪切应力随着剪切位移的增加而不断增大,不同干密度下的剪切应力与剪切位移曲线可分为两个阶段,第一阶段为线性增长期,其剪切位移不超过1.5 mm,主要由于土体在最初阶段抵抗相对位移所产生。在此期间,剪切应力迅速增加,但持续时间较短;第二阶段为非线性增长阶段,该阶段的剪切应力随剪切位移增长的速率与第一阶段相比明显变缓,总体特征依旧是剪切应力随剪切位移的增加而增大,曲线表现出应变硬化的特征。

    图  8  相同含水率(ω=10.6%)、不同干密度下剪切应力与剪切位移的变化规律
    Figure  8.  Variation of shear stress and shear displacement under the same moisture content (ω=10.6%) and different dry densities

    将不同干密度下各法向应力的峰值强度绘制到图9中,可以得出碎石土的峰值强度随着试样干密度的提高呈现出小幅度增长,但总体来说影响不大。此外,当碎石土干密度不变时,其峰值剪应力随法向应力的增加而增大。分析其原因:随着法向应力增大,试验盒中试样的体积变小,试样被逐渐压密,土体压实度发生改变从而导致剪切应力峰值增大。

    图  9  相同含水率(ω=10.6%)、不同干密度下剪切应力峰值变化规律
    Figure  9.  Variation of peak shear stress under the same moisture content (ω=10.6%) and different dry densities

    根据库伦公式,可以得到各试样抗剪强度指标,并将黏聚力(c)和内摩擦角(φ)与含水率的关系绘制于图10,可知土体的黏聚力随干密度的增加而增加,其原因在于随着干密度的提高,土颗粒与砾石之间的咬合作用增强,而由此导致土颗粒与土颗粒、土颗粒与碎石之间错动困难,故在剪切过程中产生位移所需的阻力增大,因此表现出界面黏聚力随干密度的提高而增大的特征。

    图  10  相同含水率(ω=10.6%)下抗剪强度指标与干密度关系曲线
    Figure  10.  Shear strength index versus dry density at the same moisture content (ω=10.6%)

    根据图10可以看出,试样的内摩擦角随着干密度的增加呈上升的趋势,这是由于干密度提高导致试验盒中的粗颗粒增多,相对密实度增加,剪切面上的颗粒之间的接触变紧密,它们之间摩擦力随之变大,故内摩擦角与干密度之间表现出正相关关系。

    本文采用Midas GTS NX有限元数值软件根据实际地质剖面来模拟岭丰村三组矿洞滑坡从最初的坡体经人为开挖,再经历了暴雨等不同阶段中应力场、位移场和塑性区的发展趋势,然后通过强度折减法分别得出该坡体在不同阶段的稳定性系数,从而较真实地还原了该滑坡从初始阶段直至破坏的全过程,揭示了其在开挖坡脚和降雨作用下的变形与失稳机制。

    采用Midas GTS NT数值软件对开挖卸荷和强降雨作用下滑坡位移以及应变特征进行数值模拟分析,并以强度折减法[22]为理论依据,对不同工况下的滑坡变形模式进行分析。建立好的模型如图11所示,模型高56 m,长145 m,共2782个单元,将滑坡区地层从上到下概化为三种材料:①碎石土层;②强风化层;③基岩层。边界条件设置为:模型底部边界限制其XY方向位移,左侧边界限制其X方向的位移,右侧边界限制其X方向的位移。

    图  11  Midas GTS NT有限元模型
    Figure  11.  Midas GTS NT finite element model

    岭丰村三组矿洞滑坡主要运动模式为溜滑和局部变形,当滑坡的内动力条件发生改变后,该滑坡将进入滑动变形阶段,因此,本次研究主要分析以下2种工况:(1)根据现场实际开挖范围对模型进行开挖,未降雨。(2)对滑坡坡脚进行开挖,并以滑坡发生前的降雨量为依据,设定降雨强度为70 mm,降雨时长24 h。开挖工况下碎石土层的参数取样品天然含水率下的剪切强度试验成果(表2),开挖加降雨工况时,滑带碎石土取饱和工况下试验参数。

    表  2  数值模拟参数
    Table  2.  Numerical model parameters
    类型 重度
    /(kN·m−3
    泊松比 c/kPa φ/(°) E/MPa
    碎石土层 21.2 0.32 25.2 31.1 100
    滑带土(天然工况) 19.2 0.33 25.0 30.5 90
    滑带土(饱和工况) 19.7 0.40 20.9 19.6 70
    强风化层 23.3 0.30 50.0 35.0 200
    基岩层 24.5 0.28 428.0 38.0 1000
    下载: 导出CSV 
    | 显示表格

    经过计算和分析,从图12中可以看出,开挖后,变形主要发生在开挖位置的前缘,滑坡前缘沿着开挖形成的陡立面向下移动,最大变形量约为1.05 m。据对现场的调查和观察,开挖后的地形呈现出中心隆起的特征,同时开挖的边坡也出现了局部的小规模滑塌,与模拟结果相一致。坡体在经历过开挖之后,其稳定系数(FS)下降至1.043,表明坡体已经处于欠稳定状态。

    图  12  开挖后滑坡位移云图
    Figure  12.  Cloud map of landslide displacement after excavation

    图13为岭丰村三组矿洞滑坡开挖前后滑坡的最大剪应力云图。从数据分析结果可以明显看出,剪应力的数值为正值;并且随着滑坡体深度的增加,剪应力的数值也逐渐增大。在滑坡坡脚处,表现出较为明显的应力集中现象;而坡面处的开挖区域,则呈现出较为明显的应力变化。除了集中开挖区域之外,坡体其他部分的整体应力变化较为微小。这种情形与实际出现的滑坡破坏形式高度契合。

    图  13  开挖前后滑坡最大剪应力云图
    Figure  13.  Cloud map of maximum shear stress of landslide before and after excavation

    图14为小岭镇矿洞滑坡开挖过程中的塑性区变化云图。在滑坡的切坡过程中由于坡体前缘土体被移除,斜坡后部土体缺少支撑,塑性区域会逐渐扩大最终这种滑动趋势可能会导致牵引式滑坡,严重影响坡体的稳定性。但是,趋势的发展只能从侧面反映坡体的稳定状态,而塑性区域的产生或贯通并不意味着坡体一定会发生失稳。

    图  14  开挖前后塑性区分布图
    Figure  14.  Distribution of plastic zones before and after excavation

    开挖滑坡经降雨后的位移云图如图15所示,从该图中可以明显地发现,在降雨后开挖边坡上出现了一个呈圆弧状的变形集中带。相对于仅进行开挖时,滑体和滑带的剪切形变范围明显增大。滑带向下滑移的最大位移形变量集中在滑坡前缘区域。通过与开挖状态相比,降雨后滑体的变形范围和量值均有较大程度地增加,滑体运动表现出明显的牵引式特征。降雨后,滑坡的稳定性系数降至0.989,处于不稳定状态。

    图  15  开挖与降雨耦合作用后滑坡位移云图
    Figure  15.  Cloud map of landslide displacement after excavation and rainfall coupling action

    开挖与降雨耦合作用后滑坡塑性分区图如图16所示,从塑性区分布来看,开挖之后降雨的滑坡塑性破坏的面积,破坏程度都要比仅开挖的滑坡大,且塑性破坏最大的区域下移到了切坡层的坡脚处,由于滑体变形牵引以及滑带变形的影响,下覆地层(强风化层)也出现部分塑性区域。

    图  16  开挖与降雨耦合作用后滑坡塑性分区图
    Figure  16.  Plastic zoning of landslide after excavation and rainfall coupling

    将开挖与降雨耦合作用后数值模拟结果(图1516)与野外实际(图2)对比发现:数值模拟中滑坡的位置、滑体土的方量与实际滑坡较吻合,且由降雨后滑坡的位移云图可知,滑坡变形最大的部位位于开挖边坡坡面,这与野外实际所发现的滑坡前缘、滑面以及滑坡中后缘出现张拉裂缝位置等现象较吻合,可见本文数值模拟结果较为准确地模拟了开挖和降雨共同作用下堆积层滑坡发生的破坏情况。

    通过对岭丰村三组矿洞滑坡的实地调研、室内试验以及数值模拟分析可以得出,该滑坡属于典型的牵引式滑坡,不正确的人类工程活动即开挖坡脚和强降雨是导致滑坡的主要诱发因素。

    开挖坡脚后,斜坡前缘的有效抗滑力减少,这导致坡体的应力平衡状态发生改变[2325],进而使得坡体前缘产生应力集中并发生小规模失稳事件(图12)。此外,斜坡上覆地层为结构较松散、透水性好的碎石土层,在强降雨条件下土体逐渐浸润饱和,根据前面大型直剪试验结果可知(图7),土体的抗剪强度指标随含水率的增加逐渐降低,且坡体变形量也逐渐增大。随着降雨作用,斜坡堆积层中逐渐形成一个呈圆弧状的剪切应变集中带(图15),即潜在滑带。当斜坡的形变量持续增大并达到临界状态时,斜坡前缘整体失稳并沿着滑带发生大规模滑塌。综上,该类滑坡的失稳过程为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。

    (1)在相同法向应力的情况下,碎石土剪切应力峰值随含水率的增加而降低,随干密度的增加而增加;不同含水率下剪切应力与剪切位移曲线均呈现出应变硬化的特征;滑带土的黏聚力和内摩擦角随着含水率的增加而降低,随着干密度的增加而增大。

    (2)通过数值模拟计算发现:人类工程活动即开挖坡脚和该地区出现的强降雨是导致滑坡的主要诱发因素;秦巴山区典型开挖诱发型滑坡的变形模式可被归纳为:牵引-蠕滑式。

    (3)秦巴山区典型开挖诱发型堆积层滑坡的失稳机理可被归纳为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。

  • 图  1   1949—2020年西藏地区里氏4.0级以上地震分布图

    Figure  1.   Distribution of seismic with Richter scale above 4.0 in Tibet from 1949 to 2020

    图  2   1949—2020年西藏地区冰崩分布图

    Figure  2.   Ice avalanche distribution in Tibet from 1949 to 2020

    图  3   1949—2020西藏各地区冰崩统计

    Figure  3.   Ice avalanche statistics in Tibet from 1949 to 2020

    图  4   西藏地区近70年年平均降水量、气温变化图

    Figure  4.   Variation of annual mean rainfall and temperature in Tibet in recent 70 years

    图  5   1949—2020年西藏地区冰崩发生月份分布图

    Figure  5.   Monthly distribution of ice avalanche in Tibet from 1949 to 2020

    表  1   1949—2020年西藏地区冰崩统计

    Table  1   Ice avalanche statistics in Tibet from 1949 to 2020

    地点年月成因成灾形式地区
    则隆弄冰川[3,32]1950年8月地震冰崩—泥石流—堵塞坝米林县
    桑旺错[22,33-34]1954年7月气候冰崩—冰湖溃决—泥石流—洪水康马县
    次仁玛措[22,35]1964年冰崩—冰湖溃决聂拉木县
    章藏错[34]1964年冰崩-洪水-泥石流聂拉木县
    隆达错[20]1964年8月冰崩—冰湖溃决—泥石流吉隆县
    吉莱错[33,35]1964年9月冰崩—冰湖溃决—泥石流定结县
    达门拉咳错[20,33-35]1964年9月冰崩—冰湖溃决—泥石流工布江达县
    阿亚错[20,33-35]1968年/1969年/1970年8月冰崩—冰湖溃决—泥石流—洪水定日县
    坡戈错[20,33-35]1972年7月高温冰崩—冰湖溃决—泥石流索县
    坡戈冰湖[35]1974年7月冰崩—冰湖溃决—洪水丁青县
    扎日错[20,33-35]1981年6月冰崩—冰湖溃决—泥石流洛扎县
    次仁玛措[20,35-38]1981年7月高温冰崩—冰湖溃决—泥石流聂拉木县
    印达普错[22,35]1982年8月定结县
    金错[39]1982年8月冰崩—冰湖溃决—洪水—泥石流定结县
    培龙沟上游[21,34]1983年7月/1984年8月/1985年6月气候冰崩—临时性冰湖-冰湖溃决-泥石流林芝县
    光谢错[20-21,33,40]1988年7月气候冰崩—冰湖溃决-泥石流—堵江波密县
    热杰错[35]1992年9/10月冰崩—冰湖溃决亚东县
    夏嘎湖[35]1995年5月高温冰崩—洪水乃东县
    扎那泊[35]1995年6月冰崩—冰湖溃决—泥石流吉隆县
    扎木弄沟[41]2000年4月地震冰崩—滑坡—堰塞湖—泥石流波密县
    龙纠错[35,39]2000年8月康马县
    冲巴吓错[42]2000年8月冰滑坡—冰湖溃决—泥石流康马县
    嘉龙错[20,21,34-35]2002年5/6月冰崩—冰湖溃决—泥石流—洪水聂拉木县
    得嘎错[20,21,34]2002年9月冰崩—冰湖溃决—泥石流—洪水洛扎县
    浪错[22,39,43]2007年8月错那县
    尖母普曲[34]2008年4月冰崩—泥石流—洪水林芝县
    折麦错[39,44]2009年7月错那县
    错嘎湖[22,39]2009年7月边坝县
    给曲冰湖[39]2010年7月定结县
    然则日阿错[3]2013年7月气候冰、雪崩—冰湖溃决—洪水—泥石流嘉黎县
    那隆藏布沟[35]2014年6月气候冰崩—泥石流—冰湖溃决—洪水波密县
    土拉沟冰湖[35]2015年7月气候冰崩堵塞管涌通道—冰湖溃决—洪水边坝县
    阿汝村[1,3,45]2016年7/9月气候冰崩日土县
    色东普沟[3,11]2014年/2017年10/12月/2018年7/10月降雨冰崩—碎屑流—堵江米林县
    下载: 导出CSV
  • [1] 胡文涛,姚檀栋,余武生,等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土,2018,40(6):1141 − 1152. [HU Wentao,YAO Tandong,YU Wusheng,et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology,2018,40(6):1141 − 1152. (in Chinese with English abstract)
    [2] 裴丽鑫. 青藏高原地区冰崩灾害特征与类型的初步研究[D]. 北京: 中国地质大学(北京), 2019

    PEI Lixin. The preliminary study of characteristics and types of ice avalanche disaster in the Tibetan Plateau[D]. Beijing: China University of Geosciences, 2019. (in Chinese with English abstract)

    [3] 童立强,裴丽鑫,涂杰楠,等. 冰崩灾害的界定与类型划分—以青藏高原地区为例[J]. 国土资源遥感,2020,32(2):11 − 18. [TONG Liqiang,PEI Lixin,TU Jienan,et al. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources,2020,32(2):11 − 18. (in Chinese with English abstract)
    [4]

    SALZMANN N,KÄÄB A,HUGGEL C,et al. Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling[J]. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography,2004,58(2):74 − 84. DOI: 10.1080/00291950410006805

    [5]

    FAILLETTAZ J,FUNK M,SORNETTE D. Instabilities on Alpine temperate glaciers:New insights arising from the numerical modelling of Allalingletscher (Valais,Switzerland)[J]. Natural Hazards and Earth System Sciences,2012,12(9):2977 − 2991. DOI: 10.5194/nhess-12-2977-2012

    [6]

    COLLINS D N. Hydrometeorological conditions, mass balance and runoff from alpine glaciers[M]//Glaciology and Quaternary Geology. Dordrecht: Springer Netherlands, 1989: 235 − 260.

    [7]

    DOKUKIN M D,BEKKIEV M Y,KALOV K M,et al. Monitoring of ice avalanche using aerospace and ground information[J]. IOP Conference Series:Materials Science and Engineering,2020,913(5):052040. DOI: 10.1088/1757-899X/913/5/052040

    [8] 王世金,效存德. 全球冰冻圈灾害高风险区:影响与态势[J]. 科学通报,2019,64(9):890 − 900. [WANG Shijin,XIAO Cunde. Global cryospheric disaster at high risk areas:impacts and trend[J]. Chinese Science Bulletin,2019,64(9):890 − 900. (in Chinese with English abstract)
    [9]

    SCHNEIDER D,KAITNA R,DIETRICH W E,et al. Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches[J]. Cold Regions Science and Technology,2011,69(1):70 − 90. DOI: 10.1016/j.coldregions.2011.07.001

    [10]

    GOODSELL B,ANDERSON B,LAWSON W J,et al. Outburst flooding at Franz Josef glacier,south Westland,Newzealand[J]. Newzealand Journal of Geology and Geophysics,2005,48(1):95 − 104. DOI: 10.1080/00288306.2005.9515101

    [11] 张俊才,周保,曹小岩,等. 阿尼玛卿山冰崩链生灾害基本特征分析[J]. 人民黄河,2019,41(11):17 − 21. [ZHANG Juncai,ZHOU Bao,CAO Xiaoyan,et al. Analysis of basic characteristics of glacial collapse chain hazards in animaqing mountain[J]. Yellow River,2019,41(11):17 − 21. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2019.11.004
    [12] 殷跃平,李滨,张田田,等. 印度查莫利“2·7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01
    [13] 杨凯奇, 宋一顺, 冯雅雯. 62人遇难142人失踪, 印度北部冰川断裂带来警醒[EB/OL]. 2021-02-21.

    YANG Kaiqi, SONG Yishun, FENG Yawen. 62 people were killed and 142 missing, alerted by the rupture of glaciers in northern India[EB/OL]. 2021-02-21. (in Chinese)

    [14]

    STUART-SMITH R F,ROE G H,LI S,et al. Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat[J]. Nature Geoscience,2021,14(2):85 − 90. DOI: 10.1038/s41561-021-00686-4

    [15]

    ZHENG G X,ALLEN S K,BAO A M,et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change,2021,11(5):411 − 417. DOI: 10.1038/s41558-021-01028-3

    [16] 黄田进. 青藏高原冰川厚度与湖泊水位的时空变化研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017

    HUANG Tianjin. Spatial-temporal changes of glacier thickness and lake level on the Qinghai-Tibetan Plateau[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy Sciences), 2017. (in Chinese with English abstract)

    [17]

    RÖTHLISBERGER H. Ice avalanches[J]. Journal of Glaciology,1977,19(81):669 − 671. DOI: 10.1017/S0022143000029580

    [18]

    MARGRETH S,FUNK M. Hazard mapping for ice and combined snow/ice avalanches—two case studies from the Swiss and Italian Alps[J]. Cold Regions Science and Technology,1999,30(1/2/3):159 − 173.

    [19] 吕儒仁,李德基. 西藏工布江达县唐不朗沟的冰湖溃决泥石流[J]. 冰川冻土,1986,8(1):61 − 71. [LYU Ruren,LI Deji. Debris flow induced by ice lake burst in the tangbulang gully,Gongbujiangda,Xizang (Tibet)[J]. Journal of Glaciology and Geocryology,1986,8(1):61 − 71. (in Chinese with English abstract)
    [20] 刘晶晶,程尊兰,李泳,等. 西藏冰湖溃决主要特征[J]. 灾害学,2008,23(1):55 − 60. [LIU Jingjing,CHENG Zunlan,LI Yong,et al. Characteristics of glacier-lake breaks in Tibet[J]. Journal of Catastrophology,2008,23(1):55 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2008.01.013
    [21] 程尊兰,朱平一,党超,等. 藏东南冰湖溃决泥石流灾害及其发展趋势[J]. 冰川冻土,2008,30(6):954 − 959. [CHENG Zunlan,ZHU Pingyi,DANG Chao,et al. Hazards of debris flow due to glacier-lake outburst in southeastern Tibet[J]. Journal of Glaciology and Geocryology,2008,30(6):954 − 959. (in Chinese with English abstract)
    [22] 姚晓军,刘时银,孙美平,等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报,2014,29(8):1377 − 1390. [YAO Xiaojun,LIU Shiyin,SUN Meiping,et al. Study on the glacial lake outburst flood events in Tibet since the 20th century[J]. Journal of Natural Resources,2014,29(8):1377 − 1390. (in Chinese with English abstract) DOI: 10.11849/zrzyxb.2014.08.010
    [23] 吴积善,张信宝,汪阳春. 川西北高原山地灾害垂直地带性[J]. 山地学报,2006,24(2):161 − 166. [WU Jishan,ZHANG Xinbao,WANG Yangchun. The vertical zonality of mountain hazards on the north-western plateau in Sichuan[J]. Journal of Mountain Science,2006,24(2):161 − 166. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2006.02.006
    [24] 钟敦伦,谢洪,韦方强,等. 论山地灾害链[J]. 山地学报,2013,31(3):314 − 326. [ZHONG Dunlun,XIE Hong,WEI Fangqiang,et al. Discussion on mountain hazards chain[J]. Journal of Mountain Science,2013,31(3):314 − 326. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2013.03.009
    [25] 秦大河. 冰冻圈科学辞典[Z]. 北京: 气象出版社, 2014

    QIN Dahe. Glossary of cryosphere science[Z]. Beijing: China Meteorological Press, 2014. (in Chinese)

    [26] 王世金,温家洪. 冰冻圈灾害特征、影响及其学科发展展望[J]. 中国科学院院刊,2020,35(4):523 − 530. [WANG Shijin,WEN Jiahong. Characteristics,influence of cryosphere disaster and prospect of discipline development[J]. Bulletin of Chinese Academy of Sciences,2020,35(4):523 − 530. (in Chinese with English abstract)
    [27] 舒有锋. 西藏喜马拉雅山地区冰碛湖溃决危险性评价及其演进数值模拟[D]. 长春: 吉林大学, 2011

    SHU Youfeng. Hazard assessment of moraine-dammed lake outbursts in the Himalayas, Tibet and the propagating numerical simulation[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract)

    [28] 童立强,涂杰楠,裴丽鑫,等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报,2018,26(6):1552 − 1561. [TONG Liqiang,TU Jienan,PEI Lixin,et al. Preliminary discussion of the frequently debris flow events in sedongpu basin at gyalaperi peak,Yarlung Zangbo River[J]. Journal of Engineering Geology,2018,26(6):1552 − 1561. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-401
    [29] 沈永平,苏宏超,王国亚,等. 新疆冰川、积雪对气候变化的响应(II):灾害效应[J]. 冰川冻土,2013,35(6):1355 − 1370. [SHEN Yongping,SU Hongchao,WANG Guoya,et al. The responses of glaciers and snow cover to climate change in Xinjiang(II):Hazards effects[J]. Journal of Glaciology and Geocryology,2013,35(6):1355 − 1370. (in Chinese with English abstract)
    [30] 刘淑珍, 李辉霞, 鄢燕, 柴宗新, 杜少平. 西藏自治区洛扎县冰湖溃决危险度评价[J]. 山地学报, 2003, 21(增刊1): 128 − 132

    LIU Shuzhen, LI Huixia, YAN Yan, et al. Assessment of bursting hazards of the ice lakes in Luozha County, Tibet[J]. Journal of Mountain Research, 2003, 21(Sup 1): 128 − 132. (in Chinese with English abstract)

    [31] 刘秧. 西藏终碛堤冰湖溃决冰川、温度条件的初步研究[D]. 成都: 成都理工大学, 2016

    LIU Yang. Preliminary study on the glacial and temperature conditions of terminal moraine dam glacier lake outburst in Tibet[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese with English abstract)

    [32] 李军,褚宏亮,李滨,等. 基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报,2021,32(3):42 − 50. [LI Jun,CHU Hongliang,LI Bin,et al. Analysis of development characteristics of high-elevationchain geological hazard in Zelongnong,Nyingchi,Tibet based on high resolution image and InSAR interpretation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):42 − 50. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-06
    [33] 蒋忠信,崔鹏,蒋良潍. 冰碛湖漫溢型溃决临界水文条件[J]. 铁道工程学报,2004,21(4):21 − 26. [JIANG Zhongxin,CUI Peng,JIANG Liangwei. Critical hydrologic condition for overflow burst of moraine lake[J]. Journal of Railway Engineering Society,2004,21(4):21 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2106.2004.04.006
    [34] 程尊兰,田金昌,张正波,等. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势[J]. 地学前缘,2009,16(6):207 − 214. [CHENG Zunlan,TIAN Jinchang,ZHANG Zhengbo,et al. Debris flow induced by glacial-lake break in Southeast Tibet[J]. Earth Science Frontiers,2009,16(6):207 − 214. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2009.06.023
    [35] 刘建康,张佳佳,高波,等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土,2019,41(6):1335 − 1347. [LIU Jiankang,ZHANG Jiajia,GAO Bo,et al. An overview of glacial lake outburst flood in Tibet,China[J]. Journal of Glaciology and Geocryology,2019,41(6):1335 − 1347. (in Chinese with English abstract)
    [36] 李鸿琏,蔡祥兴. 中国冰川泥石流的一些特征[J]. 水土保持通报,1989,9(6):1 − 9. [LI Honglian,CAI Xiangxing. The glacial debris flow of China[J]. Bulletin of Soil and Water Conservation,1989,9(6):1 − 9. (in Chinese with English abstract) DOI: 10.13961/j.cnki.stbctb.1989.06.001
    [37] 徐道明. 西藏波曲河冰湖溃决泥石流的形成与沉积特征[J]. 冰川冻土,1987,9(1):23 − 34. [XU Daoming. Characteristics of debris flow caused by outburst of glacial lakes on the Boqu River in Xizang,China[J]. Journal of Glaciology and Geocryology,1987,9(1):23 − 34. (in Chinese with English abstract)
    [38]

    YAMADA T. Glacier lakes and outburst floods in the Nepal Himalayas[C]. Snow and Glacier Hydrology. IAHS Publication, 1993.

    [39] 贾洋,崔鹏. 西藏冰湖溃决灾害事件极端气候特征[J]. 气候变化研究进展,2020,16(4):395 − 404. [JIA Yang,CUI Peng. The extreme climate background for glacial lakes outburst flood events in Tibet[J]. Climate Change Research,2020,16(4):395 − 404. (in Chinese with English abstract)
    [40] 唐得胜,杨永红,常鸣. 藏东南地区冰湖溃决泥石流灾害链成因分析及防治措施[J]. 水电能源科学,2013,31(12):174 − 178. [TANG Desheng,YANG Yonghong,CHANG Ming. Cause analysis and preventive measures of debris flow disaster-chain due to glacial lake outburst in southeastern Tibet[J]. Water Resources and Power,2013,31(12):174 − 178. (in Chinese with English abstract)
    [41] 李俊,陈宁生,刘美,等. 2000年易贡乡扎木弄沟滑坡型泥石流主控因素分析[J]. 南水北调与水利科技,2018,16(6):187 − 193. [LI Jun,CHEN Ningsheng,LIU Mei,et al. Analysis of main factors for landslide-triggered debris flow in Zhamunong gully on April 9th,2000[J]. South-to-North Water Transfers and Water Science & Technology,2018,16(6):187 − 193. (in Chinese with English abstract) DOI: 10.13476/j.cnki.nsbdqk.2018.0170
    [42] 刘春玲,童立强,祁生文,等. 喜马拉雅山地区冰川湖溃决灾害隐患遥感调查及影响因素分析[J]. 国土资源遥感,2016,28(3):110 − 115. [LIU Chunling,TONG Liqiang,QI Shengwen,et al. Remote sensing investigation and influence factor analysis of glacier lake outburst potential in the Himalayas[J]. Remote Sensing for Land & Resources,2016,28(3):110 − 115. (in Chinese with English abstract)
    [43] 莫艳合,许冲,刘灿. 西藏错那县“2007-08-10”特大泥石流灾害成因及防治对策[J]. 防灾科技学院学报,2008,10(3):43 − 46. [MO Yanhe,XU Chong,LIU Can. The causes and prevention countermeasures of 2007-08-10 large-scale debris flow hazard in Cuona County,Tibet[J]. Journal of Institute of Disaster-Prevention Science and Technology,2008,10(3):43 − 46. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2008.03.009
    [44] 刘晶晶,唐川,程尊兰,等. 气温对西藏冰湖溃决事件的影响[J]. 吉林大学学报(地球科学版),2011,41(4):1121 − 1129. [LIU Jingjing,TANG Chuan,CHENG Zunlan,et al. Impact of temperature on glacier-lake outbursts in Tibet[J]. Journal of Jilin University (Earth Science Edition),2011,41(4):1121 − 1129. (in Chinese with English abstract)
    [45]

    KÄÄB A,LEINSS S,GILBERT A,et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience,2018,11(2):114 − 120. DOI: 10.1038/s41561-017-0039-7

    [46] 王欣, 刘时银, 丁永建. 中国喜马拉雅山冰碛湖溃决灾害评价方法与应用研究[M]. 北京: 科学出版社, 2016

    WANG Xin, LIU Shiyin, DING Yongjian. Study on evaluation method and application of moraine lake burst disaster in Himalayas of China[M]. Beijing: Science Press, 2016. (in Chinese)

    [47] 王欣,刘琼欢,蒋亮虹,等. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析[J]. 冰川冻土,2015,37(3):570 − 579. [WANG Xin,LIU Qionghuan,JIANG Lianghong,et al. Characteristics and influence factors of glacier surface flow velocity in the Everest region,the Himalayas derived from ALOS/PALSAR images[J]. Journal of Glaciology and Geocryology,2015,37(3):570 − 579. (in Chinese with English abstract)
    [48] 李林凤,李开明. 石羊河流域冰川变化与地形因子的关系探究[J]. 冰川冻土,2019,41(5):1026 − 1035. [LI Linfeng,LI Kaiming. Study on the relationship between glacier change and topographic factors in the Shiyang River Basin[J]. Journal of Glaciology and Geocryology,2019,41(5):1026 − 1035. (in Chinese with English abstract)
    [49]

    ABDULLAH T,ROMSHOO S A,RASHID I. The satellite observed glacier mass changes over the Upper Indus Basin during 2000-2012[J]. Scientific Reports,2020,10(1):14285. DOI: 10.1038/s41598-020-71281-7

    [50] 杨针娘. 中国冰川水资源[M]. 兰州: 甘肃科学技术出版社, 1991

    YANG Zhenniang. Glacier water resources in China[M]. Lanzhou: Gansu Science & Technology Press, 1991. (in Chinese)

    [51] 冀琴,刘睿,杨太保. 1990—2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究,2020,39(10):2403 − 2414. [JI Qin,LIU Rui,YANG Taibao. Glacier variations in the Himalayas during 1990-2015[J]. Geographical Research,2020,39(10):2403 − 2414. (in Chinese with English abstract) DOI: 10.11821/dlyj020190283
    [52] 刘时银, 蒲健辰, 邓晓峰. 中国冰川图鉴[M]. 上海: 上海科学普及出版社, 2014

    LIU Shiyin, PU Jianchen, DENG Xiaofeng. Glaciers and glacial landscapes in China[M]. Shanghai: Shanghai Popular Science Press, 2014. (in Chinese)

    [53]

    KOTLYAKOV V M,ROTOTAEVA O V,NOSENKO G A. The September 2002 kolka glacier catastrophe in north Ossetia,Russian federation:Evidence and analysis[J]. Mountain Research and Development,2004,24(1):78 − 83. DOI: 10.1659/0276-4741(2004)024[0078:TSKGCI]2.0.CO;2

    [54]

    HAEBERLI W,HUGGEL C,KÄÄB A,et al. The Kolka-Karmadon rock/ice slide of 20 September 2002:An extraordinary event of historical dimensions in North Ossetia,Russian Caucasus[J]. Journal of Glaciology,2004,50(171):533 − 546. DOI: 10.3189/172756504781829710

    [55] 杜军,路红亚,建军. 1961—2010年西藏极端气温事件的时空变化[J]. 地理学报,2013,68(9):1269 − 1280. [DU Jun,LU Hongya,JIAN Jun. Variations of extreme air temperature events over Tibet from 1961 to 2010[J]. Acta Geographica Sinica,2013,68(9):1269 − 1280. (in Chinese with English abstract) DOI: 10.11821/dlxb201309010
    [56] 段安民,肖志祥,吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展,2016,12(5):374 − 381. [DUAN Anmin,XIAO Zhixiang,WU Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Climate Change Research,2016,12(5):374 − 381. (in Chinese with English abstract)
    [57]

    GAO J,YAO T D,MASSON-DELMOTTE V,et al. Collapsing glaciers threaten Asia ’s water supplies[J]. Nature,2019,565(7737):19 − 21. DOI: 10.1038/d41586-018-07838-4

    [58] 蒲健辰,姚檀栋,王宁练,等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土,2004,26(5):517 − 522. [PU Jianchen,YAO Tandong,WANG Ninglian,et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century[J]. Journal of Glaciology and Geocryology,2004,26(5):517 − 522. (in Chinese with English abstract)
    [59] 刘建康,程尊兰,郭芬芬,等. 藏东南典型冰湖溃决危险性分析[J]. 灾害学,2011,26(2):45 − 49. [LIU Jiankang,CHENG Zunlan,GUO Fenfen,et al. Analysis on risk of glacier-lake outburst in southeastern Tibet[J]. Journal of Catastrophology,2011,26(2):45 − 49. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2011.02.009
    [60] 张宁宁,何元庆,和献中,等. 玉龙雪山冰川崩塌成因分析[J]. 山地学报,2007,25(4):412 − 418. [ZHANG Ningning,HE Yuanqing,HE Xianzhong,et al. The analysis of icefall at Mt. Yulong[J]. Journal of Mountain Science,2007,25(4):412 − 418. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.04.005
    [61]

    SHEN Y P. A giant avalanche on K2 mount,Karakorum[J]. GeoJournal,1991,25(2):249 − 254.

    [62] 孙美平,刘时银,姚晓军,等. 2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害[J]. 冰川冻土,2014,36(1):158 − 165. [SUN Meiping,LIU Shiyin,YAO Xiaojun,et al. The cause and potential hazard of glacial lake outburst flood occurred on July 5,2013 in Jiali County,Tibet[J]. Journal of Glaciology and Geocryology,2014,36(1):158 − 165. (in Chinese with English abstract)
    [63] 刘时银,姚晓军,郭万钦,等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报,2015,70(1):3 − 16. [LIU Shiyin,YAO Xiaojun,GUO Wanqin,et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica,2015,70(1):3 − 16. (in Chinese with English abstract) DOI: 10.11821/dlxb201501001
    [64] 崔鹏,陈容,向灵芝,等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展,2014,10(2):103 − 109. [CUI Peng,CHEN Rong,XIANG Lingzhi,et al. Risk analysis of mountain hazards in Tibetan Plateau under global warming[J]. Progressus Inquisitiones DE Mutatione Climatis,2014,10(2):103 − 109. (in Chinese with English abstract)
    [65] 崔鹏,贾洋,苏凤环,等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊,2017,32(9):985 − 992. [CUI Peng,JIA Yang,SU Fenghuan,et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences,2017,32(9):985 − 992. (in Chinese with English abstract) DOI: 10.16418/j.issn.1000-3045.2017.09.008
    [66] 崔鹏,马东涛,陈宁生,等. 冰湖溃决泥石流的形成、演化与减灾对策[J]. 第四纪研究,2003,23(6):621 − 628. [CUI Peng,MA Dongtao,CHEN Ningsheng,et al. The initiation,motion and mitigation of debris flow caused by glacial lake outburst[J]. Quaternary Sciences,2003,23(6):621 − 628. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-7410.2003.06.005
    [67] 朱颖彦,杨志全,Steve ZOU,等. 中巴喀喇昆仑公路冰川灾害[J]. 公路交通科技,2014,31(11):51 − 59. [ZHU Yingyan,YANG Zhiquan,ZOU S,et al. Glacier geo-hazards along China- Pakistan international karakoram highway[J]. Journal of Highway and Transportation Research and Development,2014,31(11):51 − 59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-0268.2014.11.009
    [68] 刘传正. 雅鲁藏布江色东普沟崩滑-碎屑流堵江堰塞湖[J]. 中国地质灾害与防治学报,2018,29(6):7. [LIU Chuanzheng. Landslide-debris flow in Sedongpu gully of the Yarlung Zangbo River blocks the dammed lake[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):7. (in Chinese with English abstract)
    [69] 刘传正,吕杰堂,童立强,等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质,2019,46(2):219 − 234. [LIU Chuanzheng,LYU Jietang,TONG Liqiang,et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu Basin along Yarlung Zangbo River in Tibet[J]. Geology in China,2019,46(2):219 − 234. (in Chinese with English abstract)
    [70] 赵永辉. 中国西藏雅鲁藏布江色东普沟滑坡-堵江堰塞湖事件研究[J]. 河北地质大学学报,2020,43(3):31 − 37. [ZHAO Yonghui. Study on the barrier lake event for landslide-river blocking of sedongpu valley on Yarlung Zangbo River in Tibet of China[J]. Journal of Hebei GEO University,2020,43(3):31 − 37. (in Chinese with English abstract)
    [71]

    JIA H C,CHEN F,PAN D H. Disaster chain analysis of avalanche and landslide and the river blocking dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018[J]. International Journal of Environmental Research and Public Health,2019,16(23):4707. DOI: 10.3390/ijerph16234707

    [72] 万佳威,褚宏亮,李滨,等. 西藏嘉黎断裂带沿线高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报,2021,32(3):51 − 60. [WAN Jiawei,CHU Hongliang,LI Bin,et al. Characteristics,types,main causes and development of high-position geohazard chains along the Jiali fault zone,Tibet,China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):51 − 60. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-07
    [73] 周路旭,刘建康,李元灵,等. 川藏交通廊道龙利空泽错冰碛湖溃决危险性评价[J]. 地理与地理信息科学,2020,36(6):32 − 39. [ZHOU Luxu,LIU Jiankang,LI Yuanling,et al. Outburst risk assessment of longlikongze moraine lake in Sichuan-Tibet traffic corridor[J]. Geography and Geo-Information Science,2020,36(6):32 − 39. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-0504.2020.06.006
    [74] 胡桂胜,陈宁生,邓明枫,等. 西藏林芝地区泥石流类型及形成条件分析[J]. 水土保持通报,2011,31(2):193 − 197. [HU Guisheng,CHEN Ningsheng,DENG Mingfeng,et al. Classification and initiation conditions of debris flows in Linzhi area,Tibet[J]. Bulletin of Soil and Water Conservation,2011,31(2):193 − 197. (in Chinese with English abstract) DOI: 10.13961/j.cnki.stbctb.2011.02.010
    [75] 吕儒仁,李德基. 西藏波密冬茹弄巴的冰雪融水泥石流[J]. 冰川冻土,1989,11(2):148 − 160. [LYU Ruren,LI Deji. Ice-snow-melt water debris flows in the dongru longba (gully) Bomi County,Xizang (Tibet)[J]. Journal of Glaciology and Geocryology,1989,11(2):148 − 160. (in Chinese with English abstract)
    [76] 韩金良,吴树仁,汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang,WU Shuren,WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2007.06.003
    [77] 张田田,殷跃平,李滨,等. 西藏波密茶隆隆巴曲高位地质灾害类型及发育特征[J]. 中国地质灾害与防治学报,2021,32(3):9 − 16. [ZHANG Tiantian,YIN Yueping,LI Bin,et al. Types and development characteristics of high geological disasters in Chalonglongbaqu gully,Bomi,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):9 − 16. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02
    [78] 邹子南,王运生,辛聪聪,等. 雅鲁藏布大峡谷高位岩质崩塌影响因素分析[J]. 中国地质灾害与防治学报,2019,30(1):20 − 29. [ZOU Zinan,WANG Yunsheng,XIN Congcong,et al. Analysis on the factors influencing the high level rock avalanches in the Yarlung Zangbo Grand Canyon[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):20 − 29. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.03
    [79] 张晓宇,杜世回,孟祥连,等. 茶隆隆巴曲山地灾害特征及冰崩碎屑流致灾风险研究[J]. 工程地质学报,2021,29(2):435 − 444. [ZHANG Xiaoyu,DU Shihui,MENG Xianglian,et al. Railway disaster risk due to mountain disasters at Chalong-Longbaqu gully[J]. Journal of Engineering Geology,2021,29(2):435 − 444. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2021-0119
    [80] 汤明高, 王李娜, 刘昕昕, 等. 青藏高原冰崩隐患发育分布规律及危险性[J/OL]. 地球科学, 2021: 1 − 15. (2021-07-05). https://kns.cnki.net/kcms/detail/42.1874.P.20210702.1803.006.html.

    TANG Minggao, WANG Lina, LIU Xinxin, et al. Distribution and risk of ice avalanche hazards in Tibetan Plateau[J/OL]. Earth Science, 2021: 1 − 15. (2021-07-05). (in Chinese with English abstract)

    [81] 李壮,李滨,高杨,等. 雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译[J]. 中国地质灾害与防治学报,2021,32(3):33 − 41. [LI Zhuang,LI Bin,GAO Yang,et al. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully,downstream of Yarlung Zangbo River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):33 − 41. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-05
    [82] 刘勇,史正涛. 基于时序InSAR的雅鲁藏布江色东普流域冰崩碎屑流运动区地面变形研究[J]. 云南师范大学学报(自然科学版),2021,41(6):63 − 70. [LIU Yong,SHI Zhengtao. Study on the surface deformation of ice avalanche debris flow movement area in sedongpu basin of Yarlung Zangbo River based on time series InSAR[J]. Journal of Yunnan Normal University (Natural Sciences Edition),2021,41(6):63 − 70. (in Chinese with English abstract)
    [83] 董继红,杨成生,张本浩,等. 基于SAR偏移量跟踪技术的加拉白垒峰典型冰川位移监测[J]. 甘肃科学学报,2021,33(2):1 − 7. [DONG Jihong,YANG Chengsheng,ZHANG Benhao,et al. Typical glacier displacement monitoring of gyala peri based on SAR offset tracking technology[J]. Journal of Gansu Sciences,2021,33(2):1 − 7. (in Chinese with English abstract) DOI: 10.16468/j.cnki.issn1004-0366.2021.02.001
    [84] 雷添杰,李长春,何孝莹. 无人机航空遥感系统在灾害应急救援中的应用[J]. 自然灾害学报,2011,20(1):178 − 183. [LEI Tianjie,LI Changchun,HE Xiaoying. Application of aerial remote sensing of pilotless aircraft to disaster emergency rescue[J]. Journal of Natural Disasters,2011,20(1):178 − 183. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2011.0128
    [85] 左洪,裴顺平,何建坤,等. 冰川地震学研究进展[J]. 地球与行星物理论评,2021,52(3):280 − 290. [ZUO Hong,PEI Shunping,HE Jiankun,et al. Research progress of the glacier seismology[J]. Reviews of Geophysics and Planetary Physics,2021,52(3):280 − 290. (in Chinese with English abstract) DOI: 10.19975/j.dqyxx.2021-002
    [86] 陈宇乔. 大陆型山谷冰川冰震的规律和影响因素—以老虎沟12号冰川为例[J]. 海洋学研究,2018,36(3):50 − 56. [CHEN Yuqiao. Rule and affectingfactors of seismic events in valley glacier with continental features:A case studyon Laohugou Glacier No. 12[J]. Journal of Marine Sciences,2018,36(3):50 − 56. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-909X.2018.03.005
    [87]

    MURAYAMA T,KANAO M,YAMAMOTO M Y,et al. Infrasound signals and their source location inferred from array deployment in the lützow-holm bay region,east Antarctica:January-June 2015[J]. International Journal of Geosciences,2017,8(2):181 − 188. DOI: 10.4236/ijg.2017.82007

    [88]

    ASMING V E,BARANOV S V,VINOGRADOV A N,et al. Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions[J]. Acoustical Physics,2016,62(5):583 − 592. DOI: 10.1134/S1063771016040035

    [89]

    MAYER S,VAN HERWIJNEN A,ULIVIERI G,et al. Evaluating the performance of an operational infrasound avalanche detection system at three locations in the Swiss Alps during two winter seasons[J]. Cold Regions Science and Technology,2020,173:102962. DOI: 10.1016/j.coldregions.2019.102962

    [90]

    THÜRING T,SCHOCH M,VAN HERWIJNEN A,et al. Robust snow avalanche detection using supervised machine learning with infrasonic sensor arrays[J]. Cold Regions Science and Technology,2015,111:60 − 66. DOI: 10.1016/j.coldregions.2014.12.014

    [91]

    MARGRETH S,FAILLETTAZ J,FUNK M,et al. Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif[J]. Cold Regions Science and Technology,2011,69(2/3):194 − 201.

    [92]

    HUMLUM O,HANSEN B U,NIELSEN N,et al. Meteorological Observations in 2001 at the Arctic Station,Qeqertarsuaq (69°15'N),Central West Greenland/Measuring calving in Icefall Lake,SE Greenland,using a “Diver” pressure transducer with a built-in datalogger[J]. Geografisk Tidsskrift-Danish Journal of Geography,2002,102(1):103 − 109. DOI: 10.1080/00167223.2002.10649469

    [93]

    VINOGRADOV Y A,ASMING V E,BARANOV S V,et al. Seismic and infrasonic monitoring of glacier destruction:a pilot experiment on Svalbard[J]. Seismic Instruments,2015,51(1):1 − 7. DOI: 10.3103/S0747923915010119

图(5)  /  表(1)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  359
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2022-02-05
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回