ISSN 1003-8035 CN 11-2852/P

    贵州松桃长冲组滑坡形成机理分析

    穆启超, 王万迁, 王琦, 严景题

    穆启超,王万迁,王琦,等. 贵州松桃长冲组滑坡形成机理分析[J]. 中国地质灾害与防治学报,2023,34(3): 40-47. DOI: 10.16031/j.cnki.issn.1003-8035.202202023
    引用本文: 穆启超,王万迁,王琦,等. 贵州松桃长冲组滑坡形成机理分析[J]. 中国地质灾害与防治学报,2023,34(3): 40-47. DOI: 10.16031/j.cnki.issn.1003-8035.202202023
    MU Qichao,WANG Wanqian,WANG Qi,et al. Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 40-47. DOI: 10.16031/j.cnki.issn.1003-8035.202202023
    Citation: MU Qichao,WANG Wanqian,WANG Qi,et al. Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 40-47. DOI: 10.16031/j.cnki.issn.1003-8035.202202023

    贵州松桃长冲组滑坡形成机理分析

    基金项目: 贵州省县(市、区)地质灾害详细调查与风险评价项目(GZMC-ZG20201064)
    详细信息
      作者简介:

      穆启超(1983-),男,贵州黎平县人,硕士,高级工程师,主要从事矿山地质环境恢复治理、地质灾害防治、地质灾害调查评价方面的研究。 E-mail:888mqc@163.com

    • 中图分类号: P642.22

    Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou

    • 摘要: 贵州省属于典型的岩溶山区,第四系覆盖层空间不均匀,具体表现在坡体前缘到中部浅表层为黏性土,后缘为碎石土,随着基覆界面的起伏在垂直方向上厚度差异大。近年来因气候变化异常,极端降雨、暴雨的天数增多,导致强降雨过后浅表层突发性的土质滑坡具有较强的群发现象。论文以贵州省松桃县大路镇和平社区长冲组滑坡为研究对象,通过实地调查、工程地质钻探、岩土试验以及FLAC3D软件模拟等手段,探究降雨前后该滑坡外形特征、岩土结构特征和变形破坏历程,以此来解析该类滑坡的变形破坏过程及发生机理。结果表明:(1)该滑坡为推移式滑坡,其特殊的地形地貌与地层岩性为滑坡发生提供内在因素;(2)降雨是滑坡的主要诱发因素,滑坡发生过程可总结为后缘饱和推压阶段-暂态饱和区扩散变形演进阶段-前缘破坏临空阶段-整体破坏阶段;(3)该滑坡发生的机理主要是在降水因素诱发渗透力变化与坡体重度变化共同作用下导致滑坡体失稳变形。该项探索能为我们更清楚的认识降雨型滑坡早期识别因子以及能够更好更快进行管控和治理提供一定的理论基础。
      Abstract: Guizhou Province is a mountainous region with typical karst topography where the quaternary overburden layer is unevenly distributed, with clayey soil on the shallow surface layer from the front edge to the middle of the slope body and gravelly soil at the rear edge. This geological characteristic, combined with the increase of extreme rainfall and heavy rainfall due to abnormal climate change in recent years, has resulted in a rise of sudden earth landslides in the shallow surface layer after strong rainfall. To investigate this phenomenon, the Changchong Group landslide in Heping Community, Dalu Town, Songtao County, Guizhou Province was studied through field tracking survey, geological drilling, geotechnical testing, and FLAC3D software simulation. The study uses various methods to investigate the shape and geotechnical structure characteristics, and deformation and damage history of the landslide before and after rainfall, in order to analyze the failure process of such landslides and their occurrence mechanism. Results show that: (1) The landslide is a thrust load-caused landslide, and its unique terrain and lithology characteristics provide intrinsic factors for the occurrence of the landslide. (2) Rainfall is the main triggering factor of landslide, and the occurrence process of the landslide can be summarized as follows: a) rear saturated pushing stage, b) transient saturated diffusion and deformation evolution stage, c) front edge overhanging failure stage, and d) overall failure stage. (3) The mechanism of the landslide is mainly due to the combined effect of the changes in permeability induced by precipitation and the slope gravity change, which led to the instability and deformation of the landslide. The study provides insight into the early identification factors of rainfall landslides and provides a theoretical basis for better and faster control and management.
    • 研究表明,降雨是滑坡发生的主要外因之一,由暴雨引发的滑坡约占其总数的90%[1-3]。在南方地区,降雨强度大于200 mm/d时容易诱发大小滑坡[4-6]。原因在于降雨过程中的渗流场改变了孔隙水压力进而影响了土体的有效应力,导致土体骨架变形。

      贵州省是我国碳酸盐岩分布最广、岩溶发育最强的省区之一,占全省总面积的61.9%。由于下伏基岩不透水,或者由于溶蚀裂隙、岩溶管道中的地下水对基覆界面上红黏土的软化,岩溶区残坡积层的含水率常具有反剖面性,残坡积层滑坡频发[7],且具有高度的不确定性。

      本文选取贵州省铜仁市松桃县一处典型堆积层滑坡,深入剖析强降雨条件下滑坡变形全过程,探究滑坡变形历程与降雨入渗过程之间的相关性,并进一步深入探索了这类残坡积层降雨型滑坡的形成机理[8-14]

      本研究区位于贵州省松桃县大路镇和平社区长冲组,属低山侵蚀地貌,在区域构造上,处于扬子准地台之黔北台隆遵义断拱凤冈北北东向构造变形区,东部位于扬子准地台之黔北台隆遵义断拱贵阳复杂变形区,整体位于上洞背斜轴部,受孟溪断层影响,区内岩体节理发育,岩体较为破碎,表层以第四系残坡积物黏性土夹碎石,下覆基岩为寒武系中上统娄山关组白云岩构成,岩层产状125°~144°∠55°~68°,为逆向坡。

      滑坡体平面上呈现“圈椅”状(图13),后缘陡壁明显。前缘高程为461 m,后缘高程约为635 m,相对高差174 m,地形坡度前缓后陡,前缘为缓坡,坡度15°~25°,中后部为陡坡35°~65°,滑坡主滑方向302°,滑坡最大纵长约90 m,平均宽88 m,滑坡厚0.5~11.5 m,平均厚度7.05 m,规模约5.58×104 m3,滑体中部到前部为第四系残坡积黏土夹碎石,碎石含量约10%,碎石块0.3~0.8 cm,碎石成分为白云岩,后部由于紧邻高陡危岩体,存在大量崩坡积碎石,碎石含量47%左右,明显大于中部和前缘;滑床为寒武系中上统娄山关组白云岩(∈3−4l),强-中等风化,节理裂隙发育,岩体破碎,基岩面与斜坡方向一致,为沿着基覆界面的小型土质滑坡。

      图  1  研究区影像图
      Figure  1.  Location map and arial view of the study area
      图  2  研究区平面图
      Figure  2.  Toporgaphic map layout of the study area
      图  3  1-1′工程地质剖面图
      Figure  3.  Longitudinal geological profile for cross-section 1-1′

      本滑坡于2014年7月16日发生初始变形,坡体后缘陡坎处出现L1裂缝,具体特征见表1,8月18日23点发生滑移变形,局部陡坎处出现小规模垮塌。目前滑坡后缘存在2条明显张拉裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约2~20 cm,可见深度约0.2~0.5 m,下错高度约0.1~0.5 m,延伸长度约分布为16 m和18 m,另外后缘还存在一条在本研究区最大规模的裂缝,其呈弧形自后缘一直延伸至前缘,长度约50 m,张开度高达30~60 cm,可见深度最大达到1 m,是因滑动所形成的拉张裂缝和剪切裂缝,可见后缘受滑坡体牵引作用明显。而在滑坡体的中部,也存在多条长度、强度不一的张拉裂缝。前部房屋周围发生剪切裂缝,导致房屋倾斜、受损。

      表  1  变形裂缝统计表
      Table  1.  Summary characteristics of deformation cracks of the studied landslide
      裂隙编号 裂隙方向/(°) 初现日期 发育特征 性质
      L1 33~36 2014-07-16 位于滑坡后缘,第四系黏土与基岩接触面附近,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约4~20 cm,可见深度约0.3~0.5 m,下错高度约0.3~0.5 m,延伸长度约为18 m 张拉
      裂缝
      L2 32~35 2015-08-18 位于滑坡后缘耕地中,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约2~10 cm,可见深度约0.2~0.5 m,下错高度约0.1~0.3 m,延伸长度约为16 m 张拉
      裂缝
      L3 37~42,320~325 2014-07-16 从滑坡后缘呈弧形一直延伸至滑坡前缘,裂缝走向37°~42°转向320°~325°,为滑坡滑动形成的拉张裂缝和剪切裂缝,裂缝张开度约30~60 cm,可见深度约1~1.5 m,下错高度约0.3~0.6 m,延伸长度约为50 m,该裂缝是滑坡规模最大的一条裂缝 张拉、
      剪切裂缝
      L4 32~35 2014-08-17 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约4~14 cm,可见深度约0.4~0.8 m,下错高度约0.1~0.4 m,延伸长度约为15 m 张拉
      裂缝
      L5 45~55 2014-10-31 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约4~15 cm,可见深度约0.5~1 m,下错高度约0.2~0.5 m,延伸长度约为14 m 剪切
      裂缝
      L6 45~55 2015-08-18 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约4~20 cm,可见深度约1~2 m,下错高度约0.3~0.5 m,延伸长度约为25 m 剪切
      裂缝
      L7 320~355 2014-07-16 位于滑坡中部水池东南面,滑坡滑动形成的拉张裂缝,裂缝呈直线形,裂缝张开度约10~20 cm,可见深度约0.2~0.3 cm,延伸长度约15 m 张拉
      裂缝
      L8 35~38 2015-09-19 位于滑坡中部竹林中,滑坡滑动形成的拉张裂缝、剪切裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约20~40 cm,可见深度约0.5~1 m,下错高度约为0.2~0.4 m,延伸长度22 m 张拉
      裂缝
      L9 350~361 2014-07-16 位于滑坡中部竹林中,滑坡滑动形成的剪切裂缝,裂缝呈弧形,裂缝张开度约20~50 cm,可见深度约0.2 m,下错高度约为0.4~0.8 m,延伸长度约20 m 剪切
      裂缝
      L10 322~327 2014-07-18 位于滑坡中前部房屋旁,滑坡滑动形成的剪切裂缝,裂缝呈直线形,裂缝张开度约5~8 cm,可见深度约0.1~0.2 m,延伸长度约10 m 张拉
      裂缝
      L11 320~325 2014-07-16 位于滑坡中前部房屋旁,滑坡滑动形成的剪切裂缝,裂缝呈直线形,裂缝张开度约5~10 cm,可见深度约0.1~0.3 m,延伸长度约15 m 张拉
      裂缝
      下载: 导出CSV 
      | 显示表格

      结合宏观裂缝与勘察结果,分析认为该滑坡所存在的圆弧形裂缝为滑坡初次滑动变形区域,位于中后部,在外因作用下土体发生较大位移变形,初始张拉-剪切裂缝形成,后部土体在失去支撑的情况下发生主动土压破坏,形成与滑向垂直的张拉裂缝。

      (1)地形地貌因素

      滑坡所在斜坡体地形较陡,前缘切坡建房形成2~4 m陡坎,原始坡度较大,15°~30°,且表层第四系覆盖层结构较为松散厚度较小,植被不发育,在雨水等外力作用下,表层松散层易下滑失稳,加之滑坡前缘为陡坎,为滑坡形成提供了剪出空间,有利于滑坡的发生。

      (2)地层岩性控制因素

      滑坡体后缘为陡峭岩质斜坡,主要为白云岩,前缘上覆第四层覆盖层,碎石含量高。胶结度差,滑带为强风化白云岩,呈砂状、碎块状,抗剪强度低。滑床节理裂隙发育,岩体破碎且倾角较陡。这些破碎、松散的碎石,黏聚力低,稳定性较差,滑床又存在倾角,使其易于下滑失稳,而前缘为陡坎,为滑坡形成提供剪出空间。这些因素共同构成了滑坡发生的内在因素。

      (3)降雨因素

      在持续性暴雨影响下,由于滑坡体浅表松散,降水极易下渗,而深部滑体主要是白云岩,为弱透水性,降雨使得地下水位抬高,使滑坡地下水力坡度增大,一方面使得滑体处于饱和状态,容重加大,增加了静水压力效应,另一方面降雨引发的地表水沿张拉裂缝及滑体,下渗入滑带中,使滑带浸润软化,降低其物理力学性质,增加了沿渗流方向的滑动力,即地下水的动水压力效应,最终无法支撑滑体自重而产生下滑力,从而形成滑面。

      (4)人类工程活动改造

      研究区内人类工程活动较强烈,主要体现在坡脚切坡建房,斜坡上开垦耕地,最大切坡高度达4 m。这些工程活动破坏了地表天然植被,加速了降雨对地表的冲刷与下渗,同时切坡开挖改变了天然斜坡的应力分布,提高了滑坡体失稳的可能性。

      通过前述的滑坡变形破坏迹象分析,该滑坡的变形与降雨过程具有较强的协同性,降雨为该滑坡启动的主要诱发因素。为了能够重现降雨对坡体的影响历程,本文选用FLAC3D软件,模拟在强降雨入渗过程中的变形破坏特征,以此来探索降雨型滑坡的变形破坏机理,具体变形可分为4个阶段:

      (1)后缘入渗蠕变阶段:在间歇性降雨和坡向渗流作用下,坡体在较陡的地方出现局部垮塌,并伴有张拉裂缝的生成。如图4(a)所示:坡体后缘由于其碎石含量较大,入渗强烈,加之其后缘坡度较陡,在陡坎处出现向陡坎底部渗流现象,渗透力增强,见图4(a)渗流场矢量,在这一过程中,坡体后缘陡坎处出现小规模的变形,整体存在沉陷现象,且位移量最大,见图4(a)X方向位移;实际后缘坡体变形特征与数值模型试验的坡体变形特征吻合。

      图  4  降雨入渗过程中孔压、变形和位移演化图
      Figure  4.  Distribution of pore pressure, displacement and stress analysis during landslide development stages under precipitation condition (FLAC3D software simulation)

      (2)后缘沉降推压变形阶段:在降雨作用下,坡体后缘继续发生沉降变形,塑性区加大,见图4(b)塑性区,坡体后缘逐渐饱和,渗流场矢量向坡体外部偏移,见图4(b)渗流场矢量,由于后缘坡度较大,在容重加大和渗透力的共同作用下,后缘整体向前出现沉降推压现象,诱发中部坡体发生间歇短期的变形,见图4(b)X方向位移,坡体中部前缘形成不同程度的裂缝。

      (3)入渗饱和优势渗流通道贯通阶段:由于第1、2阶段,坡体出现不同程度的裂缝,增加了坡体中部和前缘的入渗通道,见图4(c)渗流场矢量,也可以看出矢量箭头明显增多,增长,向坡体外部倾斜。整个坡体裂缝液态土体堆积高度不断增加,坡体水平推力增大,加之侧壁土体垮落产生冲击荷载触发二次滑塌中部裂缝迅速扩张,见图4(c)X方向位移,逐渐与基岩上的软弱带贯通形成滑带,但是这种现象在降雨停止后出现一个峰值。

      (4)降雨后的滞后滑移阶段:在降雨停止后,由于降雨入渗的滞后效应,虽然地表的渗流减弱,但是土体内部才刚刚形成比较固定完整的渗流通道,见图4(d)渗流场矢量,坡体裂缝出现逐渐与基岩面上的软弱带形成多条滑带,且在趋于贯通,见图4(d)塑形区,由于后缘的作用逐渐减弱,这种变形也会由于坡体自身的结构和性质被其减缓。

      根据降雨过程和变形特征的模拟分析以及实地跟踪调查总结,本研究区降雨型滑坡的滑动机理为:强降雨使后缘入渗强烈的区域首先达到饱和,发生沉陷和剪切变形,见图5(a)(b)(c),导致坡脚滑体被推剪,坡体裂缝发育由后缘至前缘依次扩张,见图5(e)(f),也正是由于张拉裂缝的生成增强了雨水入渗和排泄能力,导致间歇型降雨作用下暂态地下水位线浮动特征显著,使基覆界面土体饱和时长和暂态水位线下的饱和区层厚从后缘至前缘依次递减,见图5(b),饱和区土体和水之间发生物理化学变化反应土体被软化,导致前缘至后缘土体强度不同程度的降低,坡体的抗滑力下降。软弱带土体持续剪切变形,土体饱和抗剪强度逐渐向残余强度转化,间隙时长较短强度难以恢复,导致软弱带土体强度下降,在上覆土压力、自重应力、坡向渗透力、孔隙水压力、浮托力、缝壁坍塌扰动等作用下,边坡破坏产生分级滑动。在降雨作用下,基覆界面的暂态地下水位波动和坡外渗流,导致后缘至前缘饱和土层厚度和土体软化时间递减,是边坡推移式变形的内因。

      图  5  降雨入渗过程中孔压、变形和位移随时间的变形曲线图
      Figure  5.  Distribution of pore pressure, displacement and stress analysis at different landslide development stages against duration

      本研究结合实地勘察与FLAC3D软件模拟,对研究区滑坡变形过程进行模拟与机理研究,主要结论有:

      (1)通过对变形过程的分析,该滑坡为推移式滑坡,陡峭的斜坡地形与陡坎前缘,为滑坡的发生提供了空间基础;表层松散层与强风化白云岩的滑带以及带有倾角的滑床,是滑坡发生的内在因素;持续性的暴雨与人类工程活动是滑坡发生的外在诱因。

      (2)依据FLAC3D软件模拟,该滑坡在降雨作用下发生滑动,其首先发生在坡体后缘,整体以压缩沉降为主,等到土体内逐渐饱和并向外扩散,形成了局部的垮塌以及拉张变形,这种变形效应持续向坡体前缘发展,并在坡体不同位置变形程度不同,同时在前缘临空位置,由于局部超孔隙水压力和重力作用,发生破坏,在这两类变形作用共同作用下,该滑坡发生滑动,因此降雨是本滑坡的主要诱发因素。其过程可总结为后缘饱和推压阶段-暂态饱和区扩散变形演进阶段-前缘破坏临空阶段-整体破坏阶段。

      (3)该滑坡的机理为该滑坡坡体后缘存在大量崩坡堆积体,其物质组成为碎石,局部充填少量黏土,下覆原始地表的残坡积黏性土夹碎石,这两层向坡体前缘分别呈现韵律变薄和韵律变厚趋势。在强降雨作用下,大量降水自坡体后缘的松散碎石进入坡体,使坡体局部饱水,同时大量地表水深入基覆界面这样的优势渗流通道中,大量积聚,造成坡体内浮托力、渗透力和孔隙水压力增大,有效应力降低,最终诱发滑坡发生。

    • 图  1   研究区影像图

      Figure  1.   Location map and arial view of the study area

      图  2   研究区平面图

      Figure  2.   Toporgaphic map layout of the study area

      图  3   1-1′工程地质剖面图

      Figure  3.   Longitudinal geological profile for cross-section 1-1′

      图  4   降雨入渗过程中孔压、变形和位移演化图

      Figure  4.   Distribution of pore pressure, displacement and stress analysis during landslide development stages under precipitation condition (FLAC3D software simulation)

      图  5   降雨入渗过程中孔压、变形和位移随时间的变形曲线图

      Figure  5.   Distribution of pore pressure, displacement and stress analysis at different landslide development stages against duration

      表  1   变形裂缝统计表

      Table  1   Summary characteristics of deformation cracks of the studied landslide

      裂隙编号 裂隙方向/(°) 初现日期 发育特征 性质
      L1 33~36 2014-07-16 位于滑坡后缘,第四系黏土与基岩接触面附近,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约4~20 cm,可见深度约0.3~0.5 m,下错高度约0.3~0.5 m,延伸长度约为18 m 张拉
      裂缝
      L2 32~35 2015-08-18 位于滑坡后缘耕地中,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约2~10 cm,可见深度约0.2~0.5 m,下错高度约0.1~0.3 m,延伸长度约为16 m 张拉
      裂缝
      L3 37~42,320~325 2014-07-16 从滑坡后缘呈弧形一直延伸至滑坡前缘,裂缝走向37°~42°转向320°~325°,为滑坡滑动形成的拉张裂缝和剪切裂缝,裂缝张开度约30~60 cm,可见深度约1~1.5 m,下错高度约0.3~0.6 m,延伸长度约为50 m,该裂缝是滑坡规模最大的一条裂缝 张拉、
      剪切裂缝
      L4 32~35 2014-08-17 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈直线型,与主滑方向垂直,裂缝张开度约4~14 cm,可见深度约0.4~0.8 m,下错高度约0.1~0.4 m,延伸长度约为15 m 张拉
      裂缝
      L5 45~55 2014-10-31 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约4~15 cm,可见深度约0.5~1 m,下错高度约0.2~0.5 m,延伸长度约为14 m 剪切
      裂缝
      L6 45~55 2015-08-18 位于滑坡中部,滑坡滑动形成的拉张裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约4~20 cm,可见深度约1~2 m,下错高度约0.3~0.5 m,延伸长度约为25 m 剪切
      裂缝
      L7 320~355 2014-07-16 位于滑坡中部水池东南面,滑坡滑动形成的拉张裂缝,裂缝呈直线形,裂缝张开度约10~20 cm,可见深度约0.2~0.3 cm,延伸长度约15 m 张拉
      裂缝
      L8 35~38 2015-09-19 位于滑坡中部竹林中,滑坡滑动形成的拉张裂缝、剪切裂缝,裂缝呈弧形,与主滑方向近垂直,裂缝张开度约20~40 cm,可见深度约0.5~1 m,下错高度约为0.2~0.4 m,延伸长度22 m 张拉
      裂缝
      L9 350~361 2014-07-16 位于滑坡中部竹林中,滑坡滑动形成的剪切裂缝,裂缝呈弧形,裂缝张开度约20~50 cm,可见深度约0.2 m,下错高度约为0.4~0.8 m,延伸长度约20 m 剪切
      裂缝
      L10 322~327 2014-07-18 位于滑坡中前部房屋旁,滑坡滑动形成的剪切裂缝,裂缝呈直线形,裂缝张开度约5~8 cm,可见深度约0.1~0.2 m,延伸长度约10 m 张拉
      裂缝
      L11 320~325 2014-07-16 位于滑坡中前部房屋旁,滑坡滑动形成的剪切裂缝,裂缝呈直线形,裂缝张开度约5~10 cm,可见深度约0.1~0.3 m,延伸长度约15 m 张拉
      裂缝
      下载: 导出CSV
    • [1] 赵海燕,殷坤龙,陈丽霞,等. 基于有效降雨阈值的澧源镇滑坡灾害危险性分析[J]. 地质科技通报,2020,39(4):85 − 93. [ZHAO Haiyan,YIN Kunlong,CHEN Lixia,et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology,2020,39(4):85 − 93. (in Chinese with English abstract)

      ZHAO Haiyan, YIN Kunlong, CHEN Lixia, et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 85-93. (in Chinese with English abstract)

      [2] 李媛,孟晖,董颖,等. 中国地质灾害类型及其特征—基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报,2004,15(2):29 − 34. [LI Yuan,MENG Hui,DONG Ying,et al. Main types and characterisitics of geo-hazard in China:Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):29 − 34. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2004.02.005

      LI Yuan, MENG Hu, DONG Ying, et al. Main Types and characterisitics of geo-hazard in China—based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2004.02.005

      [3] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906036

      ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178-182. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201906036

      [4] 邹文华,刘辉,邓小钊,等. 连续强降雨工况土质边坡非饱和渗流及稳定性分析[J]. 中外公路,2019,39(6):11 − 15. [ZOU Wenhua,LIU Hui,DENG Xiaozhao,et al. Analysis of soil slope with unsaturated seepage and stability under continuous heavy rainfall condition[J]. Journal of China & Foreign Highway,2019,39(6):11 − 15. (in Chinese with English abstract) DOI: 10.14048/j.issn.1671-2579.2019.06.003

      ZOU Wenhua, LIU Hui, DENG Xiaozhao, et al. Analysis of soil slope with unsaturated seepage and stability under continuous heavy rainfall condition[J]. Journal of China & Foreign Highway, 2019, 39(6): 11-15. (in Chinese with English abstract) DOI: 10.14048/j.issn.1671-2579.2019.06.003

      [5] 王毅. 喀斯特地区小流域泥石流风险评价研究—以贵州省二塘河猴场镇流域段为例[D]. 成都: 成都理工大学, 2017

      WANG Yi. Study on quantitative risk assessment of debris flow at small watershed scale in Karst region: A case study of Houchang Town in Ertang River basin, Guizhou Provinc[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

      [6] 高杨,贺凯,李壮,等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang,HE Kai,LI Zhuang,et al. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202003041

      GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest Karst Mountain areas[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 14-23. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202003041

      [7] 贺凯,李滨,赵超英,等. 基于易滑地质结构与多源数据差异的岩溶山区大型崩滑灾害识别研究[J]. 中国岩溶,2020,39(4):467 − 477. [HE Kai,LI Bin,ZHAO Chaoying,et al. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. Carsologica Sinica,2020,39(4):467 − 477. (in Chinese with English abstract)

      HE Kai, LI Bin, ZHAO Chaoying, et al. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in Karst mountainous areas[J]. Carsologica Sinica, 2020, 39(4): 467-477. (in Chinese with English abstract)

      [8] 赵志阳,杨雪琪,宋扬,等. 基于Scoops 3D模型的区域库岸边坡稳定性分析[J]. 人民黄河,2020,42(4):135 − 139. [ZHAO Zhiyang,YANG Xueqi,SONG Yang,et al. Analysis of regional bank slope stability based on scoops 3D model[J]. Yellow River,2020,42(4):135 − 139. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2020.04.028

      ZHAO Zhiyang, YANG Xueqi, SONG Yang, et al. Analysis of regional bank slope stability based on scoops 3D model[J]. Yellow River, 2020, 42(4): 135-139. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2020.04.028

      [9] 何书,陈飞. 基于直觉模糊集TOPSIS决策方法的滑坡稳定性评价[J]. 中国地质灾害与防治学报,2016,27(3):22 − 28. [HE Shu,CHEN Fei. Research of landslide stability assessment based on intuitionistic fuzzy sets TOPSIS multiple attribute decision making method[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):22 − 28. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2016.03.04

      HE Shu, CHEN Fei. Research of landslide stability assessment based on intuitionistic fuzzy sets TOPSIS multiple attribute decision making method[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 22-28. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2016.03.04

      [10] 支泽民,陈琼,张强,等. 地理探测器在判别滑坡稳定性影响因素中的应用—以西藏江达县为例[J]. 中国地质灾害与防治学报,2021,32(2):19 − 26. [ZHI Zemin,CHEN Qiong,ZHANG Qiang,et al. Application of geographic detector in identifying influencing factors of landslide stability:A case study of the Jiangda County,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):19 − 26. (in Chinese with English abstract)

      ZHI Zemin, CHEN Qiong, ZHANG Qiang, et al. Application of geographic detector in identifying influencing factors of landslide stability: a case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26. (in Chinese with English abstract)

      [11] 王乐,秦世伟. 不同降雨类型与库水位波动耦合作用下的土质滑坡稳定性分析[J]. 中国地质灾害与防治学报,2018,29(6):103 − 111. [WANG Le,QIN Shiwei. Landslide instability induced by sudden lower in water level combined with different rainfall types[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):103 − 111. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.06.15

      WANG Le, QIN Shiwei. Landslide instability induced by sudden lower in water level combined with different rainfall types[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 103-111. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2018.06.15

      [12] 唐军峰, 唐雪梅, 周基, 等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 503-516.

      TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: A case study of Donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 503-516.(in Chinese with English abstract)

      [13] 李彩虹, 郭长宝, 张广泽, 等. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法—以四川省巴塘县德达古滑坡为例[J]. 地质通报, 2021, 40(12): 2015-2023.

      LI Caihong, GUO Changbao, ZHANG Guangze, et al. Calculation method of landslide volume based on reconstruction of terrain and drilling slip surface based on LiDAR : A case study of Dedagu landslide in Batang County, Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015-2023.(in Chinese with English abstract)

      [14] 周越, 曾昭发, 唐海燕, 等. 公路勘察中滑坡体的地球物理特征与分析—以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 638-644.

      ZHOU Yue, ZENG Zhaofa, TANG Haiyan, et al. Geophysical characteristics of landslide body in highway reconnaissance: A case study in highway prospecting of Zhangyu line[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(2): 638-644.(in Chinese with English abstract)

    • 期刊类型引用(2)

      1. 赵建军,赖琪毅,马彦飞,何娜,刘朔维,陈海伊,常鸣,吴福,刘振宇. 花岗岩地区群发性降雨滑坡孕灾条件敏感性研究——以桂东南北流市为例. 中国地质灾害与防治学报. 2025(02): 63-71 . 本站查看
      2. 吴正超,夏江黔,潘世佳,廖德武,郑冰. 突发性滑坡灾害诱导形成机制及应急防治对策. 贵州科学. 2024(05): 92-96 . 百度学术

      其他类型引用(0)

    图(5)  /  表(1)
    计量
    • 文章访问数:  2019
    • HTML全文浏览量:  821
    • PDF下载量:  774
    • 被引次数: 2
    出版历程
    • 收稿日期:  2022-02-15
    • 修回日期:  2022-09-02
    • 录用日期:  2022-09-02
    • 网络出版日期:  2023-04-11
    • 刊出日期:  2023-06-24

    目录

    /

    返回文章
    返回