Formation process of the cover-collapse Sinkhole Induced By Groundwater Changes based on the Coupled LBM-DEM numerical simulation at micro scale
-
摘要: 本文以水力驱动的覆盖型岩溶地面塌陷为背景,基于离散元方法和格子Boltzmann方法,采用Bouzidi插值反弹边界格式和动量交换法,建立一种可以从细观角度模拟覆盖型岩溶塌陷的二维格子Boltzmann方法—离散元方法流固耦合模型。在此基础上对承压水下降引起覆盖型岩溶塌陷数值模拟开展了探索性研究。模拟结果表明:承压水位下降工况中地下水主要对隔水层岩溶开口处的颗粒产生影响,对土洞周围土体产生向下的作用力;土体颗粒的剥落容易造成土颗粒原位置和上方位置处水压的陡降,从而造成较强的水力坡降,使得地下水对内部颗粒作用力陡增,容易引起上方颗粒在地下水作用力和重力作用下失稳,导致从土体颗粒失稳至土层塌陷逐渐加速。研究成果对进一步从细观尺度进行水力驱动的覆盖型岩溶地面塌陷的发育过程与特征研究具有理论及实际意义。Abstract: To investigate the hydraulic characteristics and soil behaviors during the formation of cover-collapse sinkholes induced by the groundwater changes, a 2D fluid-solid coupling model was developed based on discrete element method and lattice Boltzmann method. This model utilizes the linearly interpolated bounce-back scheme of Bouzidi and the momentum exchange method, allowing for the simulation of the formation of cover-collapse sinkhole from a microscopic perspective. Using the fluid-solid coupling model, an exploratory study was conducted to simulate the formation of cover-collapse sinkholes induced by a decrease in the hydraulic head of confined aquifers. Simulation results indicate that when the water level of a confined aquifer declines, the groundwater flow mainly affects the particles located above a cave opening and produces a downward force on the surrounding soil. When soil particles spall, the hydraulic heads at the positions of the spalled soil particles drop sharply. This results in a significant increase in the hydraulic gradient, causing the groundwater force on internal particles to sharply increase as well. As a result, the upper particles lose stability due to the combined force of groundwater dragging and gravitational force, which can lead to a gradual acceleration process of collapse. The research results provide valuable insights into the understanding of cover-collapse sinkhole formation induced by the groundwater changes.
-
Key words:
- cover-collapse sinkhole /
- groundwater /
- numerical simulation /
- LBM-DEM method /
- micro scale
-
表 1 计算模型参数
Table 1. Summary of simulation model parameters
参数名称 值 固体(DEM) 密度/(kg m−3) 2700 杨氏模量/(Pa) 100E6 泊松比 0.3 内摩察角/(°) 20 法向粘聚力/(N m−1) 150 切向粘聚力/(N m−1) 150 时间步长/(s) 2.5E-5 重力加速度/(m s−2) 9.8 流体(LBM) 密度/(kg m−3) 1000 运动粘滞系数/(m2 s−1) 1.01E-6 时间步长/(s) 0.0001 空间步长/(m) 0.0001 -
[1] ZALASIEWICZ J,WILLIAMS M,STEFFEN W,et al. The new world of the Anthropocene[J]. Environmental Science & Technology,2010,44(7):2228 − 2231. [2] PRICE S J,FORD J R,COOPER A H,et al. Humans as major geological and geomorphological agents in the Anthropocene:the significance of artificial ground in Great Britain[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2011,369(1938):1056 − 1084. [3] 李前银. 再论岩溶塌陷的形成机制[J]. 中国地质灾害与防治学报,2009,20(3):52 − 55. [LI Qianyin. Further study on formation mechanism of Karst collaps[J]. The Chinese Journal of Geological Hazard and Control,2009,20(3):52 − 55. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2009.03.018 [4] 余政兴,金福喜,段选亮. 河床透-阻型岩溶塌陷形成机理[J]. 中国地质灾害与防治学报,2020,31(2):57 − 66. [YU Zhengxing,JIN Fuxi,DUAN Xuanliang. Formation mechanism of Karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):57 − 66. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.02.08 [5] 车增光,刘洪,喻永祥. 苏州市金庭镇蒋东岩溶塌陷地质条件及形成机理研究[J]. 华东地质,2021,42(1):85 − 92. [Che Zengguang,Liu Hong,Yu Yongxiang. Study on geological conditions and formation mechanism of Karst collapse in Jiangdong Village,Jinting Town,Suzhou City[J]. East China Geology,2021,42(1):85 − 92. (in Chinese) [6] 缪世贤,黄敬军,武鑫,等. 徐州岩溶地质调查及其发育特征分析[J]. 水文地质工程地质,2017,44(2):172 − 177. [MIAO Shixian,HUANG Jingjun,WU Xin,et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology and Engineering Geology,2017,44(2):172 − 177. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.02.26 [7] 万志清,秦四清,李志刚,等. 土洞形成的机理及起始条件[J]. 岩石力学与工程学报,2003,22(8):1377 − 1382. [WAN Zhiqing,QIN Siqing,LI Zhigang,et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1377 − 1382. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.08.028 [8] 王滨,贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学,2006,27(3):458 − 462. [Wang Bin,He Keqiang. Study on limit equilibrium height expression of critical soil cave of Karst collapse[J]. Rock and Soil Mechanics,2006,27(3):458 − 462. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.03.024 [9] 陶小虎,赵坚,Xiaoming Wang,等. 地下水位变化对透-阻型岩溶塌陷影响的分析[J]. 中国岩溶,2017,36(6):777 − 785. [TAO Xiaohu,JIAN Zhao,WANG Xiaoming,et al. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica,2017,36(6):777 − 785. (in Chinese with English abstract) doi: 10.11932/karst2017y50 [10] 孙金辉. 覆盖型岩溶塌陷临界参数模型试验与数值模拟研究[D]. 成都: 西南交通大学,SUN Jinhui. Model test and numerical simulation of critical parameters of overlying Karst collapse[D]. Chengdu: Southwest Jiaotong University, . (in Chinese with English abstract) [11] LEI Mingtang, GAO Yongli, JIANG Xiaozhen, et al. Experimental study of physical models for sinkhole collapses in Wuhan, China[C]//Sinkholes and the Engineering and Environmental Impacts of Karst. San Antonio, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 91-102. [12] MAHMOUD A. Application of digital image cross correlation to study sinkhole collapse[J]. ISRN Soil Science,2013,2013:1 − 6. [13] Y F,Zhou,. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics,2014,55:330 − 341. doi: 10.1016/j.compgeo.2013.09.009 [14] ALI S M. Modelling The Effect Of Void Migration Underneath Landfill Liner System [D]; University of Nottingham, 2003. [15] 金晓文,陈植华,曾斌,等. 岩溶塌陷机理定量研究的初步思考[J]. 中国岩溶,2013,32(4):437 − 446. [JIN Xiaowen,CHEN Zhihua,ZENG Bin,et al. Preliminary thinking of quantitative research on the mechanism of Karst collapse[J]. Carsologica Sinica,2013,32(4):437 − 446. (in Chinese with English abstract) [16] CUNDALL P A. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems[M]. In Proc Int Symp Rock Fracture. Nancy; ISRM. 1971: 2 − 8. [17] 周健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京: 科学出版社, 2008ZHOU Jian, JIA Mincai. Meso-model test and numerical simulation of geotechnical engineering[M]. Beijing: Science Press, 2008. (in Chinese with English abstract) [18] 陈松贵. 宾汉姆流体的LBM-DEM方法及自密实混凝土复杂流动研究[D]. 北京: 清华大学,CHEN Songgui. Study on LBM-DEM method of Bingham fluid and complex flow of self-compacting concrete[D]. Beijing: Tsinghua University, . (in Chinese with English abstract) [19] QIAN Y H,D'HUMIÈRES D,LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters (EPL),1992,17(6):479 − 484. doi: 10.1209/0295-5075/17/6/001 [20] BOUZIDI M,FIRDAOUSS M,LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids,2001,13(11):3452 − 3459. doi: 10.1063/1.1399290 [21] MEI Renwei, YU Dazhi, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 1): 041203. [22] CUI Xilin. Numerical simulation of internal fluidisation and cavity evolution due to a leaking pipe using the coupled Dem-lbm technique[D]. Birmingham, West Midlands, UK: University of Birmingham, 2013. [23] LOMINÉ F,SCHOLTÈS L,SIBILLE L,et al. Modeling of fluid-solid interaction in granular media with coupled lattice Boltzmann/discrete element methods:Application to piping erosion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(6):577 − 596. doi: 10.1002/nag.1109 [24] LHL A,GN B,ZB A,et al. Hydro-mechanical modeling of sinkhole occurrence processes in covered karst terrains during a flood[J]. Engineering Geology,2019,260:105249. doi: 10.1016/j.enggeo.2019.105249 [25] HENTZ S. Modélisation d’une structure en béton armé soumise à un choc par la méthode des eléments discrets [D]. Grenoble: Université Grenoble 1 - Joseph Fourier, 2003. [26] MIKIO,SAKAI. Study on a large-scale discrete element model for fine particles in a fluidized bed[J]. Advanced Powder Technology,2012,23(5):673 − 681. doi: 10.1016/j.apt.2011.08.006 [27] 汤志刚,蔡承刚,王艳红,等. 基于光纤传感的石膏矿地面塌陷监测预警系统[J]. 中国地质灾害与防治学报,2022,33(5):93 − 101. [TANG Zhigang,CAI Chenggang,WANG Yanhong,et al. Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):93 − 101. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.202108034 [28] 何军,刘磊,黎清华,等. 隐伏岩溶区地下空间探测技术方法研究—以武汉市为例[J]. 水文地质工程地质,2020,47(6):47 − 56. [HE Jun,LIU Lei,LI Qinghua,et al. Techniques for detecting underground space in hidden Karst region:Taking Wuhan as an example[J]. Hydrogeology & Engineering Geology,2020,47(6):47 − 56. (in Chinese with English abstract) [29] 查甫生,刘从民,苏晶文,等. 铜陵市朝山地区岩溶塌陷形成条件与地面稳定性评价分析[J]. 地质论评,2020,66(1):246 − 254. [ZHA Fusheng,LIU Congmin,SU Jingwen,et al. Formation conditions of Karst collapse and evaluation of ground stability in Chaoshan area of Tongling City[J]. Geological Review,2020,66(1):246 − 254. (in Chinese) doi: 10.16509/j.georeview.2020.01.018 -