Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township
-
摘要: 滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与指标之间的关系。在此基础上,随机选取70%/30%的滑坡样本作为训练/验证数据集,应用极致梯度提升模型(extreme gradient boosting, XGBoost)开展易发性评价。随后从模型预测精度和模型稳定性两方面将其与决策树模型(decision tree, DT)和梯度提升树模型(gradient boosting decision tree, GBDT)进行对比。结果表明:研究区堆积层滑坡主要受长江水系、堆积层厚度和工程地质岩组影响。XGBoost模型具有最高的准确率(94.3%)和预测精度(97.3%)。在模型稳定性验证中,平均预测精度最高(97.3%),优于DT(91.3%)和GBDT(95.7%),模型标准差和变异系数均为0.01,低于其余两种模型。XGBoost在区域滑坡易发性评价与制图中得到了可靠的结果,为滑坡灾害空间预测提供了新的技术支撑。Abstract: Landslide susceptibility assessment forms the foundation for precise evaluation of landslide risk. To enhance the accuracy and robustness of landslide susceptibility mapping, a state-of-art machine learning algorithm named the extreme gradient boosting model (XGBoost) was introduced to this study. Yanshan Town in Wanzhou district, Three Gorges reservoir, was chosen as a case study. Nine influencing factors, including engineering geological lithology and thickness of deposit layer, were selected to construct the landslide susceptibility evaluation index system. The relationship between landslide development and these indicators is quantitatively analyzed using the information value model. Subsequently, 70% of landslide samples were randomly assigned for training, while the remaining 30% were used for validation. The XGBoost model was then employed for landslide susceptibility mapping. The output were compared with those of the decision tree model (DT) and gradient boosting decision tree (GBDT) in terms of prediction accuracy and model stability. The findings revealed that distance to the Yangtze River, soil thickness, and lithology were the primary factors influencing landslide development. The XGBoost model demonstrated the highest average prediction accuracy (97.3%) in 100 repeated trials, surpassing the DT (91.3%) and GBDT models. Moreover, the XGBoost model exhibited superior robustness with a standard deviation and coefficient of variation of 0.01, lower than the other two models. It also achieved the highest accuracy (94.3%) and prediction accuracy (97.3%) in the validation process. The proposed XGBoost model serves as a reliable assessment method and yields optimal results in regional landslide susceptibility mapping.
-
表 1 各因素状态信息量表
Table 1. The weighted information values of each factor state
指标 分级 信息量 指标 分级 信息量 指标 分级 信息量 坡度/(°) 0~9 1.28 工程地质岩组 砂岩夹泥岩、砂岩 1.58 斜坡结构 顺向伏倾坡、顺向飘倾坡 0.75 9~21 0.75 砂泥岩互层 0.59 顺斜坡 −0.99 21~33 −0.83 泥岩夹砂岩、泥岩 1.46 横向坡、逆斜坡、逆向坡 −0.96 33~45 −3.28 页岩夹灰岩、灰岩 −1.79 斜坡形态 内向凸形坡 0.31 >45 −9.32 距长江距离/m 0-400 2.96 直线凸形坡、外向凸形坡 −0.21 植被归一化指数 <0.15 1.07 400~700 −0.46 内向直坡、直线直坡 −1.79 0.15~0.25 −0.30 700~1400 0.72 外向直坡、内向凹坡 −0.82 >0.25 −0.70 >1400 −1.84 直线凹坡、外向凹坡 −0.99 坡向/(°) 0~180 −1.33 地形湿度指数 0~6 −0.35 堆积层厚度/m 0~0.8 −9.98 180~234 0.01 6~12 0.83 0.8~1.6 −3.35 234~252 −0.13 12~18 0.23 1.6~2.4 −1.04 252~342 0.58 >18 −1.24 >2.4 2.54 342~360 −0.60 表 2 标准差和变异系数
Table 2. Standard deviation and coefficient of variation
模型 平均数 标准差 变异系数 95%置信区间下限 95%置信区间上限 DT 90.304 0.734 0.813 90.160 90.448 GBDT 95.612 0.062 0.065 95.600 95.624 XGBoost 97.281 0.010 0.010 97.279 97.283 -
[1] 武雪玲,沈少青,牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling,SHEN Shaoqing,NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5)665-671(in Chinese with English abstract) [2] 殷跃平,张晨阳,闫慧,等. 三峡水库蓄水运行滑坡渗流稳定和防治设计研究[J]. 岩石力学与工程学报,2022,41(4):649 − 659. [YIN Yueping, ZHANG Chenyang, YAN Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):649 − 659. (in Chinese with English abstract)Yin Yueping, Zhang Chenyang, Yan Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 649-659.(in Chinese with English abstract) [3] 杨何,汤明高,许强,等. 长江三峡库区滑坡变形统计特征研究[J]. 灾害学,2021,36(2):37 − 42. [YANG He,TANG Minggao,XU Qiang,et al. Research of statistical characteristics of deformation of landslides in the Three Gorges Reservoir area of the Yangtze River[J]. Journal of Catastrophology,2021,36(2):37 − 42. (in Chinese with English abstract)YANG He, TANG Minggao, XU Qiang, et al. Research of statistical characteristics of deformation of landslides in the Three Gorges Reservoir area of the Yangtze River[J]. Journal of Catastrophology, 2021, 36(2)37-42(in Chinese with English abstract) [4] 朱宇航,黄海峰,殷坤龙,等. 基于滑坡破坏模式分析的易发性评价—以三峡库区首段泄滩河左岸为例[J]. 中国地质灾害与防治学报,2023,34(2):156 − 166. [ZHU Yuhang, HUANG Haifeng, YIN Kunlong, et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: A case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):156 − 166. (in Chinese with English abstract)[ZHU Yuhang, HUANG Haifeng, YIN Kunlong, et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: a case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2)156-166(in Chinese with English abstract) [5] 许嘉慧,张虹,文海家,等. 基于逻辑回归的巫山县滑坡易发性区划研究[J]. 重庆师范大学学报(自然科学版),2021,38(2):48 − 56. [XU Jiahui,ZHANG Hong,WEN Haijia,et al. Landslide susceptibility mapping based on logistic regression in Wushan County[J]. Journal of Chongqing Normal University (Natural Science),2021,38(2):48 − 56. (in Chinese with English abstract)Xu Jiahui, Zhang Hong, Wen Haijia, et al. Landslide susceptibility mapping based on logistic regression in Wushan County[J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(2): 48-56. (in Chinese with English abstract) [6] 陈丽霞, 徐勇, 李德营. 武陵山区城镇地质灾害风险评估技术指南及案例分析[M]. 武汉: 中国地质大学出版社, 2019CHEN Lixia, XU Yong, LI Deying. Guidelines and applications for geohazard risk assessment of urban areas in Wuling Mountain region[M]. Wuhan: China University of Geosciences Press, 2019. (in Chinese) [7] BAI Shibiao,WANG Jian,LÜ Guonian,et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area,China[J]. Geomorphology,2010,115(1/2):23 − 31. [8] LONG Jingjing,LIU Yong,LI Changdong,et al. A novel model for regional susceptibility mapping of rainfall-reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province,Three Gorges Reservoir area[J]. Stochastic Environmental Research and Risk Assessment,2021,35(7):1403 − 1426. doi: 10.1007/s00477-020-01892-z [9] 周超,殷坤龙,曹颖,等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学,2020,45(6):1865 − 1876. [ZHOU Chao,YIN Kunlong,CAO Ying,et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost:a case study from the Three Gorges Reservoir area[J]. Earth Science,2020,45(6):1865 − 1876. (in Chinese with English abstract)ZHOU Chao, YIN Kunlong, CAO Ying, et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: a case study from the Three Gorges Reservoir area[J]. Earth Science, 2020, 45(6): 1865-1876. (in Chinese with English abstract) [10] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese with English abstract)TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304-2316. (in Chinese with English abstract) [11] REGMI N R,GIARDINO J R,VITEK J D. Assessing susceptibility to landslides:using models to understand observed changes in slopes[J]. Geomorphology,2010,122(1/2):25 − 38. [12] 王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价—以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797 − 808. [WANG Jiajia,YIN Kunlong,XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou district,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797 − 808. (in Chinese with English abstract)WANG Jiajia, YIN Kunlong, XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808. (in Chinese with English abstract) [13] 周超,殷坤龙,向章波,等. 基于GIS的淳安县滑坡易发性定量评价[J]. 安全与环境工程,2015,22(1):45 − 50. [ZHOU Chao,YIN Kunlong,XIANG Zhangbo,et al. Quantitative evaluation of the landslide susceptibility in Chun'an County based on GIS[J]. Safety and Environmental Engineering,2015,22(1):45 − 50. (in Chinese with English abstract)ZHOU Chao, YIN Kunlong, XIANG Zhangbo, et al. Quantitative evaluation of the landslide susceptibility in Chun'an County based on GIS[J]. Safety and Environmental Engineering, 2015, 22(1): 45-50. (in Chinese with English abstract) [14] 张林梵,王佳运,张茂省,等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质,2022,55(2):260 − 270. [ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology,2022,55(2):260 − 270. (in Chinese with English abstract)[ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260-270.(in Chinese with English abstract) [15] 许冲,徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报,2012,31(3):116 − 121. [XU Chong,XU Xiwei. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information,2012,31(3):116 − 121. (in Chinese with English abstract)XU Chong, XU Xiwei. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 2012, 31(3): 116-121. (in Chinese with English abstract) [16] BRAGAGNOLO L,DA SILVA R V,GRZYBOWSKI J M V. Artificial neural network ensembles applied to the mapping of landslide susceptibility[J]. CATENA,2020,184:104240. doi: 10.1016/j.catena.2019.104240 [17] 陈飞,蔡超,李小双,等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报,2020,39(S01):2859 − 2870. [CHEN Fei,CAI Chao,LI Xiaoshuang,et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S01):2859 − 2870. (in Chinese with English abstract)CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S01): 2859-2870. (in Chinese with English abstract) [18] YU Chenglong,CHEN Jianping. Landslide susceptibility mapping using the slope unit for southeastern Helong city,Jilin Province,China:a comparison of ANN and SVM[J]. Symmetry,2020,12(6):1047. doi: 10.3390/sym12061047 [19] ZHAO Shuai,ZHAO Zhou. A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on grid and slope units[J]. Mathematical Problems in Engineering,2021,2021:1 − 15. [20] LEE S,HONG S M,JUNG H S. A support vector machine for landslide susceptibility mapping in gangwon Province,Korea[J]. Sustainability,2017,9(1):48. doi: 10.3390/su9010048 [21] PRADHAN B. A comparative study on the predictive ability of the decision tree,support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences,2013,51:350 − 365. [22] PARK S,HAMM S Y,KIM J. Performance evaluation of the GIS-based data-mining techniques decision tree,random forest,and rotation forest for landslide susceptibility modeling[J]. Sustainability,2019,11(20):5659. doi: 10.3390/su11205659 [23] SONG Yingxu,NIU Ruiqing,XU Shiluo,et al. Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir area (China)[J]. ISPRS International Journal of Geo-Information,2018,8(1):4. doi: 10.3390/ijgi8010004 [24] YANG Yanguo, YU Jiaqi, FU Yubin, et al. Research on geological hazard risk assessment based on the cloud fuzzy clustering algorithm[J]. Journal of Intelligent & Fuzzy Systems,2019,37(4):4763 − 4770. [25] SRIKANTH B,LAKSHMI V PAPINENI S,SRIDEVI G,et al. Adaptive XGBOOST hyper tuned meta classifier for prediction of churn customers[J]. Intelligent Automation & Soft Computing,2022,33(1):21 − 34. [26] TEHRANY M S,PRADHAN B,MANSOR S,et al. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types[J]. CATENA,2015,125:91 − 101. doi: 10.1016/j.catena.2014.10.017 [27] WU Yuanyuan,WU Li,ZHU Huacheng,et al. Design of high temperature complex dielectric properties measuring system based on XGBoost algorithm[J]. Materials,2020,13(6):1419. doi: 10.3390/ma13061419 [28] 赵建华,陈汉林,杨树锋,等. 基于决策树算法的滑坡危险性区划评价[J]. 浙江大学学报(理学版),2004,31(4):465 − 470. [ZHAO Jianhua,CHEN Hanlin,YANG Shufeng,et al. Landslide risk assessment based on decision tree arithmetic[J]. Journal of Zhejiang University (Science Edition),2004,31(4):465 − 470. (in Chinese with English abstract)Zhao Jianhua, Chen Hanlin, Yang Shufeng, et al. Landslide risk assessment based on decision tree arithmetic[J]. Journal of Zhejiang University (Science Edition), 2004, 31(4): 465-470. (in Chinese with English abstract) [29] 蔡文学,罗永豪,张冠湘,等. 基于GBDT与Logistic回归融合的个人信贷风险评估模型及实证分析[J]. 管理现代化,2017,37(2):1 − 4. [CAI Wenxue, LUO Yonghao, ZHANG Guanxiang, et al. Personal credit risk assessment model and empirical analysis based on the fusion of GBDT and logistic regression[J]. Modernization of Management,2017,37(2):1 − 4. (in Chinese with English abstract)[Cai Wenxue, Luo Yonghao, Zhang Guanxiang, et al. Personal credit risk assessment model and empirical analysis based on the fusion of GBDT and logistic regression[J]. Modernization of Management, 2017, 37(2(in Chinese with English abstract) [30] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 – 17, 2016, San Francisco, California, USA. New York: ACM, 2016: 785 – 794. [31] ZHONG Jiancheng,SUN Yusui,PENG Wei,et al. XGBFEMF:an XGBoost-based framework for essential protein prediction[J]. IEEE Transactions on NanoBioscience,2018,17(3):243 − 250. doi: 10.1109/TNB.2018.2842219 [32] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese with English abstract) [33] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract) [34] 王芳,殷坤龙,桂蕾,等. 不同日降雨工况下万州区滑坡灾害危险性分析[J]. 地质科技情报,2018,37(1):190 − 195. [WANG Fang,YIN Kunlong,GUI Lei,et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou district[J]. Geological Science and Technology Information,2018,37(1):190 − 195. (in Chinese with English abstract)WANG Fang, YIN Kunlong, GUI Lei, et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou district[J]. Geological Science and Technology Information, 2018, 37(1): 190-195. (in Chinese with English abstract) [35] 刘渊博,牛瑞卿,于宪煜,等. 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报(信息科学版),2018,43(6):959 − 964. [LIU Yuanbo,NIU Ruiqing,YU Xianyu,et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2018,43(6):959 − 964. (in Chinese with English abstract)LIU Yuanbo, NIU Ruiqing, YU Xianyu, et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964. (in Chinese with English abstract) [36] BASHEER I A,HAJMEER M. Artificial neural networks:fundamentals,computing,design,and application[J]. Journal of Microbiological Methods,2000,43(1):3 − 31. doi: 10.1016/S0167-7012(00)00201-3 [37] TIAN Liwei,FENG Li,SUN Yu,et al. Forecast of LSTM-XGBoost in stock price based on Bayesian optimization[J]. Intelligent Automation & Soft Computing,2021,29(3):855 − 868. [38] CHEN Yu,WEI Yongming,WANG Qinjun,et al. Mapping post-earthquake landslide susceptibility:A U-net like approach[J]. Remote Sensing,2020,12(17):2767. doi: 10.3390/rs12172767 [39] ZHANG Kaixiang,WU Xueling,NIU Ruiqing,et al. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China[J]. Environmental Earth Sciences,2017,76(11):405. doi: 10.1007/s12665-017-6731-5 -