Slope stability analysis of open-pit mine based on analytic hierarchy process-fuzzy comprehensive evaluation model
-
摘要: 露天煤矿台阶所构成的边坡是煤炭资源生产运输的重要依托对象,其稳定性评价对指导矿山连续生产具有重要的意义。本文在监测信息分析和边坡地质调查的基础上,充分考虑边坡几何形态、地质信息、气象水文信息、现场监测信息等多种指标信息,以层次分析法确定边坡稳定性分析的指标权重,基于隶属度最大原则确定边坡稳定性状态,建立了多源信息融合的边坡层次分析-模糊综合评价模型。将该模型应用于扎哈淖尔露天煤矿北帮边坡稳定性分析中,最后基于数值模拟对模型进行了验证。研究表明,基于所建立的边坡层次分析-模糊综合评价模型确定北帮边坡为基本稳定状态,基于数值模拟得出扎哈淖尔露天煤矿北帮边坡滑移面安全系数为1.121,模型结果与数值模拟结果所得到的边坡稳定性状态吻合度较好,验证了模型的有效性。该模型可以充分考虑多重信息对边坡稳定性分析的贡献,从而更全面准确分析边坡稳定性。Abstract: The bench slope within an open-pit coal mine plays an important supporting role for coal resource production and transportation. The stability evaluation of the slope is of great significance in guiding continuous mining operations within the mine. This study leverages monitoring data and geological surveys of the slope, employing the analytic hierarchy process (AHP) to assign weights to slope stability analysis factors. Additionally, it employs the principle of maximum membership degree, taking into account various parameters such as slope geometry, geological data, meteorological and hydrological information, and field monitoring data. This paper establishes an analytic hierarchy process - fuzzy comprehensive evaluation model for slope stability assessment. Subsequently, the model is applied to analyze the stability of the north slope at the Zhahanao’er open-pit coal mine. The research indicates that, accordingly to the established slope analytic hierarchy process - fuzzy comprehensive evaluation model, the northern slope is deemed to be fundamentally stable. The numerical simulated FOS (factor of safety) of 1.121 aligns remarkably well with model results. It is comprehensive and accurate since the model can fully consider the contribution of multiple information to the stability of slope.
-
表 1 连续型指标影响等级划分
Table 1. Classification of Impact levels for continuous influencing indicators
稳定性 坡高/m 坡度/° 年降雨量/mm 地表变形
速率(mm/d)稳定 0~100 0~15 0~500 5 基本
稳定100~200 15~30 500~800 5~30 欠稳定 200~300 30~50 800~1200 30~80 不稳定 >300 >50 >1200 >80 表 2 离散型指标影响等级划分
Table 2. Classification of Impact levels for discrete influencing indicators
稳定性 岩性 结构类型 弱层 地面变形 地下水影响 稳定 坚硬岩体 反倾坡 无 无 很弱 基本
稳定中等坚硬 斜交
横坡反倾夹层 弱 较弱 欠稳定 软弱岩体 近水平坡 顺倾夹层、反倾基岩 中等 较强 不稳定 松散体 顺向坡 顺倾基岩 强烈 很强 表 3 层次分析法影响因子标度
Table 3. Analytic hierarchy Process (AHP) influence factor scale
标度 含义 1 ${u_i}$和${u_j}$指标影响程度相同 3 ${u_i}$和${u_j}$指标影响程度相比,一个比另一个稍微重要 5 ${u_i}$和${u_j}$指标影响程度相比,一个比另一个明显重要 7 ${u_i}$和${u_j}$指标影响程度相比,一个比另一个强烈重要 9 ${u_i}$和${u_j}$指标影响程度相比,一个比另一个极端重要 2,4,6,8 介于以上两种比较之间的标度值 倒数 ${u_i}$和${u_j}$指标之间判断${b_{ij}}$,${u_j}$和${u_i}$指标之间判断${1 \mathord{\left/ {\vphantom {1 {{b_{ij}}}}} \right. } {{b_{ij}}}}$ 表 4 离散型指标评价隶属度表
Table 4. Discrete index evaluation membership degree
离散型指标 具体指标 离散型指标评价隶属度 稳定 基本稳定 欠稳定 不稳定 岩性 坚硬岩体 0.8 0.2 0 0 中等坚硬 0.4 0.5 0.1 0 软弱岩体 0 0.2 0.5 0.3 松散体 0 0 0.2 0.8 结构类型 顺向坡 0 0 0.2 0.8 近水平坡 0.1 0.2 0.7 0 斜交/横坡 0.2 0.7 0.1 0 均质/反倾 0.8 0.2 0 0 弱层 无 1 0 0 0 反倾夹层 0.2 0.7 0.1 0 顺倾夹层、反倾基岩 0 0.1 0.7 0.2 顺倾基岩 0 0 0.2 0.8 地面变形 无 0.8 0.2 0 0 弱 0.2 0.7 0.1 0 中等 0 0.1 0.7 0.2 强烈 0 0 0.2 0.8 地下水影响 很弱 0.55 0.30 0.10 0.05 较弱 0.25 0.50 0.15 0.10 较强 0.05 0.10 0.30 0.55 很强 0.05 0.15 0.10 0.70 表 5 北帮边坡定量指标隶属度
Table 5. Membership degree of quantitative indexes for the Northern Slope
稳定性 坡高隶属度 坡度隶属度 年平均降
雨量
隶属度地表变形速率
隶属度稳定 0 0.86 1 0 基本稳定 0.16 0.14 0 0.83 欠稳定 0.84 0 0 0.17 不稳定 0 0 0 0 表 6 北帮边坡定性指标隶属度
Table 6. Membership degrees of qualitative indexes for the Northern Slope
稳定性 岩性隶属度 结构类型
隶属度弱层隶属度 地面
变形
隶属度地下水影响
隶属度稳定 0 0.8 0.2 0 0.05 基本稳定 0.2 0.2 0.7 0 0.1 欠稳定 0.5 0 0.1 0.2 0.3 不稳定 0.3 0 0 0.8 0.55 表 7 岩层物理力学参数表
Table 7. Physico-mechanical parameters of strata
岩层 重度/(kN·m−3) 内聚力/kPa 内摩擦角/° 排弃物料 17.7 9.8 10.0 第三系粘土层 17.9 21.0 12.0 第四系细砂层 17.9 17.0 11.7 浅部泥岩 20.2 50.0 12.6 泥砂岩互层 23.45 70.0 24.6 煤层 12.7 60 24.5 弱层 17.9 7 5.7 表 8 边坡稳定性状态划分
Table 8. Classification of Slope Stability States
边坡安全系数F F<1.00 1.00≤F<1.05 1.05≤F<1.2 F≥1.2 边坡稳定状态 不稳定 欠稳定 基本稳定 稳定 -
[1] 李浩荡,佘长超,周永利,等. 我国露天煤矿开采技术综述及展望[J]. 煤炭科学技术,2019,47(10):24 − 35. [LI Haodang,SHE Changchao,ZHOU Yongli,et al. Summary and prospect of open-pit coal mining technology in China[J]. Coal Science and Technology,2019,47(10):24 − 35. (in Chinese with English abstract) LI Haodang, SHE Changchao, ZHOU Yongli, et al . Summary and prospect of open-pit coal mining technology in China[J]. Coal Science and Technology,2019 ,47 (10 ):24 −35 . (in Chinese with English abstract)[2] WEI Zuoan,YIN Guangzhi,WAN Ling,et al. Case history of controlling a landslide at Panluo open-pit mine in China[J]. Environmental Geology,2008,54(4):699 − 709. doi: 10.1007/s00254-007-0839-y [3] 谭文辉,乔兰,王鹏. 高陡边坡岩体力学环境的模糊综合评判研究[J]. 金属矿山,2002(12):20 − 22. [TAN Wenhui,QIAO Lan,WANG Peng. Study on the fuzzy comprehensive evaluation of the mechanical environment of rockmass in high-steep slopes[J]. Metal Mine,2002(12):20 − 22. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-1250.2002.12.007 TAN Wenhui, QIAO Lan, WANG Peng . Study on the fuzzy comprehensive evaluation of the mechanical environment of rockmass in high-steep slopes[J]. Metal Mine,2002 (12 ):20 −22 . (in Chinese with English abstract) doi: 10.3321/j.issn:1001-1250.2002.12.007[4] 张永杰,邓俊强,李侑军,等. 考虑隶属函数特性的边坡模糊可靠性分析[J]. 岩土工程学报,2018,40(7):1350 − 1358. [ZHANG Yongjie,DENG Junqiang,LI Youjun,et al. Fuzzy reliability analysis of slopes considering characteristics of membership function[J]. Chinese Journal of Geotechnical Engineering,2018,40(7):1350 − 1358. (in Chinese with English abstract) ZHANG Yongjie, DENG Junqiang, LI Youjun, et al . Fuzzy reliability analysis of slopes considering characteristics of membership function[J]. Chinese Journal of Geotechnical Engineering,2018 ,40 (7 ):1350 −1358 . (in Chinese with English abstract)[5] 蒋中明. 模糊分析理论及其岩土工程中的应用研究[J]. 岩石力学与工程学报,2004,23(24):4263. [JIANG Zhongming. Study on fuzzy analysis theory and its application in geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(24):4263. (in Chinese with English abstract) JIANG Zhongming . Study on fuzzy analysis theory and its application in geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2004 ,23 (24 ):4263 . (in Chinese with English abstract)[6] 丁浩江,许模,曾令科,等. 澜沧江某水电站泄洪洞出口边坡稳定性评价[J]. 中国地质灾害与防治学报,2007,18(1):5 − 9. [DING Haojiang,XU Mo,ZENG Lingke,et al. Evaluation on slope stability of a hydroelectric station spillway,Lancang River[J]. The Chinese Journal of Geological Hazard and Control,2007,18(1):5 − 9. (in Chinese with English abstract) DING Haojiang, XU Mo, ZENG Lingke, et al . Evaluation on slope stability of a hydroelectric station spillway, Lancang River[J]. The Chinese Journal of Geological Hazard and Control,2007 ,18 (1 ):5 −9 . (in Chinese with English abstract)[7] 王华俊,徐洪科,董理金. 山区公路岩质路堑边坡稳定性评定方法粗探[J]. 中国地质灾害与防治学报,2017,28(1):62 − 66. [WANG Huajun,XU Hongke,DONG Lijin. Assessment methods of highway rock slope stability research[J]. The Chinese Journal of Geological Hazard and Control,2017,28(1):62 − 66. (in Chinese with English abstract) WANG Huajun, XU Hongke, DONG Lijin . Assessment methods of highway rock slope stability research[J]. The Chinese Journal of Geological Hazard and Control,2017 ,28 (1 ):62 −66 . (in Chinese with English abstract)[8] 刘春. 运用AHP-FUZZY法判定岩质边坡稳定性[J]. 华侨大学学报(自然科学版),2006,27(4):388 − 391. [LIU Chun. Slope stability analysis by AHP-FUZZY method[J]. Journal of Huaqiao University (Natural Science),2006,27(4):388 − 391. (in Chinese with English abstract) LIU Chun . Slope stability analysis by AHP-FUZZY method[J]. Journal of Huaqiao University (Natural Science),2006 ,27 (4 ):388 −391 . (in Chinese with English abstract)[9] 胡田飞,朱本珍. 基于熵权法和层次分析法的复杂边坡稳定性模糊综合评价方法[J]. 铁道建筑,2013,53(12):69 − 73. [HU Tianfei,ZHU Benzhen. Fuzzy comprehensive evaluation method of complex slope stability based on entropy weight method and analytic hierarchy process[J]. Railway Engineering,2013,53(12):69 − 73. (in Chinese) HU Tianfei, ZHU Benzhen . Fuzzy comprehensive evaluation method of complex slope stability based on entropy weight method and analytic hierarchy process[J]. Railway Engineering,2013 ,53 (12 ):69 −73 . (in Chinese)[10] 张紫杉,王述红,王斐笠. 基于空间块体表征的岩质边坡稳定性综合评价[J]. 东北大学学报(自然科学版),2018,39(6):896 − 901. [ZHANG Zishan,WANG Shuhong,WANG Feili. Comprehensive assessment of rock slope stability based on spatial block identification[J]. Journal of Northeastern University (Natural Science),2018,39(6):896 − 901. (in Chinese with English abstract) ZHANG Zishan, WANG Shuhong, WANG Feili . Comprehensive assessment of rock slope stability based on spatial block identification[J]. Journal of Northeastern University (Natural Science),2018 ,39 (6 ):896 −901 . (in Chinese with English abstract)[11] 张勇慧,李红旭,盛谦,等. 基于模糊综合评判的公路岩质边坡稳定性分级研究[J]. 岩土力学,2010,31(10):3151 − 3156. [ZHANG Yonghui,LI Hongxu,SHENG Qian,et al. Study of stability gradation of highway rock slopes based on fuzzy comprehensive evaluation[J]. Rock and Soil Mechanics,2010,31(10):3151 − 3156. (in Chinese with English abstract) ZHANG Yonghui, LI Hongxu, SHENG Qian, et al . Study of stability gradation of highway rock slopes based on fuzzy comprehensive evaluation[J]. Rock and Soil Mechanics,2010 ,31 (10 ):3151 −3156 . (in Chinese with English abstract)[12] 彭东黎,胡甜,郭云开. 基于Fuzzy-AHP的膨胀土边坡稳定性多级综合评判[J]. 中南大学学报(自然科学版),2014,45(2):622 − 628. [PENG Dongli,HU Tian,GUO Yunkai. Evaluation of expansive soil slope stability based on Fuzzy-AHP method[J]. Journal of Central South University (Science and Technology),2014,45(2):622 − 628. (in Chinese with English abstract) PENG Dongli, HU Tian, GUO Yunkai . Evaluation of expansive soil slope stability based on Fuzzy-AHP method[J]. Journal of Central South University (Science and Technology),2014 ,45 (2 ):622 −628 . (in Chinese with English abstract)[13] PARK H J,UM J G,WOO I,et al. Application of fuzzy set theory to evaluate the probability of failure in rock slopes[J]. Engineering Geology,2012,125:92 − 101. doi: 10.1016/j.enggeo.2011.11.008 [14] 中华人民共和国住房和城乡建设部. 煤炭工业露天矿边坡工程设计标准. 北京:中国计划出版社:2018. [Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of slope engineering of open pit mine of coal industry. Beijing:China Planning Press:2018.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of slope engineering of open pit mine of coal industry. Beijing: China Planning Press: 2018. [15] 孙书伟,朱本珍,马惠民. 一种基于模糊理论的区域性高边坡稳定性评价方法[J]. 铁道学报,2010,32(3):77 − 83. [SUN Shuwei,ZHU Benzhen,MA Huimin. Method based on fuzzy theory for evaluation of regional high slopes stability[J]. Journal of the China Railway Society,2010,32(3):77 − 83. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-8360.2010.03.014 SUN Shuwei, ZHU Benzhen, MA Huimin . Method based on fuzzy theory for evaluation of regional high slopes stability[J]. Journal of the China Railway Society,2010 ,32 (3 ):77 −83 . (in Chinese with English abstract) doi: 10.3969/j.issn.1001-8360.2010.03.014[16] 徐建,董杰华,徐中来,等. 基于改进AHP-模糊综合评判方法的露天矿边坡稳定性评价[J]. 水利与建筑工程学报,2020,18(6):213 − 218. [XU Jian,DONG Jiehua,XU Zhonglai,et al. Slope stability evaluation of open pit mine based on improved AHP- fuzzy comprehensive evaluation method[J]. Journal of Water Resources and Architectural Engineering,2020,18(6):213 − 218. (in Chinese) doi: 10.3969/j.issn.1672-1144.2020.06.036 XU Jian, DONG Jiehua, XU Zhonglai, et al . Slope stability evaluation of open pit mine based on improved AHP- fuzzy comprehensive evaluation method[J]. Journal of Water Resources and Architectural Engineering,2020 ,18 (6 ):213 −218 . (in Chinese) doi: 10.3969/j.issn.1672-1144.2020.06.036[17] CHEN Wei,LI Wenping,CHAI Huichan,et al. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City,China[J]. Environmental Earth Sciences,2016,75(1):63. doi: 10.1007/s12665-015-4795-7 [18] 唐亚明,程秀娟,薛强,等. 基于层次分析法的黄土滑塌风险评价指标权重分析[J]. 中国地质灾害与防治学报,2012,23(4):40 − 46. [TANG Yaming,CHENG Xiujuan,XUE Qiang,et al. Weights analysis of Loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control,2012,23(4):40 − 46. (in Chinese with English abstract) TANG Yaming, CHENG Xiujuan, XUE Qiang, et al . Weights analysis of Loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control,2012 ,23 (4 ):40 −46 . (in Chinese with English abstract)[19] 谢全敏,夏元友. 岩体边坡治理决策的模糊层次分析方法研究[J]. 岩石力学与工程学报,2003,22(7):1117 − 1120. [XIE Quanmin,XIA Yuanyou. Fuzzy hierarchy analysis on decision making of rockmass slope treatment based on entropy weight[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(7):1117 − 1120. (in Chinese with English abstract) XIE Quanmin, XIA Yuanyou . Fuzzy hierarchy analysis on decision making of rockmass slope treatment based on entropy weight[J]. Chinese Journal of Rock Mechanics and Engineering,2003 ,22 (7 ):1117 −1120 . (in Chinese with English abstract)[20] 徐卫亚,蒋中明,石安池. 基于模糊集理论的边坡稳定性分析[J]. 岩土工程学报,2003,25(4):409 − 413. [XU Weiya,JIANG Zhongming,SHI Anchi. Slope stability analysis using fuzzy sets theory[J]. Chinese Journal of Geotechnical Engineering,2003,25(4):409 − 413. (in Chinese with English abstract) XU Weiya, JIANG Zhongming, SHI Anchi . Slope stability analysis using fuzzy sets theory[J]. Chinese Journal of Geotechnical Engineering,2003 ,25 (4 ):409 −413 . (in Chinese with English abstract)[21] 牛昴懿,杨春风. 锚固路堑高边坡稳定性非线性模糊评判[J]. 公路交通技术,2015,31(2):13 − 19. [NIU Maoyi,YANG Chunfeng. Nonlinear fuzzy evaluation for stability of high cut slopes after anchorage[J]. Technology of Highway and Transport,2015,31(2):13 − 19. (in Chinese with English abstract) NIU Maoyi, YANG Chunfeng . Nonlinear fuzzy evaluation for stability of high cut slopes after anchorage[J]. Technology of Highway and Transport,2015 ,31 (2 ):13 −19 . (in Chinese with English abstract)[22] SUN Wenbin,XUE Yanchao. An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining[J]. Geotechnical and Geological Engineering,2019,37(3):1135 − 1145. doi: 10.1007/s10706-018-0673-x [23] 徐勇超,李苗苗. 扎哈淖尔露天矿北帮边坡稳定性研究[J]. 露天采矿技术,2020,35(2):14 − 18. [XU Yongchao,LI Miaomiao. Study on stability of north slope of Zhahanao'er Open-pit Mine[J]. Opencast Mining Technology,2020,35(2):14 − 18. (in Chinese with English abstract) XU Yongchao, LI Miaomiao . Study on stability of north slope of Zhahanao'er Open-pit Mine[J]. Opencast Mining Technology,2020 ,35 (2 ):14 −18 . (in Chinese with English abstract)[24] 白润才,王东旭,王珍. 扎哈淖尔露天矿北帮边坡形态优化设计[J]. 中国地质灾害与防治学报,2018,29(5):142 − 146. [BAI Runcai,WANG Dongxu,WANG Zhen. Optimum design on the slope shape in the Zhahanao'er open-pit mine[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):142 − 146. (in Chinese with English abstract) BAI Runcai, WANG Dongxu, WANG Zhen . Optimum design on the slope shape in the Zhahanao'er open-pit mine[J]. The Chinese Journal of Geological Hazard and Control,2018 ,29 (5 ):142 −146 . (in Chinese with English abstract)[25] 虢柱,聂春龙. 基于AHP分析的二级模糊综合评价模型及在边坡风险易损性评价中的应用[J]. 铁道科学与工程学报,2012,9(5):50 − 53. [GUO Zhu,NIE Chunlong. Study of AHP fuzzy method and its application evaluating of damageability in slope[J]. Journal of Railway Science and Engineering,2012,9(5):50 − 53. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2012.05.010 GUO Zhu, NIE Chunlong . Study of AHP fuzzy method and its application evaluating of damageability in slope[J]. Journal of Railway Science and Engineering,2012 ,9 (5 ):50 −53 . (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2012.05.010[26] 付玉宁. 边坡形态与岩层产状对反倾向边坡稳定性影响的数值分析[D]. 西安:长安大学,2015. [FU Yuning. Numerical analysis of the influence of slope shape and rock occurrence on the stability of anti-dip slope[D]. Xi'an:Changan University,2015. (in Chinese with English abstract) of anti-inclined slope[D]. [Master]:Chang’an University:2015.FU Yuning. Numerical analysis of the influence of slope shape and rock occurrence on the stability of anti-dip slope[D]. Xi'an: Changan University, 2015. (in Chinese with English abstract) of anti-inclined slope[D]. [Master]: Chang’an University: 2015. [27] 梁乃森,钱程,穆文平,等. 大牛地气田区地下水水质模糊综合评价[J]. 水文地质工程地质,2020,47(3):52 − 59. [LIANG Naisen,QIAN Cheng,MU Wenping,et al. Fuzzy comprehensive evaluation of groundwater quality of the Daniudi gas field area[J]. Hydrogeology & Engineering Geology,2020,47(3):52 − 59. (in Chinese with English abstract) LIANG Naisen, QIAN Cheng, MU Wenping, et al . Fuzzy comprehensive evaluation of groundwater quality of the Daniudi gas field area[J]. Hydrogeology & Engineering Geology,2020 ,47 (3 ):52 −59 . (in Chinese with English abstract)[28] 朱小飞,王永君,李大军. 模糊评价中最大隶属度原则有效性检验[J]. 测绘与空间地理信息,2016,39(5):135 − 137. [ZHU Xiaofei,WANG Yongjun,LI Dajun. The effectiveness test of the maximum membership principle in fuzzy comprehensive evaluation[J]. Geomatics & Spatial Information Technology,2016,39(5):135 − 137. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-5867.2016.05.039 ZHU Xiaofei, WANG Yongjun, LI Dajun . The effectiveness test of the maximum membership principle in fuzzy comprehensive evaluation[J]. Geomatics & Spatial Information Technology,2016 ,39 (5 ):135 −137 . (in Chinese with English abstract) doi: 10.3969/j.issn.1672-5867.2016.05.039[29] 陈亮,邬长福,陈祖云,等. 基于AHP-模糊综合评价法的非煤露天矿山安全标准化复评体系研究[J]. 矿业研究与开发,2016,36(4):99 − 103. [CHEN Liang,WU Changfu,CHEN Zuyun,et al. Study on the reevaluation system of non-coal open-pit mine safety standardization by AHP-fuzzy comprehensive evaluation method[J]. Mining Research and Development,2016,36(4):99 − 103. (in Chinese with English abstract) CHEN Liang, WU Changfu, CHEN Zuyun, et al . Study on the reevaluation system of non-coal open-pit mine safety standardization by AHP-fuzzy comprehensive evaluation method[J]. Mining Research and Development,2016 ,36 (4 ):99 −103 . (in Chinese with English abstract)[30] ZHANG Fei,YANG Tianhong,LI Lianchong,et al. Cooperative monitoring and numerical investigation on the stability of the south slope of the Fushun west open-pit mine[J]. Bulletin of Engineering Geology and the Environment,2019,78(4):2409 − 2429. doi: 10.1007/s10064-018-1248-z [31] LI Yuchao,CHEN Jianping,ZHOU Fujun,et al. Stability evaluation of rock slope based on discrete fracture network and discrete element model:a case study for the right bank of Yigong Zangbu Bridge[J]. Acta Geotechnica,2022,17(4):1423 − 1441. doi: 10.1007/s11440-021-01369-5 [32] 杨建成,邓琴. 基于局部强度折减法的多级边坡潜在滑动面分析[J]. 公路,2016,61(12):19 − 23. [YANG Jiancheng,DENG Qin. Analysis of multi-stage slope potential sliding surface based on local strength reduction method[J]. Highway,2016,61(12):19 − 23. (in Chinese with English abstract) YANG Jiancheng, DENG Qin . Analysis of multi-stage slope potential sliding surface based on local strength reduction method[J]. Highway,2016 ,61 (12 ):19 −23 . (in Chinese with English abstract)[33] 侯世伟,马士贺,李宏男,等. 基于局部强度阶梯折减法的边坡渐进破坏研究[J]. 防灾减灾工程学报,2020,40(1):72 − 78. [HOU Shiwei,MA Shihe,LI Hongnan,et al. Research on progressive slope failure based on stepwise reduction method of local strength[J]. Journal of Disaster Prevention and Mitigation Engineering,2020,40(1):72 − 78. (in Chinese with English abstract) HOU Shiwei, MA Shihe, LI Hongnan, et al . Research on progressive slope failure based on stepwise reduction method of local strength[J]. Journal of Disaster Prevention and Mitigation Engineering,2020 ,40 (1 ):72 −78 . (in Chinese with English abstract) -