Multi-wave joint detection of unfavorable geological bodies in coal mining face
-
摘要: 影响岳南煤矿工作面回采速度的主要因素为煤层上方灰岩富水区域和内部地质隐伏构造。通过采用瞬变电磁法、无线电波透视、槽波地震多种物探方法可以对回采工作面进行透明化探测。探测过程中发现:瞬变电磁法二次波场接收到的感应电压对富水低阻区域较为敏感;观测无线电波透视发射、接收的能量衰减可识别煤层变化区域横向情况;槽波地震的包络振幅、频谱分析与频散曲线综合分析成像,对判别断层走向有良好效果。通过多波场中感应因子对异常区域综合响应特征的识别,并依据多源波场圈定的异常区域进行平面图叠加和综合显现,可有效识别工作面顶板富水区域与煤层内部构造区域的关联情况,清晰判断导水通道情况。试验结果表明,多种物探方法可探明回采工作面内部异常区域并提前预测预报,对今后类似地质条件的探测提供了借鉴依据。Abstract: The main factors restricting the mining speed of the working face in Yuenan Coal Mine are the water-rich area of limestone above the coal seam and the internal geological concealed structure. The transparent detection of the working face is carried out by using transient electromagnetic method, radio wave perspective and slot wave seismic geophysical methods. In the process of detection, it is found that the induced voltage received by the secondary wave field of transient electromagnetic method is more sensitive to the area of rich water and low resistance, and the lateral situation of coal seam can be identified by observing the energy attenuation emitted and received by radio wave perspective. The integrated analysis of envelope amplitude, spectrum and dispersion curve of in-seam wave seismic imaging has good effect on identifying fault strike. Through the identification of the comprehensive response characteristics of the abnormal region by the induction factor in the multi-wave field, the plane map is superimposed according to the abnormal area delineated by the multi-source wave field, and a variety of abnormal characteristics are shown synthetically, which can effectively identify the correlation between the water-rich area of the roof of the working face and the internal structural area of the coal seam, and clearly judge the existence of the water channel. The test results show that the geophysical method can find out the internal abnormal area of the mining face and predict in advance, and the combined detection of various geophysical methods can provide a reference basis for similar geological conditions in the future.
-
0. 引言
近年来,采掘机械化的程度正在不断提升,工作面的长度也在逐步增长[1-2],随着开采速度的提升,制约开采速度的地质因素也逐渐凸显[3]。采掘过程中常见的主要危害有顶板裂隙水、断裂构造水、底板灰岩水,地质构造引起的断层、陷落柱等[4-5]。这些灾害给矿山带来严重的经济损失,目前,针对此类地质灾害多以地球物理勘探(简称“物探”)的手段来查明。物探是以利用煤岩层介质的物理性质为基础,通过观测磁性、电性、弹性等诸多物理参数和研究分析隐伏灾害的时间及空间变化规律的方法。
现阶段,国内许多专家学者针对常见的地质隐伏灾害进行了一系列的研究,主要包括:李宏杰等[6-7]研究了导水断裂带的规律,总结了经验法、现场实测、物理模拟法和数值模拟法等导水断裂带确定方法,通过钻探、水文勘查及水化学试验方法判别准格尔煤田地下水径流通道、陷落柱、断层等区域;牟义等[8-11]等进行了矿井瞬变电磁的探测研究,通过分析归一化感应电压、视电阻率等参数在低阻区域响应特征,运用切片技术形成平面图和立体图,从多方位、多角度展示富水区域的立体分布特征;廉玉广等[12-15]利用槽波地震、无线电波透视等方法联合探测,发现无线电波透视技术可对地质构造横向发育范围进行准确定位,槽波地震采用振幅包络、共中心点叠加偏移等技术综合分析解释,可有效判别地质构造的大体走向。
本文参考上述文献[16],以岳南煤矿为例,采用瞬变电磁法、无线电波透视法、槽波地震3种方法进行回采工作面透明化探测,分析富水区域、隐伏构造对多种波场的影响形态及多种波场的感应特征,将多源数据系统整合在同一水平内进行综合分析研判[17],试验分析结果表明多种物探方法联合探测可为工作面回采异常区域提前预警,准确高效的圈定异常区范围[18],多种物探方法联合探测对今后类似地质条件的探测提供了借鉴依据[19]。
1. 回采巷道内部煤层及周边概况
岳南煤矿井田内地形变化较大,小型隐伏构造偏多。如图1所示,2152G01工作面位于+670 m水平集中轨道大巷南侧,西侧为矿界保安煤柱,走向长1260 m,切眼倾向宽180 m。现阶段开采石炭系太原组15号煤层,工作面沿顶、底板进行掘进,采高平均3.5 m,煤层倾角2°~4°,采掘区域埋深275 m,煤层一般含0~2层夹矸,赋存稳定。煤层顶板岩性以K2灰岩为主,厚度大约10 m,属于弱富水性含水层,煤层底板以泥岩为主,平均厚度约3 m。胶带顺槽巷掘进过程中,局部遇有构造,走向倾角变大,且煤质松软。
为了解工作面切眼至巷口方向800 m区域内部煤层情况,以物探手段提供技术指导,采用矿井瞬变电磁法、无线电波透视法和槽波地震多种波场联合探测查明工作面内构造和富水区域分布情况,保证工作面安全顺利回采。
2. 多波联合探测原理
2.1 瞬变电磁原理
瞬变电磁法优点主要体现为对低阻体较为敏感,但易受铁器、电力等现场环境干扰。主要通过不接地回线源向前方探测地层发射一次脉冲场,发射停止后在脉冲场的作用下,探测前方地层内部会产生二次感应磁场。通过接收二次感应磁场的衰减程度及时间变化,可分析出探测前方地层的电性特征。矿井瞬变电磁视电阻率计算公式为:
$$ {\rho }_{\text{r}}=C\times \frac{{\mu }_{0}}{4\text{π} {t}}\times {\left(\frac{2{\mu }_{0}S N{sn}}{5{t}(V/I)}\right)}^{2/3} $$ (1) 式中:C——全空间响应系数;
${\mu }_{0} $ ——磁导率;S——为接收回线线圈面积/m2;
N——为接收回线线圈匝数;
s——发射回线线圈面积/m2;
n——发射回线线圈匝数;
t——二次场衰减时间;
V/I——接收的归一化二次场电位场值。
2.2 无线电波透视原理
无线电波透视法也被称为坑透法,优势为对构造区域有较好的识别能力,在构造形态反演显现较弱。它是通过发射特定频率的电磁波向地质体探测,接收穿透地质体特定频率的信号强弱判别能量损耗。由于地层非均一性,不同的岩石、断层界面均会造成能量损耗,所以观测信号能量的强弱可判别地质体内部构造情况。
无线电波在无限均匀、各向同性有耗介质中传播时,其距发射天线r处的电磁场强公式为[20]:
$$ H = {H_0}\frac{{{{\text{e}}^{{{ - }}\beta {{r}}}}}}{{{r}}}{\text{sin}}\theta $$ (2) 式中:H——实测场强值;
H0——理论初始场强值;
e——自然常数;
β——介质对电磁波能量的吸收系数;
r——发射点到接收点的距离/m;
sinθ—方向性因子,当天线辐射角度不太大时, 一般认为sinθ≈1。
2.3 槽波透射探测原理
槽波勘探其特点为对构造形态、走向有较好的辨别能力,劣势体现为施工繁琐、成本较高。槽波勘探多以人工震源为主,其原理是利用一次振动源产生的波,在煤层中、顶板、底板相互叠加、干扰,多次反射禁锢在煤层中形成的波列统称为槽波。由于槽波速度低于围岩,主要能量禁锢煤层中,通过接收能量的强弱,可有效识别断层走向。
3. 多波联合探测试验方案及探测结果
3.1 瞬变电磁法探测
本次瞬变电磁试验位于胶带顺槽巷与轨道顺槽巷进行探测,采用边长2 m的回线测量装置,从工作面切眼向巷口方向依次进行探测,测点间距设计为10 m,单条巷探测长度为800 m。每条巷道探测4个角度如图2所示,分别为顶板90°、顶板60°、顶板30°和顺层0°。
图3为接收到的胶带顺槽巷顶板30°多测道剖面电压数据曲线图,比对分析发现红色区域内电压曲线与同一水平内电压曲线为凸起特征,线条畸变明显,表明归一化感应电压升高,多为低阻区域的表现,推测为富水异常区。
通过多角度探测,经过测线编辑、干扰校正、时间转换、视电阻率计算、数据三维联合反演计算可得到不同深度的层位切片,以用来反映不同区域内的富水情况,如图4瞬变三维联合反演立体图所示,带有标尺的一侧为胶带顺槽巷,另一侧为轨道顺槽巷。色标由红色到蓝色表示为视电阻率的逐渐降低,大致以30 Ω·m为界线,低于30 Ω·m推测为富水区域,视电阻率值越小推测富水性越强。图4中显示3个层位的地层信息,分别为顺层、顶板15 m、顶板30 m。立体图中对回采工作面影响的低阻异常主要为2处,一处低阻异常为0~100 m区域内顶板15 m与顶板30 m低阻异常联系紧密;另一处低阻异常从顺层500~800 m区域内富水性由弱到强逐步联系贯穿至顶板30 m;推测2处低阻异常为富水区域所致。
3.2 无线电波透视法
本次无线电波探测试验双巷进行,探测方法为“一发一收”,轨道巷为上巷,胶带巷为下巷。无线电波射线分布如图5所示。当上巷发射时,下巷负责接收;下巷发射时,则上巷负责接收。发射点间距为50 m,接收点间距10 m,单巷发射点一共17个,单巷接收点一共187个。
无线电波透视法通过初始场强、吸收系数等计算后采用CT软件反演,反演结果通常以实测场强曲线图和BPT法反演结果图表示。如图6所示,图6(a)上巷接收时可以看出0~350 m区间内,整体场强值曲线相对稳定在61~69 dB区间内,表明地层稳定且连续。当350~450 m区域内场强下降明显呈现“V”字型,场强曲线变化明显,表明电磁波能量损耗较大,一般存在构造发育;对比图6(b)下巷接收,同时在350~450 m区域内场强下降明显,在550~600 m呈现“V”字型,场强下降明显,表明存在构造发育区。
无线电波衰减系数分布情况如图7所示,蓝色到红色表明为衰减系数逐渐增大,表明电磁波损耗大衰减快,地层非均一或不连续,存在断层界面。图7中显示2处区域,分布在0~80 m区间和350~650 m区间内,推测地层存在不连续性可能潜在构造区域。
3.3 槽波透射探测
槽波试验采用单巷放炮激发震源,单巷全排列数据接收,如图8所示槽波全排列数据接收示意图。工作面距切眼230~730 m范围(无线电波异常区域)内进行槽波勘探,测线长度为500 m。本次设计胶带顺槽巷震源点21处,震源间距为20 m,每个震源均为矿用乳化炸药和同一段位雷管,每炮药量为200 g;轨道顺槽巷检波器接收点21个,检波器接收点间隔为20 m。
图9所示横向代表炮号与道号,纵向表示波的时间关系。图中为本次槽波透射探测的第2炮单炮记录,1道至21道瞬时接收全排列地震波。地震数据通过AGC增益处理后槽波波列位置清晰,槽波大致位于150~330 ms时间段内。
采用频散曲线与频谱分析综合分析,可了解埃里相旅行速度,同时找出信号中振幅大能量强所对应的主要振动频率信息。如图10所示,图10(a)频散曲线中槽波埃里相速度大致为1300 m/s,图10(b)中频谱归一化处理后主要振动频率在150~180 Hz之间,通过埃里相与主频的确定分析,后续可针对性的有效数据滤波、剔除干扰数据、包络振幅精准拾取等处理成像。
槽波透射能量衰减分布见图11,其中暖色(红黄)区域越深表明能量衰减越大,该段槽波减弱为构造异常区域。图中可以看出存在6处异常,5处零散异常区域;1处大面积异常集中区域,异常集中区走向与巷道走大致呈45°夹角,长度约130 m。
4. 物探多解性排除
在结论定性前,首先要判断异常的真实有效性。在巷道探测中物探易受现场干扰,相对已知的干扰在数据处理无法剔除时,对于成图后易形成假异常区,造成干扰后的物探成果与实际情况存在偏差或屏蔽地质有效信息对后续工作存在误导,严重时可能危及生命安全。因此,需要多种探测结果相互验证进行综合研判与排除。如图12(a)瞬变电磁顺层700~800 m间存在一处联通上层富水区,通过无线电波原理可知探测顺层时,水体也会影响吸收无线电波场,结合探测现场,瞬变电磁探测时700~800局部处存在临时铁器,无线电波探测时临时干扰以移除,但无线电波探测时未有明显异常见图12(b),槽波也未显示700~800 m区域存在明显构造。由此推测瞬变电磁700~800 m顺层异常由已知铁器干扰引起,与顶板含水层存在偏差,结合无线电波和槽波地震,推测700~800 m不存在导通现象。
如图13槽波与无线电波叠加所示,无线电波异常区域与槽波地震异常区域高度吻合,表明300~650 m范围内存在构造引起的煤层变化区域。发现无线电波位于轨道顺槽巷700 m处存在一处漏报。
5. 综合结果分析
通过多种物探的异常区域进行整合叠加,将瞬变电磁主要圈定的低阻异常分布区域、无线电波透视BPT法衰减系数分布图划分的异常区域与槽波透射能量衰减分布图圈定的异常区域,投影在工作面平面图内。综合分析如图14所示,分布情况见表1,发现工作面内存在2处综合异常区域,主要分布0~100 m和300~650 m区间内。推测0~80 m区域存在煤层变化,0~100 m范围顶板K2灰岩为富水区段,煤层变化与含水层联系性一般,推测300 m处存在构造区域,顶板富水情况较弱,构造与含水层联系性较弱;推测420 ~650 m区域内存在构造,420 ~650 m区域顶板K2灰岩为富水区段,构造与含水层存在导水通道,联系性较强;推测650~800 m区域内顶板为K2灰岩为富水区段,650 m处、700 m存在构造,含水层与构造联系性较弱。掘进过程中需关注0~100 m和300~800 m两个区段并加强水文地质观测。
表 1 物探异常推断分析表Table 1. Geophysical anomaly inference analysis物探方法 异常区域/m 异常推断 导水程度 回采影响 瞬变电磁 0~100 富水区域 弱 一般 500~650 富水区域 强 重大 650~800 富水区域 弱 一般 无线电波 0~80 煤层变化 弱 较大 350~650 地质构造 强 重大 槽波地震 300 地质构造 弱 较大 420~650 地质构造 强 重大 700 地质构造 弱 较大 6. 回访验证结果
该工作面经核实,依据物探多波场综合成果发现,打钻证实0 ~20 m顶板存在富水区,已进行疏放水工作,打钻发现槽波地震和无线电波影异常区内存在断距大于8 m,走向约280°的隐伏断层,断层影响回采范围位于300 ~650 m中间,并严重影响工作面回采进度,且对回采时具有较大安全隐患,现阶段正在注浆综合治理中。
7. 结论
通过瞬变电磁、无线电波和槽波地震多种波场联合探测,对内部构造及富水情况有了直观的认识和更清晰的了解,通过针对各波场异常区域重点分析研判中发现如下结论:
(1)瞬变电磁可有效探测富水区域及含水层位,无线电波可分辨区域内煤层变化情况,槽波地震探测可有效探明构造走向及位置,3种物探手段探测不同地质异常区域均有良好的探测效果。
(2)瞬变电磁法探测对低阻区域敏感,当探测现场存在铁器时,易收到干扰,掩盖有效地质信息;无线电波透视可探明煤层内部情况,横向分辨率较好,但不能有效识别具体区域及走向;槽波地震可探测构造走向及位置,但施工过程较为繁琐。
(3)探测工作面异常区域时,瞬变电磁产生的一次脉冲波场通过富水区域时,接收到的感应电压可敏锐感知对低阻体产生的响应特征;无线电波通过发射、接收特定频率的电磁波,可有效判别波场在异常区域能量的损耗情况;槽波地震产生的振动波,依据波的振幅、频率可判别断层走向。
(4)不同的物探手段,虽能探测本方法代表性的异常特征,但单一方法存在局限性。以本次探测为例,通过瞬变电磁与无线电波的组合,排除了瞬变电磁因未知情况的干扰;通过无线电波透视与槽波地震的组合探测出了轨道顺槽700 m处的构造区域,避免了异常的漏报。
(5)依据不同方法探测的结果,针对异常区域相互叠加和多种方法综合推测,可排除单一手段局限性,在井下进行物探工作时应采用2种或2种以上的物探方法进行探测。
(6)通过多源波场圈定的异常区域进行平面图叠加,将多种异常特征综合显现,可有效判别富水区域与构造区域关联情况,判定是否存在导水通道,提前预防治理,保证工作面的安全回采。
-
表 1 物探异常推断分析表
Table 1 Geophysical anomaly inference analysis
物探方法 异常区域/m 异常推断 导水程度 回采影响 瞬变电磁 0~100 富水区域 弱 一般 500~650 富水区域 强 重大 650~800 富水区域 弱 一般 无线电波 0~80 煤层变化 弱 较大 350~650 地质构造 强 重大 槽波地震 300 地质构造 弱 较大 420~650 地质构造 强 重大 700 地质构造 弱 较大 -
[1] 李江华,廉玉广,焦阳,等. 综合物探技术在工作面导水构造探测中的应用[J]. 煤矿安全,2018,49(3):129 − 132. [LI Jianghua,LIAN Yuguang,JIAO Yang,et al. Application of comprehensive geophysical exploration technique in exploration of water conductive structures in working face[J]. Safety in Coal Mines,2018,49(3):129 − 132. (in Chinese with English abstract) LI Jianghua, LIAN Yuguang, JIAO Yang, et al. Application of comprehensive geophysical exploration technique in exploration of water conductive structures in working face[J]. Safety in Coal Mines, 2018, 49(3): 129-132. (in Chinese with English abstract)
[2] 张平松,胡泽安,吴荣新,等. 煤层工作面地质构造及异常透射CT综合成像方法与应用[J]. 中国煤炭地质,2017,29(9):49 − 52. [ZHANG Pingsong,HU Zean,WU Rongxin,et al. Coal face geological structure and application of anomalous body transmitting CT integrated imaging[J]. Coal Geology of China,2017,29(9):49 − 52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-1803.2017.09.10 ZHANG Pingsong, HU Zean, WU Rongxin, et al. Coal face geological structure and application of anomalous body transmitting CT integrated imaging[J]. Coal Geology of China, 2017, 29(9): 49-52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-1803.2017.09.10
[3] 马志超,杨高峰,王克南. 利用透射槽波衰减系数探查煤层内部的断层响应特征研究[J]. 煤炭技术,2021,40(3):49 − 51. [MA Zhichao,YANG Gaofeng,WANG Kenan. Fault response characteristics of coal seam are investigated by using attenuation coefficient of transmitted in-seam wave[J]. Coal Technology,2021,40(3):49 − 51. (in Chinese with English abstract) MA Zhichao, YANG Gaofeng, WANG Kenan. Fault response characteristics of coal seam are investigated by using attenuation coefficient of transmitted In-seam wave[J]. Coal Technology, 2021, 40(3): 49-51. (in Chinese with English abstract)
[4] 辛光明,邢文彬,武凯,等. 阳城煤矿断层导水灾害“挡-堵”多体系防治技术[J]. 煤矿安全,2019,50(5):91 − 94. [XIN Guangming,XING Wenbin,WU Kai,et al. Multi-system prevention and control technology of “blocking-plugging” in fault water guiding disaster of Yangcheng coal mine[J]. Safety in Coal Mines,2019,50(5):91 − 94. (in Chinese with English abstract) XIN Guangming, XING Wenbin, WU Kai, et al. Multi-system prevention and control technology of “blocking-plugging” in fault water guiding disaster of Yangcheng coal mine[J]. Safety in Coal Mines, 2019, 50(5): 91-94. (in Chinese with English abstract)
[5] 牟义,李江华,徐慧,等. 矿井瞬变电磁法参数优化试验及超前探测应用[J]. 煤炭科学技术,2020,48(6):184 − 190. [MU Yi,LI Jianghua,XU Hui,et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology,2020,48(6):184 − 190. (in Chinese with English abstract) MU Yi, LI Jianghua, XU Hui, et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology, 2020, 48(6): 184-190. (in Chinese with English abstract)
[6] 李宏杰,黎灵,李健,等. 采动覆岩导水断裂带发育高度研究方法探讨[J]. 金属矿山,2015(4):1 − 6. [LI Hongjie,LI Ling,LI Jian,et al. Discussion on the methods for determining the height of fractured water-conducting zone[J]. Metal Mine,2015(4):1 − 6. (in Chinese with English abstract) LI Hongjie, LI Ling, LI Jian, et al. Discussion on the methods for determining the height of fractured water-conducting zone[J]. Metal Mine, 2015(4): 1-6. (in Chinese with English abstract)
[7] 李宏杰,马君,姜鹏,等. 准格尔煤田岩溶水文地质特征及水害防治技术[J]. 煤矿安全,2018,49(9):246 − 251. [LI Hongjie,MA Jun,JIANG Peng,et al. Karst hydrogeological characteristics and prevention and control technology for water damage in Zhungar coalfield[J]. Safety in Coal Mines,2018,49(9):246 − 251. (in Chinese with English abstract) LI Hongjie, MA Jun, JIANG Peng, et al. Karst hydrogeological characteristics and prevention and control technology for water damage in zhungar coalfield[J]. Safety in Coal Mines, 2018, 49(9): 246-251. (in Chinese with English abstract)
[8] 牟义,邱浩,牛超,等. 多源干扰条件下瞬变电磁法电性响应规律研究[J]. 地球物理学进展,2019,34(6):2493 − 2502. [MU Yi,QIU Hao,NIU Chao,et al. Study on the electrical response law of transient electromagnetic method under multi-source interference conditions[J]. Progress in Geophysics,2019,34(6):2493 − 2502. (in Chinese with English abstract) DOI: 10.6038/pg2019CC0434 MU Yi, QIU Hao, NIU Chao, et al. Study on the electrical response law of transient electromagnetic method under multi-source interference conditions[J]. Progress in Geophysics, 2019, 34(6): 2493-2502. (in Chinese with English abstract) DOI: 10.6038/pg2019CC0434
[9] 牟义,徐慧,马志超,等. 带压综采工作面矿井综合物探及安全性评价研究[J]. 重庆大学学报,2019,42(12):41 − 49. [MU Yi,XU Hui,MA Zhichao,et al. Comprehensive geophysical exploration and safety evaluation of the mine with a fully mechanized pressurized mining face[J]. Journal of Chongqing University,2019,42(12):41 − 49. (in Chinese with English abstract) DOI: 10.11835/j.issn.1000-582X.2019.12.005 MU Yi, XU Hui, MA Zhichao, et al. Comprehensive geophysical exploration and safety evaluation of the mine with a fully mechanized pressurized mining face[J]. Journal of Chongqing University, 2019, 42(12): 41-49. (in Chinese with English abstract) DOI: 10.11835/j.issn.1000-582X.2019.12.005
[10] 李文,牟义,邱浩. 煤矿含水异常体矿井综合物探方法及应用[J]. 煤矿安全,2017,48(7):208 − 211. [LI Wen,MU Yi,QIU Hao. Application of mine comprehensive geophysical detection methods on water bearing abnormal bodies[J]. Safety in Coal Mines,2017,48(7):208 − 211. (in Chinese with English abstract) LI Wen, MU Yi, QIU Hao. Application of mine comprehensive geophysical detection methods on water bearing abnormal bodies[J]. Safety in Coal Mines, 2017, 48(7): 208-211. (in Chinese with English abstract)
[11] 牟义. 切片技术在煤矿回采工作面瞬变电磁法探测中的研究与应用[J]. 中国煤炭,2014,40(3):35 − 39. [MU Yi. Research and application of slicing technology in transient electromagnetic detection in coal mining face[J]. China Coal,2014,40(3):35 − 39. (in Chinese with English abstract) DOI: 10.19880/j.cnki.ccm.2014.03.008 MU Yi. Research and application of slicing technology in transient electromagnetic detection in coal mining face[J]. China Coal, 2014, 40(3): 35-39. (in Chinese with English abstract) DOI: 10.19880/j.cnki.ccm.2014.03.008
[12] 马志超,廉玉广,牟义,等. 煤矿井下探测中影响不含水断层视电阻率变化的单一主控因素分析[J]. 能源与环保,2020,42(12):106 − 111. [MA Zhichao,LIAN Yuguang,MU Yi,et al. Analysis of single main controlling factor affecting change of apparent resistivity of water-free faults in underground coal mine exploration[J]. China Energy and Environmental Protection,2020,42(12):106 − 111. (in Chinese with English abstract) MA Zhichao, LIAN Yuguang, MU Yi, et al. Analysis of single main controlling factor affecting change of apparent resistivity of water-free faults in underground coal mine exploration[J]. China Energy and Environmental Protection, 2020, 42(12): 106-111. (in Chinese with English abstract)
[13] 廉玉广,马志超,李江华,等. 岩石单轴加载破坏全过程波速变化特征研究[J]. 煤炭科学技术,2019,47(8):64 − 69. [LIAN Yuguang,MA Zhichao,LI Jianghua,et al. Study on variation characteristics of wave velocity in whole process of rock uniaxial loading failure[J]. Coal Science and Technology,2019,47(8):64 − 69. (in Chinese with English abstract) LIAN Yuguang, MA Zhichao, LI Jianghua, et al. Study on variation characteristics of wave velocity in whole process of rock uniaxial loading failure[J]. Coal Science and Technology, 2019, 47(8): 64-69. (in Chinese with English abstract)
[14] 李江华,廉玉广,马志超. 受载岩体破坏全过程声波响应特征及工程意义[J]. 煤炭科学技术,2022,50(2):106 − 112. [LI Jianghua,LIAN Yuguang,MA Zhichao. Acoustic response characteristics and engineering significance of loaded rock during failure process[J]. Coal Science and Technology,2022,50(2):106 − 112. (in Chinese with English abstract) LI Jianghua, LIAN Yuguang, MA Zhichao. Acoustic response characteristics and engineering significance of loaded rock during failure process[J]. Coal Science and Technology, 2022, 50(2): 106-112. (in Chinese with English abstract)
[15] 焦阳,廉玉广,李梓毓,等. 综合矿井物探技术在陷落柱探测中的应用[J]. 煤矿开采,2018,23(6):16 − 18. [JIAO Yang,LIAN Yuguang,LI Ziyu,et al. Application of integrated geophysical techniques in collapse column exploring[J]. Coal Mining Technology,2018,23(6):16 − 18. (in Chinese with English abstract) JIAO Yang, LIAN Yuguang, LI Ziyu, et al. Application of integrated geophysical techniques in collapse column exploring[J]. Coal Mining Technology, 2018, 23(6): 16-18. (in Chinese with English abstract)
[16] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126 − 131. [LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126 − 131. (in Chinese with English abstract) LI Zhonghua, LIANG Ying, BAO Siyuan, et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 126-131. (in Chinese with English abstract)
[17] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1 − 15. [ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1 − 15. (in Chinese with English abstract) DOI: 10.13199/j.cnki.cst.2021.07.001 ZHANG Pingsong, OU Yuanchao, LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology, 2021, 49(7): 1-15. (in Chinese with English abstract) DOI: 10.13199/j.cnki.cst.2021.07.001
[18] 赵虎,张泉,谭建秋,等. 基于综合物探方法的公路不稳定边坡潜在滑面探测[J]. 中国地质灾害与防治学报,2022,33(1):117 − 122. [ZHAO Hu,ZHANG Quan,TAN Jianqiu,et al. Detection of the potential failure zones of the unstable slopes along highway using comprehensive geophysical methods[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):117 − 122. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-14 ZHAO Hu, ZHANG Quan, TAN Jianqiu, et al. Detection of the potential failure zones of the unstable slopes along highway using comprehensive geophysical methods[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 117-122. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-14
[19] 王瑞丰,温来福,程久龙,等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报,2020,42(6):784 − 790. [WANG Ruifeng,WEN Laifu,CHENG Jiulong,et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chengde area of Hebei,China[J]. Journal of Earth Sciences and Environment,2020,42(6):784 − 790. (in Chinese with English abstract) WANG Ruifeng, WEN Laifu, CHENG Jiulong, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chengde area of Hebei, China[J]. Journal of Earth Sciences and Environment, 2020, 42(6): 784-790. (in Chinese with English abstract)
[20] 邓凤茹,赵艳. 基于无线电波坑道透视算法数学模型的研究[J]. 北华航天工业学院学报,2012,22(3):12 − 13. [DENG Fengru,ZHAO Yan. Study of mathematical model based on the algorithm of radio waves tunnels perspective[J]. Journal of North China Institute of Aerospace Engineering,2012,22(3):12 − 13. (in Chinese with English abstract) DENG Fengru, ZHAO Yan. Study of mathematical model based on the algorithm of radio waves tunnels perspective[J]. Journal of North China Institute of Aerospace Engineering, 2012, 22(3): 12-13. (in Chinese with English abstract)
-
期刊类型引用(3)
1. 刘旭东,王子伟,田欢. 基于随掘超前探测法的煤矿工作面地质探测可行性分析. 能源与环保. 2025(02): 140-146 . 百度学术
2. 刘立仁,徐慧,吕明杰,李杰,陈凯,牟义. 神府矿区采空区精细化综合勘探技术研究. 煤炭工程. 2024(04): 28-35 . 百度学术
3. 张鹏,梁红波,孙文斌. 基于矿井工作面隐伏构造的三维地震波场数值模拟研究. 能源技术与管理. 2024(06): 205-208 . 百度学术
其他类型引用(0)