ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度神经网络模型的雅安市滑坡易发性评价

牟家琦 庄建琦 王世宝 孔嘉旭 杜晨辉

牟家琦,庄建琦,王世宝,等. 基于深度神经网络模型的雅安市滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(0): 1-12 doi: 10.16031/j.cnki.issn.1003-8035.202204002
引用本文: 牟家琦,庄建琦,王世宝,等. 基于深度神经网络模型的雅安市滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(0): 1-12 doi: 10.16031/j.cnki.issn.1003-8035.202204002
MU Jiaqi,ZHUANG Jianqi,WANG Shibao,et al. Evaluation of landslide susceptibility in Ya'an City Based on depth neural network model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-12 doi: 10.16031/j.cnki.issn.1003-8035.202204002
Citation: MU Jiaqi,ZHUANG Jianqi,WANG Shibao,et al. Evaluation of landslide susceptibility in Ya'an City Based on depth neural network model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-12 doi: 10.16031/j.cnki.issn.1003-8035.202204002

基于深度神经网络模型的雅安市滑坡易发性评价

doi: 10.16031/j.cnki.issn.1003-8035.202204002
基金项目: 国家重点研发计划项目(No.2020YFC1512000)和国家自然科学基金(41941019, 41922054)资助.
详细信息
    作者简介:

    牟家琦(1995-),男,甘肃通渭人,硕士,主要从事地质工程方面的研究。E-mail:578689985@qq.com

    通讯作者:

    庄建琦(1982-),男,河南商丘人,博士,教授,主要从事黄土地灾和工程地质方面的科研与教学工作。 E-mail:jqzhuang@chd.edu.cn

  • 中图分类号: 中图分类号: 文献标识码:A 文章编号:

Evaluation of landslide susceptibility in Ya'an City Based on depth neural network model

  • 摘要: 准确的滑坡易发性评价结果是滑坡风险评估的基础,对防灾减灾工作有着重要的意义。本文以雅安市为研究区,在野外地质调查的基础上,选取高程、坡度、坡向、平面曲率、剖面曲率、地形湿度指数(TWI)、泥沙输运指数(STI)、径流强度指数(SPI)、归一化植被指数(NDVI)、年均降雨量、地震动峰值加速度(PGA)、地形起伏度、距断层距离、地层岩性、距河流距离、距道路距离等16个因子,构建研究区滑坡易发性评价指标体系,采用深度神经网络(DNN)模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区(12.2%)、高易发区(7.0%)、中易发区(9.8%)、低易发区(17.0%)、极低易发区(54.1%)五个等级,并与人工神经网络(ANN)模型进行对比,用ROC曲线的AUC值进行精度检验。结果表明,DNN模型的评价精度AUC(0.99)大于ANN(0.96)模型。因此,相比ANN模型,DNN模型在该研究区有着更好的拟合能力和预测能力,滑坡极高和高易发区主要分布于雅安市人类工程活动强烈的低海拔地区,沿着道路和水系分布,距道路距离、高程、年均降雨量是影响雅安滑坡发育的主要影响因子。
  • 图  1  研究区滑坡灾害分布图

    Figure  1.  Distribution map of landslide disasters in the study area

    图  2  DNN模型结构图

    Figure  2.  Structure diagram of the Deep Neural Network model (DNN)

    图  3  评价因子分级图

    (a.高程;b.坡度;c.坡向;d.平面曲率;e.剖面曲率;f.岩性;g.距断层距离;h. PGA;i. TWI;j. SPI;k. STI;l.年均降雨;m.距河流距离;n. NDVI;o.距道路距离;p.地形起伏度)

    Figure  3.  Classification Diagram of Landslide influencing factors

    图  4  雅安市滑坡易发性分区图:(a)ANN模型(b)DNN模型

    Figure  4.  Landslide susceptibility zoning map of Ya'an city:(a)ANN model (b)DNN model

    图  5  ROC曲线

    Figure  5.  ROC curve

    图  6  因子权重统计

    Figure  6.  Statistical result of the factors weight

    表  1  滑坡易发性评价因子分级

    Table  1.   Classification of landslide susceptibility evaluation factors

    评价因子因子分级栅格数分级面积占比/%滑坡数(个)滑坡占比/%频率比(FR)
    高程/m<1 5005 204 4010.311 2330.822.69
    1 500~2 5006 332 1650.372440.160.44
    2 500~3 5003 923 9030.23210.010.06
    3 500~4 5001 422 5620.0800.000.00
    >4 500137 5250.0100.000.00
    坡度/(°)<101 838 3360.112980.201.85
    10~203 394 9940.205790.391.95
    20~304 388 2620.263670.250.96
    30~404 265 0680.251810.120.49
    40~502 411 9940.14510.030.24
    50~60642 9550.04110.010.20
    >6078 9470.0010.000.14
    坡向平地1 3470.0000.000.00
    北向1 967 8490.121220.080.71
    东北2 188 7280.131680.110.88
    东向2 267 9640.132260.151.14
    东南2 482 0290.152240.151.03
    南向1 998 0890.121720.120.98
    西南1 974 3690.122060.141.19
    西向1 942 0330.111680.110.99
    西北2 198 1480.132020.141.05
    平面曲率<-1.51 670 1960.10670.050.46
    −1.5~-0.53 515 5000.212560.170.83
    −0.5~0.56 569 4230.398280.561.44
    0.5~1.53 535 5540.212580.170.83
    >1.51 729 8820.10790.050.52
    剖面曲率<-1.52 178 4560.13750.050.39
    −1.5~-0.53 463 0530.202710.180.90
    −0.5~0.56 083 7290.367030.471.32
    0.5~1.53 582 0130.213440.231.10
    >1.52 207 5440.13950.060.49
    TWI<42 338 9410.14550.040.27
    4~69 159 6420.547750.520.97
    6~83 579 0770.213780.251.21
    8~101 206 4810.071700.111.61
    10~12435 0250.03660.041.74
    >12301 3900.02440.031.67
    SPI<306 586 1130.396470.431.12
    30~703 369 8240.202730.180.93
    70~1101 583 6660.091270.090.92
    110~150938 6620.06700.050.85
    >1504 542 2910.273710.250.93
    STI<104 335 9550.255670.381.50
    10~204 286 2300.253400.230.91
    20~302 423 0360.141850.120.87
    30~401 498 1410.091030.070.79
    40~50965 8950.06560.040.66
    >503 511 2990.212370.160.77
    NDVI<0572 0460.03120.010.24
    0~0.14 391 7960.262430.160.63
    0.1~0.27 452 0840.447550.511.16
    0.2~0.34 210 8180.254450.301.21
    >0.3393 8110.02330.020.96
    降雨/mm<1 100347 8280.02510.031.68
    1 100~1 2005 875 0630.351 1230.752.19
    1 200~1 3006 988 3560.413060.210.50
    1 300~1 4003 161 0410.1980.010.03
    >1 400648 2680.0400.000.00
    PGA0.105 547 1890.336420.431.32
    0.156 626 7920.396870.461.19
    0.204 846 5750.281590.110.38
    地形起伏度/m<2003 046 5220.187180.482.70
    200~4008 659 5620.516600.440.87
    400~6004 893 9810.291060.070.25
    600~800400 4890.0240.010.11
    >80020 0020.0000.000.00
    岩性A6 690 0390.394690.320.80
    B1 930 1330.114120.282.44
    C2 589 3290.15860.060.38
    D2 805 8800.16860.060.35
    E1 280 2900.08540.040.48
    F607 2600.041420.102.67
    G1 117 6520.072390.162.45
    距河流距离/m<200359 3250.02960.063.06
    200~400356 3250.02750.052.41
    400~600353 7570.02800.052.59
    600~800350 0740.02810.052.65
    800~1 000348 0310.02700.052.30
    >1 00015 253 0440.901 0860.730.81
    距断层距离/m<1 0003 769 1550.222390.160.73
    1 000~2 0002 849 7930.171660.110.67
    2 000~3 0002 175 3570.131430.100.75
    3 000~4 0001 662 8810.101160.080.80
    4 000~5 0001 315 0100.081560.101.36
    >5 0005 248 3600.316680.451.46
    距道路距离/m<5001 770 4080.106060.413.92
    500~1 0001 391 6970.082330.161.92
    1 000~1 5001 222 9960.072220.152.08
    1 500~2 0001 081 5680.061270.091.34
    2 000~2 500968 3160.06690.050.82
    >2 50010 585 5710.622310.160.25
      注:(A)较坚硬的砂岩页岩板岩;(B) 较软的泥岩千枚岩页岩;(C)软硬相间的碳酸盐岩及碎屑岩;(D)较坚硬的石灰岩白云岩;(E)坚硬的玄武岩苦橄岩角质岩;(F)松散的堆积物冲积物;(G)较坚硬的长石石英砂岩;
    下载: 导出CSV

    表  2  影响因子的相关性分析

    Table  2.   Correlation analysis of impact factors

    因子高程坡度坡向平面曲率剖面曲率TWISTISPINDVI降雨PGA起伏度断层岩性河流道路
    高程1.00
    坡度0.411.00
    坡向−0.03−0.011.00
    平面曲率0.010.000.011.00
    剖面曲率0.010.050.030.181.00
    TWI−0.19−0.390.02−0.280.171.00
    STI0.170.450.02−0.350.170.511.00
    SPI0.080.250.03−0.390.180.640.921.00
    NDVI−0.23−0.10−0.68−0.010.070.04−0.04−0.011.00
    降雨0.670.28−0.040.010.02−0.160.100.03−0.231.00
    PGA0.280.21−0.01−0.020.09−0.050.150.100.010.311.00
    起伏度0.310.180.010.010.08−0.060.050.16−0.360.230.121.00
    断层−0.14−0.200.020.00−0.030.05−0.13−0.09−0.070.00−0.150.011.00
    岩性−0.08−0.08−0.010.010.030.03−0.06−0.030.02−0.010.10−0.04−0.011.00
    河流0.240.060.03−0.02−0.01−0.16−0.04−0.090.040.290.08−0.06−0.07−0.071.00
    道路0.610.30−0.02−0.03−0.01−0.170.120.03−0.060.560.270.10−0.16−0.080.391.00
    下载: 导出CSV

    表  3  滑坡易发性评价频率比

    Table  3.   Frequency ratio of landslide susceptibility assessment

    模型易发性等级分级栅格数分级比例滑坡数量滑坡比例频率比
    ANN极低10 574 8710.62280.020.03
    1 397 3880.21330.020.27
    1 264 6270.43640.040.58
    1 698 6510.013410.232.30
    极高2 085 0180.121 0220.695.61
    DNN极低9 211 5250.54120.010.01
    2 876 4740.17170.010.07
    1 673 1210.10760.050.52
    1 189 7370.071700.111.63
    极高2 069 7000.121 2130.826.70
    下载: 导出CSV
  • [1] 彭建兵,崔鹏,庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [Peng Jianbing,Cui Peng,Zhuang Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0446
    [2] Jianqi,Zhuang,. Distribution and characteristics of landslide in Loess Plateau:a case study in Shaanxi Province[J]. Engineering Geology,2018,236:89 − 96. doi: 10.1016/j.enggeo.2017.03.001
    [3] Guo C,Wu R,Jiang W,et al. Typical geohazards and engineering geological problems along the Ya’an-Linzhi section of the Sichuan-Tibet railway,China[J]. Geoscience,2021,35(1):1 − 17.
    [4] 王涛,王嘉昆,潘冬. 四川汉源康家坡滑坡形成机理与滑坡—堰塞坝—泥石流灾害链分析[J]. 中国地质灾害与防治学报,2020,31(1):1 − 7. [WANG Tao,WANG Jiakun,PAN Dong. Analysis on mechanism of Kangjiapo Landslide and consequent debris flow in Hanyuan County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):1 − 7. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.01.01
    [5] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [Huang Faming,Yin Kunlong,Jiang Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.0824
    [6] OMAR F,Althuwaynee,. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping[J]. CATENA,2014,114:21 − 36. doi: 10.1016/j.catena.2013.10.011
    [7] 许冲,戴福初,姚鑫,等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(S2):3978 − 3985. [XU Chong,DAI Fuchu,YAO Xin,et al. Gis-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):3978 − 3985. (in Chinese with English abstract)
    [8] 刘磊,殷坤龙,王佳佳,等. 降雨影响下的区域滑坡危险性动态评价研究—以三峡库区万州主城区为例[J]. 岩石力学与工程学报,2016,35(3):558 − 569. [LIU Lei,YIN Kunlong,WANG Jiajia,et al. Study on dynamic evaluation of regional landslide risk under the influence of rainfall:A case study of Wanzhou main city in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(3):558 − 569. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.0495
    [9] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [Zhang Jun,Yin Kunlong,Wang Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese)
    [10] CHEN Wei,POURGHASEMI H,KORNEJADY A,et al. Landslide spatial modeling:Introducing new ensembles of ANN,MaxEnt,and SVM machine learning techniques[J]. Geoderma,2017,305:314 − 327. doi: 10.1016/j.geoderma.2017.06.020
    [11] 张纫兰,王少军,李江风. 基于Mamdani FIS模型的滑坡易发性评价研究[J]. 岩土力学,2014,35(S2):437 − 444. [ZHANG Renlan,WANG Shaojun,LI Jiangfeng. Research on landslide susceptibility based on Mamdani-FIS model[J]. Rock and Soil Mechanics,2014,35(S2):437 − 444. (in Chinese with English abstract)
    [12] 方然可,刘艳辉,黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke,LIU Yanhui,HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2021.04-01
    [13] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2021.06-12
    [14] 庄育龙,田原,程楚云. 基于深度神经网络的滑坡危险性评价—以深圳市为例[J]. 地理与地理信息科学,2019,35(2):104 − 110. [ZHUANG Yulong,TIAN Yuan,CHENG Chuyun. Landslide susceptibility assessment based on deep neural network:A case study of Shenzhen[J]. Geography and Geo-Information Science,2019,35(2):104 − 110. (in Chinese) doi: 10.3969/j.issn.1672-0504.2019.02.016
    [15] 桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学

    GUI Lei. Study on the development law and risk of landslide in Wanzhou district of three gorges reservoir area[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    [16] 牛瑞卿,彭令,叶润青,等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing,PENG Ling,YE Runqing,et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese)
    [17] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价—以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:a case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese)
    [18] Park,Lee. Spatial prediction of landslide susceptibility using a decision tree approach:a case study of the Pyeongchang area,Korea[J]. International Journal of Remote Sensing,2014,35(16):6089 − 6112. doi: 10.1080/01431161.2014.943326
    [19] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese) doi: 10.12082/dqxxkx.2020.190766
    [20] 王世宝, 庄建琦, 樊宏宇, 等. 基于频率比与集成学习的滑坡易发性评价—以金沙江上游巴塘—德格河段为例[J/OL]. 工程地质学报, 1 − 13 (2021-05-14)[2022-01-08].
    [21] WANG Shibao, ZHUANG J, ZHENG Jia, et al. Application of Bayesian hyperparameter optimized random forest and XGBoost model for landslide susceptibility mapping[J]. Frontiers in Earth Science, 2021
    [22] 陈涛,钟子颖,牛瑞卿,等. 利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报(信息科学版),2020,45(11):1809 − 1817. [CHEN Tao,ZHONG Ziying,NIU Ruiqing,et al. Mapping landslide susceptibility based on deep belief network[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1809 − 1817. (in Chinese)
    [23] 王世宝,庄建琦,郑佳,等. 基于深度学习的CZ铁路康定—理塘段滑坡易发性评价[J]. 工程地质学报,2022,30(3):908 − 919. [WANG Shibao,ZHUANG Jianqi,ZHENG Jia,et al. Landslide susceptibility evaluation based on deep learning along Kangding-Litang section of cz railway[J]. Journal of Engineering Geology,2022,30(3):908 − 919. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0115
    [24] 王志祥,李建阁. 基于DNN改性沥青中SBS含量的预测模型[J]. 建筑材料学报,2021,24(3):630 − 636. [WANG Zhixiang,LI Jiange. Determination model of SBS content in modified asphalt based on DNN[J]. Journal of Building Materials,2021,24(3):630 − 636. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.03.025
    [25] 李仪,林建君,朱习军. 基于改进DNN的糖尿病预测模型设计[J]. 计算机工程与设计,2021,42(5):1418 − 1424. [LI Yi,LIN Jianjun,ZHU Xijun. Diabetes prediction model design based on improved DNN[J]. Computer Engineering and Design,2021,42(5):1418 − 1424. (in Chinese)
    [26] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504 − 507. doi: 10.1126/science.1127647
    [27] 王山海. 基于深度学习神经网络的语音识别研究[D]. 桂林: 桂林电子科技大学, 2015

    WANG Shanhai. Research on speech recognition based on deep learning neural network[D]. Guilin: Guilin University of Electronic Technology, 2015. (in Chinese with English abstract)
    [28] TIAN Yingying,XU Chong,HONG Haoyuan,et al. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models:an example of the 2013 Minxian (China) Mw 5.9 event[J]. Geomatics,Natural Hazards and Risk,2019,10(1):1 − 25. doi: 10.1080/19475705.2018.1487471
    [29] KALANTAR B,PRADHAN B,NAGHIBI S A,et al. Assessment of the effects of training data selection on the landslide susceptibility mapping:a comparison between support vector machine (SVM),logistic regression (LR) and artificial neural networks (ANN)[J]. Geomatics,Natural Hazards and Risk,2018,9(1):49 − 69. doi: 10.1080/19475705.2017.1407368
    [30] 彭建兵, 张骏, 苏生瑞, 等. 渭河盆地活动断裂与地质灾害[M]. 西安: 西北大学出版社, 1992

    PENG Jianbing. Active faults and geological hazards in Weihe Basin[M]. Xi'an: Northwest University Press, 1992. (in Chinese with English abstract)
    [31] Changbao,Guo. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone,Tibetan Plateau,China[J]. Geomorphology,2015,248:93 − 110. doi: 10.1016/j.geomorph.2015.07.012
    [32] 戴福初,邓建辉. 青藏高原东南三江流域滑坡灾害发育特征[J]. 工程科学与技术,2020,52(5):3 − 15. [DAI Fuchu,DENG Jianhui. Development characteristics of landslide hazards in three-rivers basin of southeast Tibetan Plateau[J]. Advanced Engineering Sciences,2020,52(5):3 − 15. (in Chinese)
    [33] 张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [Zhang Zhongyuan,Deng Mingguo,Xu Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0360
    [34] 刘艳芳,方佳琳,陈晓慧,等. 基于确定性系数分析方法的秭归县滑坡易发性评价[J]. 自然灾害学报,2014,23(6):209 − 217. [Liu Yanfang,Fang Jialin,Chen Xiaohui,et al. Evaluation of landslide susceptibility in Zigui County based on deterministic coefficient analysis method[J]. Journal of Natural Disasters,2014,23(6):209 − 217. (in Chinese)
    [35] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [Zhang Qikai,Ling Sixiang,Li Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese)
    [36] Haoyuan,Hong,. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble[J]. Science of the Total Environment,2020,718:137231. doi: 10.1016/j.scitotenv.2020.137231
    [37] 屠水云,张钟远,付弘流,等. 基于CF模型与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Evaluation of geological hazard susceptibility based on CF model and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)
    [38] HOSMER D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]. 3rd ed.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  214
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-04-15
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回