ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价

朱彦鹏, 施多邦, 段新国, 吴林平, 王桢, 吕向向, 滕振银

朱彦鹏,施多邦,段新国,等. 某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价[J]. 中国地质灾害与防治学报,2023,34(2): 111-119. DOI: 10.16031/j.cnki.issn.1003-8035.202202012
引用本文: 朱彦鹏,施多邦,段新国,等. 某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价[J]. 中国地质灾害与防治学报,2023,34(2): 111-119. DOI: 10.16031/j.cnki.issn.1003-8035.202202012
ZHU Yanpeng,SHI Duobang,DUAN Xinguo,et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 111-119. DOI: 10.16031/j.cnki.issn.1003-8035.202202012
Citation: ZHU Yanpeng,SHI Duobang,DUAN Xinguo,et al. Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 111-119. DOI: 10.16031/j.cnki.issn.1003-8035.202202012

某砂岩顺层挖方高边坡治理工程施工期变形特征与工程效果评价

基金项目: 国家自然科学基金(51978321);教育部长江学者创新团队支持计划项目(IRT_17R51)
详细信息
    作者简介:

    朱彦鹏(1960-),男,甘肃庆阳人,教授,博士生导师,主要从事支挡结构方面的科研工作。E-mail:zhuypl@163.com

    通讯作者:

    施多邦(1995-),男,甘肃永登人,硕士研究生,主要从事支挡结构方面的研究。E-mail:1791170508@qq.com

  • 中图分类号: P642.22

Deformation characteristics and engineering effect evaluation of a sandstone bedding excavation high slope treatment project during construction

  • 摘要: 为了研究砂岩顺层挖方高边坡支护工程施工期间及施工后的边坡变形规律和治理工程效果,文章依托北京某边坡支护项目,对边坡在施工过程中的锚索轴力及边坡位移进行监测分析,结果表明:锚索轴力变化主要分为加速损失阶段、波动阶段以及持续稳定趋变阶段;锚索轴力变化可以很好地反映坡体内力的变化情况;坡顶水平位移和竖向沉降的变化,可以反映边坡深层位移的变化规律和边坡的稳定性;框架预应力锚索抗滑桩组合支护体系应用于砂岩顺层挖方高边坡的支护时,具有较好的支护效果。采用有限元分析软件,模拟该砂岩顺层挖方高边坡的开挖支护过程发现:随着边坡的开挖,坡体位移沿着软弱滑动面向坡角发展,边坡稳定性降低。将监测结果与模拟结果对比分析,发现二者的变化趋势基本一致,证明了该边坡的支护体系能有效地控制边坡的变形。研究成果能为以后类似边坡的设计施工提供参考。
    Abstract: In order to study the slope deformation law during and after the construction of the sandstone bed-cut high slope support project and the effect of the treatment project, this paper relies on a slope support project in Beijing to analyze the axial force of the anchor cable and the slope during the construction process. The slope displacement is monitored and analyzed, and the results show that the change of the axial force of the anchor cable is mainly divided into the acceleration loss stage, the fluctuation stage and the continuous stable trend stage; the change of the axial force of the anchor cable can well reflect the change of the internal force of the slope; the change of horizontal displacement and vertical settlement can reflect the change law of the deep displacement of the slope and the stability of the slope, has a better support effect. The finite element analysis software was used to simulate the excavation and support process of the sandstone-layered high slope. It was found that with the excavation of the slope, the displacement of the slope developed along the slope angle of the weak sliding surface, and the stability of the slope decreased. The monitoring results and the simulation results are compared and analyzed, and it is found that the change trends of the two are basically the same, which proves that the slope support system can effectively control the deformation of the slope. The research results can provide reference for the design and construction of similar slopes in the future.
  • 图  1   边坡加固前照片

    Figure  1.   Photos before slope reinforcement

    图  2   高边坡施工现场照片

    Figure  2.   Photo of high slope construction site

    图  3   测点立面图布置图

    Figure  3.   Elevation layout of measuring points

    图  4   监测点剖面布置图

    Figure  4.   Monitoring point profile layout

    图  5   坡顶锚索轴力时程曲线图

    Figure  5.   Time-history curve of the axial force of the anchor cable on the slope top

    图  6   坡顶水平位移时程曲线图

    Figure  6.   Time history curve of horizontal displacement of slope top

    图  7   坡顶沉降位移时程曲线图

    Figure  7.   Time history curve of slope top settlement and displacement

    图  8   坡顶水平位移与锚索轴力时程关系曲线

    Figure  8.   The time-history relationship curve between the horizontal displacement of the slope top and the axial force of the anchor cable

    图  9   有限元数值模型

    Figure  9.   Finite element numerical model

    图  10   前四级支护完毕坡体变形云图

    Figure  10.   Cloud map of slope deformation after the first four levels of support are completed

    图  11   前六级支护完毕坡体变形云图

    Figure  11.   Cloud map of slope deformation after the first six levels of support are completed

    图  12   抗滑桩施工完成后坡体变形云图

    Figure  12.   Cloud map of slope deformation after the completion of anti-sliding pile construction

    图  13   不同工况下边坡稳定性系数

    Figure  13.   Slope stability coefficient under different working conditions

    图  14   坡顶锚索模拟值与监测值对比分析图

    Figure  14.   Comparison and analysis diagram of simulated and monitored values of anchor cables on the top of the slope

    图  15   坡顶水平位移模拟值与监测值对比分析图

    Figure  15.   Comparison and analysis diagram of slope-top horizontal displacement simulation value and monitoring value

    图  16   坡顶沉降模拟值与监测值对比分析图

    Figure  16.   Comparison analysis diagram of slope-top settlement simulation value and monitoring value

    表  1   支护参数及说明

    Table  1   Support parameters and description

    坡级锚索支护参数
    八级坡6Φ15.2,l=26 m,l锚=10 m,设计轴力672 kN
    七级坡6Φ15.2,l=28 m,l锚=10 m,设计轴力672 kN
    六级坡6Φ15.2, l=27 m,l锚=10 m,设计轴力672 kN
    五级坡6Φ15.2,l=22 m,l锚=10 m,设计轴力672 kN
    四级坡8Φ15.2,l=47.5 m, l锚=10 m,设计轴力672 kN
    三级坡8Φ15.2,l=34.5 m,l锚=10 m,设计轴力672 kN
    二级坡8Φ15.2,l=31 m,l锚=10 m,设计轴力672 kN
    抗滑桩8Φ15.2,l=41 m,l锚=10 m,设计轴力672 kN
    下载: 导出CSV

    表  2   场地土层主要物理力学参数

    Table  2   The main physical and mechanical parameters of the soil layer of the site

    材料名称厚度
    /m
    重度
    /(kN·m−3
    泊松比
    黏聚力
    /kPa
    内摩擦角
    /(°)
    碳质砂岩>8027.20.2518.038.0
    滑面/24.50.3011.028.0
    薄弱面/20.00.2512.030.0
    下载: 导出CSV

    表  3   结构主要计算参数表

    Table  3   Structure main calculation parameter table

    参数抗滑桩自由段锚固段框架梁
    重度
    /(kN·m−3
    2567.60×10639×10625
    弹性模量
    /(kN·m−2
    3.25×107弹性模量与
    截面的乘积为
    1.42×105 kN
    2.06×1083.25×107
    尺寸3 m×2 m直径0.13 m0.18 m×0.16 m
    下载: 导出CSV

    表  4   具体施工步骤

    Table  4   Specific construction steps

    步骤说明
    工况1初始地应力分析
    工况2八级坡开挖
    工况3八级坡施工框架预应力锚索
    工况4七级坡开挖
    工况5七级坡施工框架预应力锚索
    工况6六级坡开挖
    工况7六级坡施工框架预应力锚索
    工况8五级坡开挖
    工况9五级坡施工框架预应力锚索
    工况10四级坡开挖
    工况11四级坡施工框架预应力锚索
    工况12三级坡开挖
    工况13三级坡施工框架预应力锚索
    工况14二级坡开挖
    工况15二级坡施工框架预应力锚索抗滑桩施工
    工况16施工抗滑桩预应力锚索
    工况17开挖到坡底
    下载: 导出CSV
  • [1] 宛良朋, 汤开宇, 李建林, 等. 深部软弱岩体置换体对岩质边坡支护效果分析[J]. 岩土力学, 2015, 36(增刊1): 476 − 480

    WAN Liangpeng, TANG Kaiyu, LI Jianlin, et al. Supporting effect analysis of deep weak rock mass replacement for rock slope[J]. Rock and Soil Mechanics, 2015, 36(Sup 1): 476 − 480. (in Chinese with English abstract)

    [2] 邓安. 多锚点抗滑桩在北京戒台寺滑坡治理工程中的应用研究[D]. 北京: 铁道部科学研究院, 2007

    DENG An. Application of multi anchor-points anti-slide pile in controlling jietaisi temple landslide in Beijing[D]. Beijing: Academy of Sciences of the Ministry of Railways, 2007. (in Chinese with English abstract)

    [3] 朱志刚. 北京双大路碎裂岩质滑坡灾变机理及控制技术[D]. 北京: 中国地质大学(北京), 2012

    ZHU Zhigang. Mechanism and controlling techniques of landslide in cataclastic rock mass of shuangda road in Beijing[D]. Beijing: China University of Geosciences, 2012. (in Chinese with English abstract)

    [4] 成永刚. 滑坡的区域性分布规律与防治方案研究[D]. 成都: 西南交通大学, 2013

    CHENG Yonggang. Study on regional distribution discipline of landslides and prevention programme[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese with English abstract)

    [5] 蒲凯超. 某顺层岩质边坡开挖支护过程及其稳定性响应[D]. 西安: 西安科技大学, 2020

    PU Kaichao. The excavation and support process of a bedding rock slope and its stability response[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)

    [6] 廖海军,祁生文,杨存进,等. 北京市戒台寺滑坡发生发展机理研究[J]. 工程地质学报,2007,15(5):585 − 592. [LIAO Haijun,QI Shengwen,YANG Cunjin,et al. Mechanism for initiation and development of Jietai temple landslide in Beijing[J]. Journal of Engineering Geology,2007,15(5):585 − 592. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2007.05.002
    [7] 汪维. 门头沟深挖顺层软岩高边坡支护结构多目标优化设计研究[D]. 成都: 西南交通大学, 2020

    WANG Wei. Research on multi-objective optimization design of support structure of high soft rock slope in Mentougou deep excavation[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese with English abstract)

    [8] 孟祥铭. 现代监测手段在黑岱沟露天矿边坡中的应用研究[D]. 包头: 内蒙古科技大学, 2012

    MENG Xiangming. Research on modern monitoring means and its application for Heidaigou open pit slope[D]. Baotou: Inner Mongolia University of Science & Technology, 2012. (in Chinese with English abstract)

    [9] 黄秋香, 汪家林, 邓建辉. 基于多点位移计监测成果的坡体变形特征分析[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2667 − 2673

    HUANG Qiuxiang, WANG Jialin, DENG Jianhui. Slope deformation character analysis based on monitoring results of multiple multi-point borehole extensometer[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 1): 2667 − 2673. (in Chinese with English abstract)

    [10] 李京榜, 朱彦鹏, 叶帅华, 等. 某二级高边坡健康监测试验研究与分析[J]. 岩土工程学报, 2018, 40(增刊1): 129 − 134

    LI Jingbang, ZHU Yanpeng, YE Shuaihua, et al. Health monitoring tests on a secondary high slope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 1): 129 − 134. (in Chinese with English abstract)

    [11] 朱彦鹏, 李京榜, 叶帅华, 等. 基于锚索格构梁支护结构的高边坡健康监测研究与分析[J]. 工程力学, 2015, 32(增刊1): 271 − 276

    ZHU Yanpeng, LI Jingbang, YE Shuaihua, et al. Health monitoring and analysis on high slope anchor lattice beam supporting structure[J]. Engineering Mechanics, 2015, 32(Sup 1): 271 − 276. (in Chinese with English abstract)

    [12] 高大水,曾勇. 三峡永久船闸高边坡锚索预应力状态监测分析[J]. 岩石力学与工程学报,2001,20(5):653 − 656. [GAO Dashui,ZENG Yong. Monitoring analysis on prestress state of anchor cable of high slope of the tgp permanent shiplocks[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(5):653 − 656. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2001.05.010
    [13] 王旭日. 某泥岩砂岩互层高边坡监测与稳定性分析[D]. 兰州: 兰州理工大学, 2016

    WANG Xuri. The monitoring and stability analysis of a interbedding high slope of mudstone and sandstone[D]. Lanzhou: Lanzhou University of Technology, 2016. (in Chinese with English abstract)

    [14] 关松,谭运坤,赵娜. 锦屏一级电站高陡顺层边坡支护内部安全监测分析[J]. 三峡大学学报(自然科学版),2013,35(2):16 − 19. [GUAN Song,TAN Yunkun,ZHAO Na. Monitoring analysis of internal safety for high-steep bedding slope supporting in Jinping I hydropower station[J]. Journal of China Three Gorges University (Natural Sciences),2013,35(2):16 − 19. (in Chinese with English abstract)
    [15] 周勇,王旭日,朱彦鹏,等. 强风化软硬互层岩质高边坡监测与数值模拟[J]. 岩土力学,2018,39(6):2249 − 2258. [ZHOU Yong,WANG Xuri,ZHU Yanpeng,et al. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock[J]. Rock and Soil Mechanics,2018,39(6):2249 − 2258. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2016.2026
    [16] 陶志刚,罗森林,朱淳,等. 滑坡动态力学监测及破坏过程案例分析[J]. 工程地质学报,2022,30(1):177 − 186. [TAO Zhigang,LUO Senlin,ZHU Chun,et al. Dynamic mechanical monitoring of landslide and case analysis of failure process[J]. Journal of Engineering Geology,2022,30(1):177 − 186. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2021-0027
    [17] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报,2009,28(6):1081 − 1090. [HE Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1081 − 1090. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.06.001
    [18] 刘志祥, 张海清. PLAXIS 3D基础教程[M]. 北京: 机械工业出版社, 2015

    LIU Zhixiang, ZHANG Haiqing. PLAXIS 3D basic course[M]. Beijing: China Machine Press, 2015. (in Chinese)

    [19] 米海珍, 胡燕妮, 李春燕. 土木工程专业本科系列教材 弹性力学 (第2版)[M]. 北京: 清华大学出版社, 2004.

    MI Haizhen, HU Yanni, LI Chunyan. A series of undergraduate textbooks for civil engineeringElastic mechanics (2nd Edition), [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

  • 期刊类型引用(7)

    1. 贾丽娜,李瑞冬,魏新平. 基于InSAR技术的黄土滑坡及周边斜坡变形识别. 地下水. 2023(02): 121-124 . 百度学术
    2. 何丽,吴先谭,陈欣,罗芳,何政伟,薛东剑,白文倩,康桂川,张雨祥. 基于SBAS-InSAR的西宁市滑坡识别和形变监测分析. 物探化探计算技术. 2023(06): 812-823 . 百度学术
    3. 裴小龙,杨瀚文,宋东阳,杨斌,田野. 雅砻江中游楞古水电站夏日滑坡发育特征及稳定性分析. 中国地质灾害与防治学报. 2022(01): 75-82 . 本站查看
    4. 吴明辕,罗明,刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别——以滇西北地区为例. 中国地质灾害与防治学报. 2022(03): 84-93 . 本站查看
    5. 郭富赟,周小龙,火飞飙,张毅. 舟曲断裂带滑坡灾害效应与防治对策研究. 中国地质灾害与防治学报. 2022(06): 80-89 . 本站查看
    6. 蒲虹宇,张立峰,何毅,陈宝山,陈毅,何旭. 甘肃通渭黄土滑坡二维形变时序监测. 中国地质灾害与防治学报. 2022(06): 114-124 . 本站查看
    7. 戴嵩,魏冠军,梁斌. 控制点布设方案对无人机精度测量的影响及其应用——以西北地区某尾矿坝地表沉降监测为例. 中国地质灾害与防治学报. 2021(05): 113-120 . 本站查看

    其他类型引用(3)

图(16)  /  表(4)
计量
  • 文章访问数:  5086
  • HTML全文浏览量:  2455
  • PDF下载量:  396
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-05-27
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回