ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火后泥石流起动降雨阈值分析

王元欢 沈昊文 谢万银 鲁科 胡桂胜

王元欢,沈昊文,谢万银,等. 火后泥石流起动降雨阈值分析−以四川乡城仁额拥沟泥石流为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202208007
引用本文: 王元欢,沈昊文,谢万银,等. 火后泥石流起动降雨阈值分析−以四川乡城仁额拥沟泥石流为例[J]. 中国地质灾害与防治学报,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202208007
WANG Yuanhuan,SHEN Haowen,XIE Wanyin,et al. Analysis of the rainfall threshold for post-fire debris flow initiation: A case study of the debris flow at Ren’eyong gully in Xiangcheng county, Sichuan province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202208007
Citation: WANG Yuanhuan,SHEN Haowen,XIE Wanyin,et al. Analysis of the rainfall threshold for post-fire debris flow initiation: A case study of the debris flow at Ren’eyong gully in Xiangcheng county, Sichuan province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202208007

火后泥石流起动降雨阈值分析

doi: 10.16031/j.cnki.issn.1003-8035.202208007
基金项目: 第二次青藏高原综合科学考察研究项目(2019QZKK0902)、中国科学院青年创新促进会项目(2020367)、国家自然基金联合基金项目-小流域沟源凹槽土体滑坡形成泥石流的动力机制与灾害预判(U20A20110)
详细信息
    作者简介:

    王元欢(1985-),男,四川巴中人,本科,工程师,研究方向为岩土工程及地质灾害。E-mail:316919296@qq.com

    通讯作者:

    沈昊文(1995-),男,江西九江人,硕士研究生,研究方向为山地灾害形成机理与防治。E-mail:1756796469@qq.com

Analysis of the rainfall threshold for post-fire debris flow initiation: A case study of the debris flow at Ren’eyong gully in Xiangcheng county, Sichuan province

  • 摘要: 2014年初夏,中国西南中横断山区仁额拥沟遭受了一次森林大火,火后的短时低雨强在3#支沟内激发了3次泥石流;2015年8月的一次强降雨在仁额拥沟的1#、2#和3#支沟及其他附近的多个更小的流域内均激发了泥石流。为了解火后泥石流的降雨响应特征,本文采用距离修正的方式处理降雨数据,通过对4次泥石流发生的降雨过程分析,查明了流域特征对泥石流启动的作用及其对各支沟泥石流不同降雨阈值的影响。研究发现:1)泥石流降雨阈值在火后非常低且有随时间推移而增大的趋势;2)仁额拥沟火后泥石流具有高频率特征,其原因除了在于火后天然植被的破坏后降雨对坡面径流和侵蚀效应的放大,流域本身的性质也有极大的贡献;3)各支沟内泥石流降雨阈值差异的主要原因在于流域面积的差异,泥石流侵蚀受制于径流量大小。
  • 图  1  研究区地理位置及相关信息

    Figure  1.  Location of the Ren’eyong Valley and related information of the study area

    图  2  区域地质纲要图

    Figure  2.  Outline Map of Regional Geology

    图  3  现场探槽照片

    Figure  3.  Site view of the on-site trenching

    图  4  被泥石流冲毁的房屋

    Figure  4.  Site photo of the ruined houses destroyed by debris flows

    图  5  泥石流发生时的降雨过程

    Figure  5.  Rainfall process during the debris flows

    图  6  3#支沟上游沟道

    Figure  6.  Site photo of the upstream channel at 3# branch ditch

    图  7  3#支沟下游沟道

    Figure  7.  Site photo of the downstream channel at 3# branch ditch

    图  8  1#支沟泥石流概貌

    Figure  8.  Overview of the debris flow at 1# branch ditch

    图  9  2#支沟泥石流概貌

    Figure  9.  Overview of the debris flow at 2# branch ditch

    图  10  非火烧区与火烧区坡积物对比

    Figure  10.  Comparison of slope sediments in non-fire area and fire areas

    图  11  火后泥石流携带坡面烧毁植被

    Figure  11.  Sie photo of the burned vegetation on post-fire debris flow carrying slope

    图  12  支沟泥石流冲刷侵蚀概况

    Figure  12.  Overview of debris flow erosion in the branch gully

    表  1  1#~3#支沟基本信息

    Table  1.   Geographic information of branches No.1~No.3

    编号流域面积/km2沟长/m平均坡度/(°)
    1#支沟0.3754427
    2#支沟0.7375526
    3#支沟2.3083615
    下载: 导出CSV

    表  2  1#~3#支沟火烧强烈程度及面积统计

    Table  2.   Summary of fire severity classification and affected areas of branches No.1~No.3

    编号火烧面积/km2轻度火烧/km2中度火烧/km2
    1#支沟0.310.210.10
    2#支沟0.640.450.19
    3#支沟2.110.61.51
    下载: 导出CSV

    表  3  泥石流基本情况

    Table  3.   Basic property information of the debris flows

    序号时间位置冲出量
    /104m3
    前期3天
    降雨量/mm
    DF12014年6月8日16:083#0.81.11
    DF22014年6月30日16:003#1.414.84
    DF32014年7月10日23:203#0.50.81
    DF42015年8月24日19:431#、2#、3#2.239.97
    下载: 导出CSV

    表  4  三处雨量站基本情况

    Table  4.   Summary of the basic property information of the three rain gauges

    序号名字位置海拔/m距离/km精度/mm$ \omega_{i} $
    1正斗站29°08′N,99°33′E28584.100.10.577
    2热打站29°06′N,99°38′E33635.560.10.313
    3阿都站29°11′N,99°39′E27839.400.10.110
    下载: 导出CSV
  • [1] LARSEN I J,MACDONALD L H,BROWN E,et al. Causes of post-fire runoff and erosion:Water repellency,cover,or soil sealing?[J]. Soil Science Society of America Journal,2009,73(4):1393 − 1407. doi: 10.2136/sssaj2007.0432
    [2] SCOTT,W WOODS,VICTORIA N,et al. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils-ScienceDirect[J]. Journal of Hydrology,2010,393(3-4):274 − 286. doi: 10.1016/j.jhydrol.2010.08.025
    [3] MACDONALD L H,HUFFMAN E L. Post-fire soil water repellency[J]. Soil Science Society of America Journal,2004,68(5):1729 − 1734. doi: 10.2136/sssaj2004.1729
    [4] NYMAN P,SHERIDAN G,LANE P N J. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil,south-east Australia[J]. Hydrological Processes,2010,24(20):2871 − 2887. doi: 10.1002/hyp.7701
    [5] MOODY J A,EBEL B A,NYMAN P,et al. Relations between soil hydraulic properties and burn severity[J]. International Journal of Wildland Fire,2016,25(3):279. doi: 10.1071/WF14062
    [6] MOODY J A,EBEL B A. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire[J]. CATENA,2012,93(93):58 − 63.
    [7] KEAN J W,STALEY D M,CANNON S H. In situ measurements of post-fire debris flows in southern California:comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions[J]. Journal of Geophysical Research,2011,116(F4):F04019.
    [8] SMITH H G,SHERIDAN G J,LANE P N J,et al. Paired Eucalyptus forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia[J]. International Journal of Wildland Fire,2010,19(5):624. doi: 10.1071/WF08208
    [9] JORDAN P. Post-wildfire debris flows in southern British Columbia,Canada[J]. International Journal of Wildland Fire,2016,25(3):322. doi: 10.1071/WF14070
    [10] CONEDERA M,PETER L,MARXER P,et al. Consequences of forest fires on the hydrogeological response of mountain catchments:a case study of the Riale Buffaga,Ticino,Switzerland[J]. Earth Surface Processes and Landforms,2003,28(2):117 − 129. doi: 10.1002/esp.425
    [11] 胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen,WANG Yan,YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2018-073
    [12] 王严,胡卸文,杨瀛,等. 火烧迹地土壤斥水性和渗透性变化特性[J]. 水文地质工程地质,2019,46(6):40 − 45. [WANG Yan,HU Xiewen,YANG Ying,et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology and Engineering Geology,2019,46(6):40 − 45. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.2019.06.06
    [13] 任云,胡卸文,王严,等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6):150 − 156. [REN Yun,HU Xiewen,WANG Yan,et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology and Engineering Geology,2018,45(6):150 − 156. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.2018.06.22
    [14] 胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen,WANG Yan,YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2018-073
    [15] 黄健,胡卸文,金涛,等. 四川西昌 “3·30” 火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese)
    [16] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.202203039
    [17] CHEN J C,HUANG W S,JAN C D,et al. Recent changes in the number of rainfall events related to debris-flow occurrence in the Chenyulan Stream Watershed,Taiwan[J]. Natural Hazards and Earth System Science,2012,12(5):1539 − 1549. doi: 10.5194/nhess-12-1539-2012
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  233
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 录用日期:  2023-04-17
  • 修回日期:  2022-10-13
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回