ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价以蓉遵高速公路土城—旺隆段为例

陈建国, 钟连祥

陈建国,钟连祥. 基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价−以蓉遵高速公路土城—旺隆段为例[J]. 中国地质灾害与防治学报,2023,34(6): 105-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208013
引用本文: 陈建国,钟连祥. 基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价−以蓉遵高速公路土城—旺隆段为例[J]. 中国地质灾害与防治学报,2023,34(6): 105-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208013
CHEN Jianguo,ZHONG Lianxiang. Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 105-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208013
Citation: CHEN Jianguo,ZHONG Lianxiang. Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 105-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208013

基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价——以蓉遵高速公路土城—旺隆段为例

详细信息
    作者简介:

    陈建国(1976-),男,江西崇仁人,本科,高级工程师,研究方向为岩土工程。E-mail:411927851@qq.com

    通讯作者:

    钟连祥(1993-),男,江西赣州人,硕士,研究方向为地质灾害防治。E-mail:1121553890@qq.com

  • 中图分类号: P642.21

Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway

  • 摘要: 蓉遵高速公路(土城—旺隆段)沿线崩塌频繁发生,威胁公路安全甚至人类的生命财产安全。文章通过实地调查蓉遵高速公路(土城-旺隆段)崩塌地质灾害的影响因素,构建了9个影响因子,分别是地形起伏度、高程、归一化植被指数、坡向、地层岩性、距道路距离、距河流距离、坡度及降雨量。采用确定性系数模型(certain factors,CF)、层次分析法(analytic hierarchy process,AHP)及耦合模型(CF-AHP)对研究区进行崩塌地质灾害易发性评价,并分别采用崩塌地质灾害点频率统计和成功率曲线对3种模型的评价精度进行检验。结果表明,CF、AHP和CF-AHP的AUC预测精度分别为0.848,0.835,0.866,且3种评价模型得到的崩塌地质灾害的高、中易发区频率比值占总频率比值均超过70%。 3种模型精确度由大到小分别为CF-AHP、CF、AHP模型,说明CF-AHP模型的滑坡预测优于单一的CF、AHP模型,能精确地评价蓉遵高速公路(土城-旺隆段)崩塌地质灾害易发性,为公路沿线区域崩塌灾害的防灾减灾提供决策依据。
    Abstract: Frequent geological hazards have occurred along the Rongzun Expressway (Tucheng - Wanglong section, posing a threat to the safety of the highway and even human life and property. This study investigated the causes of rockfall along the expressway and identified nine influencing factors, including terrain fluctuation, elevation, normalized difference vegetation index (NDVI), slope direction, lithology, distance from the road, distance from the river, slope, and rainfall. The certainty factor model (CF), analytic hierarchy process (AHP), and coupling model (CF-AHP) were used to evaluate the susceptibility of geological hazard in the study area, and the accuracy of the three models was tested using the distribution of rockfalls at various levels and the success rate curve. The results indicated that the AUC evaluation accuracy of CF, AHP and CF-AHP was 0.848, 0.835 and 0.866, respectively. The frequency ratios of high and moderate prone areas of geohazards obtained by the three evaluation models accounted for more than 70% of the total frequency ratios. The accuracy of the three models in descending order is CF-AHP, CF, AHP models, respectively. This indicates that the CF-AHP model is better than the single CF and AHP models in geohazard prediction and can accurately evaluate the geohazard susceptibility of expressway. It provides a decision-making basis for disaster prevention and mitigation of regional rockfall disaster along the highway.
  • 矿产开采诱发的地面塌陷现象十分普遍,加强对矿区地面塌陷研究已成为矿区可持续发展的重要课题之一。矿区地面塌陷与区域地质背景、矿床特征、开采方式和深度、采空区处置措施、水文地质条件等密切相关[1-2]。应城石膏矿位于湖北省云梦应城盆地的西北缘,面积约30 km2,距今已有近400年开采历史。1949年以前多为老窿开采,1960—1970年,老窿塌陷发育最多,2013—2016年,采空塌陷发育最多,早期的老窿型开采和后期的规模化开采相续形成了应城矿区地面塌陷。矿区内多处地面塌陷,表现为陷坑和地面不均匀沉降,造成道路和管线破坏、房屋开裂、农田毁坏等,对当地居民生产生活、道路和管道基础设施安全运营等造成了较大的影响。针对膏盐矿区地面塌陷,何伟等[3]根据采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,结合实测资料,建立数值模型,对地下开采诱发的地表变形进行了分析。刘硕等[4] 基于Hoek-Brown 强度准则,建立数值仿真模型,结合山东肥城某石膏矿工程实践,评价了硬石膏采房群的整体稳定性。夏开宗等[5]针对采用房柱法开采石膏矿体,将石膏矿柱简化为满足西原模型的黏弹塑性体流变模型,建立了石膏矿矿柱−护顶层支撑体系的流变力学体模型,认为矿柱的塑性大变形流变特性对采空区的失稳起着至关重要的作用。陈乐求等[6]针对矿柱法开采石膏矿体,开展了石膏矿采空区充填加固技术的试验研究。刘轩廷等[7]针对充填开采法矿区,在考虑了充填体对间柱侧压作用的基础上,建立了顶板−间柱支撑体系的力学模型,探究了充填体作用下支撑体系的破坏机制。魏军才[8] 对邵东县城石膏矿老采空区地面变形的成因进行了分析,认为顶板岩性、地质构造是地面变形的基础条件,不规范开采是导致地面变形的主要诱发因素,地面不断加载及地下水动力作用加剧了地面变形的产生。郑怀昌等[9] 通过对石膏矿采空区顶板大面积冒落情况的调查,发现矿区水文地质和工程地质对顶板的冒落有很大影响,冒落也多集中于丰雨季,认为隔离矿柱对控制顶板大面积冒落及向相邻采空区扩展作用重大。章求才等[10]针对衡山石膏矿经过多年开采,于2009 年发生了大面积地面塌陷,分析了顶板破断机理及其影响因素。郑怀昌等[11]结合岩体力学的相关理论和数值模拟技术,认为石膏矿柱流变特性使其强度变低,采区扩大,石膏矿柱应力增大,诱发了石膏矿采场顶板冒落及大规模采空区顶板冒落。张向阳[12] 基于 Kachanov 蠕变损伤理论对采空区顶板的蠕变损伤过程进行了解析分析,采空区顶板的蠕变损伤断裂经历断裂孕育和裂隙扩展两个阶段。贺桂成等[13]采用FLAC3D对衡山县石膏矿闭坑前后空区引发的地面塌陷机理进行了分析,认为闭坑后矿柱不足以支承上覆围岩压力而引起采空区顶板垮落,形成垮落拱,最终在地表形成“漏斗型”塌陷区。Castellanza等[14] 针对废弃矿山遗留矿柱会受到风化作用的特性,根据膏岩试验数据拟合结果,建立风化模型对矿柱失稳时间预测。

    上述工作为膏盐矿区地面塌陷地质灾害研究奠定了较好的基础,然而,仍然存在有不足之处:对诱发石膏矿地面塌陷地质灾害成因机制的分析还存在不足,尤其是老窿对地面塌陷地质灾害影响的成因机制分析成果较少,由于不同区域的石膏矿,受膏组成矿特征、开采历史、开采方式等影响,地面塌陷地质灾害特征和成因机制具有明显的差异性,还需要结合实际情况进一步开展研究。

    为此,针对应城石膏矿区开展野外补充调查、工程地质测绘,进一步掌握矿区地质灾害的实际情况,采取内外动力多因子关联分析法和地质分析法,基于采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,分析地面塌陷类型及发育分布规律,研究采空型地面塌陷地质灾害的主要影响因素,对老窿型和采空型地面塌陷的成因机制进行分析,对石膏矿风险管理和安全评估、监测预警体系构建具有一定的参考意义。

    应城市地处鄂中丘陵与江汉平原的过渡地带,整体地势为西北高,东南低,地貌类型按成因划分为河流冲积平原和丘陵两类。应城石膏矿位于湖北省云应盆地的西北缘,应城市现有10个膏矿开采区,矿区主要分布于丘陵地区,主要开采膏组为G-1—G-3、G-5和G-7—G-11,开采矿区分布如图1所示。矿区目前主要开采的含矿层位是谢家湾下含矿层和谢家湾上含矿层,谢家湾下含矿层含纤维石膏膏组五层G-1—G-5,总厚15.90~91.10 m;谢家湾上含矿层含纤维石膏膏组八层G-6—G-13,总厚23.92~181.51 m。

    图  1  矿区地形地貌及矿区分布图
    Figure  1.  The distribution map of landforms in the mining area

    应城石膏矿膏组矿体总体产状比较平缓,一般倾角为6°~8°,部分倾角近于或大于10°,与较深色的围岩接触界线较为明显,接触面较平整,极易从接触界面与围岩分开,其产状与围岩大体一致,见图2(a),局部与围岩有极微小角度斜交,见图2(b),在红色地层中,有时穿过层理插入不同围岩中,见图2(c)。

    图  2  应城市石膏矿膏组成矿特征
    Figure  2.  The characteristics of gypsum composition in Yingcheng City

    膏组矿体主要是薄层状、似层状纤维石膏矿层,厚度稳定,一般为2~25 cm,最厚可达47 cm左右,延长较远,相邻两个膏组间距8~17 m。矿体围岩以泥质粉砂岩和泥质石膏岩为主,单轴抗压强度为2.5~20.7 MPa,岩石强度较低,属软岩、极软岩。

    根据调查,应城市膏矿开采区共发育有27处地面塌陷,主要分布于城北街道办事处和杨岭镇境内(图1),规模以小—中型为主,其中小型11处,中型16处,如图3b所示。

    图  3  应城市膏矿区塌陷规模等级分布图及典型塌陷坑
    Figure  3.  The grade distribution and typical collapse pit in the mining area in Yingcheng City

    由于私人无序开采,导致矿区内留下许多废弃的井筒、巷道,截至1960年已形成大小老窿约240处,私人矿井开采面大都呈扇形展布且开采层埋深浅,一般小于100 m,由于开采深度较浅,采空区顶板变形对地面的影响较大,上覆岩体破坏后容易在地面产生塌陷坑。应城市老窿型塌陷共18处,陷坑整体呈NE向分布,与坑道展布方向基本一致,在地表多呈近圆形或不规则状,一般上大下小,上口直径2~2.5 m,大者达5 m,坑深2~3 m,大者达10 m,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内,如柳林村邓湾南塌陷点(图3a中CB-TX0003),为椭圆形塌陷单坑,发育在老窿周边,邹郭村黄花山水库塌陷点(图3a中CB-TX0012),为圆形单坑,地下开采深度仅35 m。

    采空型地面塌陷主要表现为地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋和道路出现开裂变形、农田毁坏等。应城市采空型塌陷共9处,其变形通常较为缓慢,但通过逐年累积,这些破坏日趋严重,部分房屋已成为危房,直接影响居民住户的居住和生产生活条件。有的裂缝贯穿墙体,严重危及房屋整体安全(图3c)。另外,区内由于不均匀地面沉降使部分农田出现倾斜,失水现象较为严重。这类变形在矿区分布十分普遍,主要出现在深埋采空区范围内或陷坑周边。

    通过调查和统计分析,应城市企业规模化开采形成采空区面积约16 km2,由于历史开采形成的老窿大约240处,应城市老窿及规模化开采采空区空间分布如图4所示,统计分析表明,下方为规模化开采采空区的老窿共128个,其中发生老窿型塌陷共18处,占比约12.5%;下方无规模化开采采空区的老窿共112个,未发生老窿型地面塌陷,说明老窿型地面塌陷与下方大范围采空区密切相关。

    图  4  地面塌陷与老窿及采空区空间分布
    Figure  4.  The spatial distribution of collapse and old holes and goaf

    通过统计分析,应城市共发育9处采空型地面塌陷,其中6处地面塌陷采深采厚比小于60,2处地面塌陷采深采厚比为60~80,1处地面塌陷采深采厚比为80~100,该处地面塌陷发育于李咀石膏矿区,虽然采深采厚比较大,推测是由于其他扰动因素的增强,或者李咀石膏矿区的开矿时间比较早,回填率较低,导致了该地面塌陷的发育(图5)。随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型塌陷主要发育在采深采厚比小于60的区域,且采深采厚比越小,地面塌陷越容易发育,地表变形越强烈,塌陷影响越大。

    图  5  采空型地面塌陷与采深采厚比分布图
    Figure  5.  The distribution of ground collapse and mining depth to thickness ratio

    石膏矿开采工作面初次来压后,在其不断推进过程中,上覆岩体的破坏主要可分为三带:冒落带、断裂带和弯曲带。冒落带是采出空间顶板岩层在自重力作用下垮塌,堆积在采空区,形成冒落带;断裂带随着井下石膏矿采区的扩大而逐步向上发展,当到一定范围时,断裂带高度达到最大;弯曲带即弯曲下沉带,位于断裂带之上直至地表,弯曲带中的岩体移动基本上是成层的、整体性移动。

    充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,下方规模化开采采空区冒裂带向上发展,但由于规模化开采采空区与老窿埋深间隔较大,冒落带、断裂带之和小于两者之间埋深间隔,规模化采空区并未与老窿连通(图6)。老窿采空后,采区内是半充填状态,或局部未充填状态,闭坑后,洞口被回填,但回填土并没有填满采区,仅填满老窿竖井,地下水通过透水的竖井回填土以及裂隙不断流入采空区,直至采空区完全饱水。采空区内的石膏层与泥岩夹层是隔水层,此时,老窿采空区内是饱水的,老窿回填后经过多年的沉积压密作用下处于相对平衡状态,老窿塌陷地表变形表现为小水坑常年积水无明显变化、周边地表无明显变形及农田无漏水现象,如图3a中CB-TX0003所示柳林村邓湾南地面塌陷点。

    图  6  充水型老窿型地面塌陷成因示意图
    Figure  6.  The genetic diagram of ground collapse with water filled old holes

    不充水型老窿塌陷下方存在规模化开采巷道采空区,且下方规模化开采采空区与老窿埋深间隔较小,冒落带、断裂带之和远大于两者之间埋深间隔,规模化采空区直接与老窿连通(图7),大都表现为老窿洞口缓慢塌陷,具有发展性。由于老窿底部与规模化采空区连通,地下水的流动带动土中的细颗粒运移,导致老窿内负压,竖井中的土体向下垮落变形,慢慢扩展到地表,表现为地表塌陷坑持续扩大。此外,由于部分膏矿企业持续对规模化开采采空区进行抽水,老窿内的积水被疏干后,连接第四系潜水层、承压含水层以及基岩裂隙水与规模化开采采空区的通道,地下水缓慢的在此通道中不断的流动,从地表通过老窿到采空区,再被抽出到地表,老窿中回填的细颗粒也不断地发生移动,导致此类塌陷,经回填后一段时间还会再次产生塌陷,如图8所示新建街社区三矿2号地面塌陷点。

    图  7  不充水型老窿型地面塌陷成因示意图
    Figure  7.  The genetic diagram of ground collapse with water unfilled old holes
    图  8  新建街社区三矿2号地面塌陷
    Figure  8.  The ground collapse No.2 in Xinjian street community

    应城石膏矿规模化开采形成的采空区,开采深度较深,这种采空区造成的塌陷一般表现为地面的不均匀沉降,弯曲带影响地表,伴随地面下沉的一些表现形式为房屋裂缝、地表裂缝变形、农田失水等现象,影响范围一般比较大,如新建街社区三矿1号地面塌陷点。

    房柱法开采导致的采空区失稳主要表现为矿柱和顶板的破坏垮落。采用房柱式采矿过程中,随着矿石不断采出和矿柱侧向应力的逐渐消减,采场上覆岩层的应力转移到矿柱上,使矿柱应力增加并产生压缩变形。当矿山企业闭坑后,由于矿柱被回采破坏导致矿柱强度降低,个别或局部矿柱破坏从而引起顶板冒落。该采场顶板及上覆岩层压应力逐渐转移到相邻矿柱,导致相邻矿柱也相继遭到破坏,顶板冒落范围进一步扩大,从而引起采空区顶板垮落并通过三带影响逐渐传递到地面,地表主要见地面沉降、隆起和建筑物开裂等,如柳林村邓湾北地面塌陷点(图9)。

    图  9  矿柱破坏型采空塌陷成因机制
    Figure  9.  The formation mechanism of goaf collapse caused by pillar failure

    长壁式充填法开采的采空区主要采用矸石充填,将开采洗选过程中产生的矸石固体废物作为骨料充填入采空区,进而改善采场围岩变形和覆岩沉降程度,有效控制地表沉陷。因此采空区充填体的充填率及其强度对上覆岩层的运动状态起着至关重要的作用,不同充填率会导致上覆岩层运移结构形态和特征都存在明显区别。当采空区充填率低时,充填体不能对顶板下沉起到支撑作用,随着采空区范围的扩大,采空区顶板逐渐垮落破碎,与采空区固体充填体相互混合形成新的支撑体,直到采空区充填体被压密实,支撑体的压缩和采空区顶板的下沉达到平衡状态。此过程中采空区顶板随开采范围的扩大发生持续破断,形成的冒落带、断裂带及弯曲带随着工作面的推进而不断向上覆岩层传递,直到这种变形发展到地面,地表主要表现为建筑物开裂、地表裂缝等,如新建街社区三矿1号地面塌陷点(图10)。

    图  10  弯曲沉降型采空塌陷成因机制
    Figure  10.  The formation mechanism of bending goaf collapse

    (1)地面塌陷主要表现两种形式:一种是塌陷坑,在地表多呈近圆形或不规则状,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内;另一种是地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋、道路等地物出现开裂变形、农田毁坏。

    (2)地面塌陷发育规律:老窿型地面塌陷与下方大范围采空区密切相关,当老窿下方存在规模化开采采空区且埋深较浅时,老窿与采空区连通,老窿井口附近形成地面塌陷;采空型地面塌陷的发生则受采深采厚比的影响较大,随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型地面塌陷主要发育在采深采厚比小于60的区域。

    (3)老窿型地面塌陷包含充水型和不充水型两种类型,充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,冒裂带未影响至老窿,老窿与大范围采空区不连通,塌陷后表现为小水坑常年积水且塌陷趋于稳定;不充水型老窿塌陷下方存在规模化开采巷道采空区,且由于冒裂带的影响与老窿采空区连通,塌陷后表现为地表塌陷坑持续扩大,或者人工充填后一段时间又再次塌陷,重复回填又塌陷。

    (4)采空型地面塌陷主要与矿柱破坏和充填率相关。矿柱破坏主要是矿柱在闭坑前被回采导致强度降低,局部破坏垮塌,采空区顶板垮落并通过三带影响逐渐传递到地面,主要表现为地面沉陷、隆起和建筑物开裂等;在充填率低的情况下,上覆岩土体在重力作用下,逐渐形成冒落带、断裂带以及弯曲带并随着工作面的推进而不断向上覆岩层传递,直至变形发展到地面,主要表现为建筑物开裂、地表裂缝等。

  • 图  1   蓉遵高速公路沿线崩塌地质灾害分布图

    Figure  1.   Distribution map of rockfall geological hazards along Rongzun expressway

    图  2   影响因子分级图

    Figure  2.   Classification diagram of evaluation factors

    图  3   高速公路沿线崩塌AHP层次模型示意图

    Figure  3.   Schematic diagram of AHP hierarchy model for rockfall along expressway

    图  4   易发性评价结果

    Figure  4.   Results of rockfall geohazard susceptibility

    图  5   ROC曲线图

    Figure  5.   The receiver operation characteristics (ROC) curve gragh

    表  1   判断矩阵标度及其含义

    Table  1   Judgment matrix scale and its meaning

    标度值含义
    1表示两个因素相比,具有相同重要性
    3表示两个因素相比,前者比后者稍重要
    5表示两个因素相比,前者比后者明显重要
    7表示两个因素相比,前者比后者强烈重要
    9表示两个因素相比,前者比后者极端重要
    2,4,6,8表示上述相邻判断的中间值
    倒数与上述影响情况相反
    下载: 导出CSV

    表  2   评价因子分级及CF

    Table  2   Classification of evaluation factors and CF values of each grade

    指标因子分级面积/km2灾害点数/个点密度/(个·km-2CF
    高程/m222~3257.27700−1
    >325~4074.45861.3459860.297557
    >407~4884.587102.1799320.566281
    >488~5813.60941.108340.146942
    >581~7901.45100−1
    坡度/(°)0~102.96200−1
    >10~204.49700−1
    >20~306.33530.473552−0.49914
    >30~404.993112.2029960.570822
    >402.59562.3124060.591128
    地形起伏度/m152~2851.06700−1
    286~3626.29020.31796−0.66371
    363~4396.17030.486192−0.48577
    440~5265.431152.7621260.657699
    527~6722.4400−1
    坡向/(°)平面0.00200−1
    2.43531.2318310.23246
    东北6.026101.6596130.430302
    5.40950.924385−0.02231
    东南3.19210.313254−0.66868
    1.95110.512505−0.45794
    西南0.55600−1
    西0.94300−1
    西北0.86800−1
    地层J3p10.20800−1
    Kjd113.538110.81254−0.14061
    Kjd23.33351.5002850.369801
    J3p24.08640.9789530.034193
    归一化植被指数−0.0897~0.09621.48500−1
    0.0963~0.24052.52800−1
    0.2406~0.34323.04741.3129820.2799
    0.3433~0.4196.81771.0269050.079293
    0.4191~0.5347.30991.2313750.232177
    距道路距离/m0~502.85862.0990760.549574
    >50~1002.86351.7464810.458638
    >100~1502.85641.4007070.324999
    >150~2002.80631.0690610.115599
    >200~2502.64610.377929−0.60028
    >2507.12710.14031−0.8516
    距河流距离/m0~1005.86800−1
    >100~2002.92831.0246950.077307
    >200~3002.87882.7795150.659841
    >300~4002.82482.8326610.666223
    400~5002.71310.36865−0.61009
    >5003.9330−1
    降雨量/mm0~8005.10841.379483−0.17168
    >800~9008.06350.620109−0.34413
    >900~10007.974110.7831620.314614
    下载: 导出CSV

    表  3   中间层(B)判断矩阵

    Table  3   Judgment matrix for intermediate layer (B

    易发性诱发因素B2自然因素B1权重
    诱发因素B210.33330.25
    自然因素B1310.75
    下载: 导出CSV

    表  4   指标层(B1)判断矩阵

    Table  4   Judgment matrix for indicator layer (B1)

    自然因素B1高程C1坡度C2坡向C3地形起伏度C4地层岩性C5归一化植被指数 C6权重
    高程C110.333330.33330.2530.1017
    坡度C23150.50.333330.1815
    坡向C30.33330.210.20.220.0543
    地形起伏度C432510.540.247
    地层岩性C54352150.3673
    NDVI C60.33330.33330.50.250.210.0482
    下载: 导出CSV

    表  5   指标层(B2)判断矩阵

    Table  5   Judgment matrix for indicator layer (B2)

    诱发因素B2降雨C7距河流距离C8距道路距离C9权重
    降雨量C71310.4286
    距河流距离C80.333310.33330.1429
    距道路距离C91310.4286
    下载: 导出CSV

    表  6   各因子的权重

    Table  6   Influence weight of each factor

    备选方案地层岩性C5地形起伏度C4坡度C2降雨量C7距道路距离C9高程C1坡向C3NDVI C6距河流距离C8
    权重0.27550.18520.13610.10710.10710.07630.04070.03610.0357
    下载: 导出CSV

    表  7   易发性评价结果

    Table  7   Summary table of geohazard susceptibility for three models

    易发性等级CFAHPCF-AHP
    栅格数百分比/%栅格数百分比/%栅格数百分比/%
    极低易发区448219.4278415618.0147482620.9189
    低易发区693430.0564710530.7976802834.7984
    中易发区840936.4499785334.0399702930.4681
    高易发区324514.0659395617.1478318713.8145
    下载: 导出CSV

    表  8   地质灾害易发性评价结果检验

    Table  8   Verification of geohazards susceptibility assessment results

    易发性等级灾害点百分比/%
    CFAHPCF-AHP
    极低易发区000
    低易发区050
    中易发区252515
    高易发区757085
    下载: 导出CSV
  • [1] 覃乙根,杨根兰,鲁鲲鹏,等. 贵州寨子危岩崩塌风险定量评价研究[J]. 人民长江,2019,50(10):113 − 119. [QIN Yigen,YANG Genlan,LU Kunpeng,et al. Quantitative risk assessment for Zhaizi rockfall in Guizhou Province[J]. Yangtze River,2019,50(10):113 − 119. (in Chinese with English abstract)

    QIN Yigen, YANG Genlan, LU Kunpeng, et al. Quantitative risk assessment for Zhaizi rockfall in Guizhou Province[J]. Yangtze River, 2019, 50(10): 113-119. (in Chinese with English abstract)

    [2] 谈树成,刘雪斌,谢亚亚,等. 某拟建高速公路地质灾害易发性评价[J]. 水土保持研究,2019,26(3):373 − 380. [TAN Shucheng,LIU Xuebin,XIE Yaya,et al. Assessment on susceptibility of geohazard for a proposed expressway[J]. Research of Soil and Water Conservation,2019,26(3):373 − 380. (in Chinese with English abstract)

    TAN Shucheng, LIU Xuebin, XIE Yaya, et al. Assessment on susceptibility of geohazard for a proposed expressway[J]. Research of Soil and Water Conservation, 2019, 26(3)373-380(in Chinese with English abstract)

    [3] 崔志超,王俊豪,崔传峰,等. 基于层次分析法和模糊数学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报,2020,31(1):44 − 50. [CUI Zhichao,WANG Junhao,CUI Chuanfeng,et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):44 − 50. (in Chinese with English abstract)

    CUI Zhichao, WANG Junhao, CUI Chuanfeng, et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1)44-50(in Chinese with English abstract)

    [4] 刘宇恒,邓辉,熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. 长江科学院院报,2017,34(5):31 − 35. [LIU Yuheng,DENG Hui,XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County,Sichuan,China[J]. Journal of Yangtze River Scientific Research Institute,2017,34(5):31 − 35. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20160155

    LIU Yuheng, DENG Hui, XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility ofMaoxian County, Sichuan, China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5)31-35(in Chinese with English abstract) DOI: 10.11988/ckyyb.20160155

    [5] 尚敏,马锐,张英莹,等. 基于GIS的证据权重法的崩塌敏感性分析研究[J]. 工程地质学报,2018,26(5):1211 − 1218. [SHANG Min,MA Rui,ZHANG Yingying,et al. GIS based weights of evidence method for rock fall susceptibility[J]. Journal of Engineering Geology,2018,26(5):1211 − 1218. (in Chinese with English abstract)

    SHANG Min, MA Rui, ZHANG Yingying, et al. GIS based weights of evidence method for rock fall susceptibility[J]. Journal of Engineering Geology, 2018, 26(5)1211-1218(in Chinese with English abstract)

    [6] 谭玉敏,郭栋,白冰心,等. 基于信息量模型的涪陵区地质灾害易发性评价[J]. 地球信息科学学报,2015,17(12):1554 − 1562. [TAN Yumin,GUO Dong,BAI Bingxin,et al. Geological hazard risk assessment based on information quantity model in Fuling District,Chongqing City,China[J]. Journal of Geo-Information Science,2015,17(12):1554 − 1562. (in Chinese with English abstract)

    TAN Yumin, GUO Dong, BAI Bingxin, et al. Geological hazard risk assessment based on information quantity model in Fuling district, Chongqing city, China[J]. Journal of Geo-Information Science, 2015, 17(12)1554-1562(in Chinese with English abstract)

    [7] 覃乙根,杨根兰,江兴元,等. 基于确定性系数模型与逻辑回归模型耦合的地质灾害易发性评价—以贵州省开阳县为例[J]. 科学技术与工程,2020,20(1):96 − 103. [QIN Yigen,YANG Genlan,JIANG Xingyuan,et al. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang,China[J]. Science Technology and Engineering,2020,20(1):96 − 103. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.01.015

    QIN Yigen, YANG Genlan, JIANG Xingyuan, et al. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang, China[J]. Science Technology and Engineering, 2020, 20(1)96-103(in Chinese with English abstract)) DOI: 10.3969/j.issn.1671-1815.2020.01.015

    [8] 向喜琼,黄润秋. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J]. 中国地质灾害与防治学报,2000,11(3):23 − 27. [XIANG Xiqiong,HUANG Runqiu. Application of GIS-based artificial Neural Networks on assessment of geohazards risk[J]. The Chinese Journal of Geological Hazard and Control,2000,11(3):23 − 27. (in Chinese with English abstract)

    Xiang Xiqiong, Huang Runqiu. Application of GIS-based artificial Neural Networks on assessment of geohazards risk[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(3): 23-27. (in Chinese with English abstract))

    [9] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming,Yin Kunlong,Jiang Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)

    Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese with English abstract))

    [10] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract)

    WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract)

    [11] 胡涛,樊鑫,王硕,等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报,2020(2):113 − 121. [HU Tao,FAN Xin,WANG Shuo,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information,2020(2):113 − 121. (in Chinese with English abstract)

    HU Tao, FAN Xin, WANG Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information, 2020(2): 113-121. (in Chinese with English abstract)

    [12] 覃乙根,杨根兰,谢金,等. 贵州省开阳县斜坡地质灾害孕灾因子敏感性分析[J]. 煤田地质与勘探,2020,48(4):190 − 198. [QIN Yigen,YANG Genlan,XIE Jin,et al. Sensitivity analysis of disaster-pregnant environmental factors for slope geological hazards in Kaiyang County,Guizhou Province[J]. Coal Geology & Exploration,2020,48(4):190 − 198. (in Chinese with English abstract)

    Qin Yigen, Yang Genlan, Xie Jin, et al. Sensitivity analysis of disaster-pregnant environmental factors for slope geological hazards in Kaiyang County, Guizhou Province[J]. Coal Geology & Exploration, 2020, 48(4): 190-198. (in Chinese with English abstract)

    [13] 刘光辉,刘汉湖,姚昆,等. 基于证据权法与确定系数法的滑坡危险区划对比分析—以虹口乡为例[J]. 物探化探计算技术,2016,38(6):848 − 853. [LIU Guanghui,LIU Hanhu,YAO Kun,et al. Based on the weights of evidence method and certainty factor method of landslide danger division comparative analysis:A case study in Hongkou,China[J]. Computing Techniques for Geophysical and Geochemical Exploration,2016,38(6):848 − 853. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1749.2016.06.21

    LIU Guanghui, LIU Hanhu, YAO Kun, et al. Based on the weights of evidence method and certainty factor method of landslide danger division comparative analysis: -a case study in Hongkou, chine[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(6)848-853(in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1749.2016.06.21

    [14] 李益敏,李驭豪,赵志芳. 基于确定性系数模型的泸水市泥石流易发性评价[J]. 水土保持研究,2019,26(4):336 − 342. [LI Yimin,LI Yuhao,ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation,2019,26(4):336 − 342. (in Chinese with English abstract)

    LI Yimin, LI Yuhao, ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation, 2019, 26(4)336-342(in Chinese with English abstract)

    [15] 杨栓成,王运生. 基于GIS的涪江上游南坝-水晶流域滑坡危险性评价[J]. 中国地质灾害与防治学报,2018,29(6):15 − 22. [YANG Shuancheng,WANG Yunsheng. GIS-based landslide risk assessment along the Nanba-Shuijing reaches in the Fujiang River[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):15 − 22. (in Chinese with English abstract)

    YANG Shuancheng, WANG Yunsheng. GIS-based landslide risk assessment along the Nanba-Shuijing reaches in the Fujiang River[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 15-22. (in Chinese with English abstract)

    [16] 李益敏,袁静,蒋德明,等. 基于GIS的高山峡谷区滑坡灾害危险性评价—以泸水市为例[J]. 水土保持研究,2021,28(3):355 − 363. [LI Yimin,YUAN Jing,JIANG Deming,et al. GIS-based risk assessment of landslide disaster in high mountain valley:Taking Lushui City as an example[J]. Research of Soil and Water Conservation,2021,28(3):355 − 363. (in Chinese with English abstract)

    LI Yimin, YUAN Jing, JIANG Deming, et al. GIS-based risk assessment of landslide disaster in high mountain valley—taking Lushui city as an example[J]. Research of Soil and Water Conservation, 2021, 28(3): 355-363. (in Chinese with English abstract)

    [17] 李萍,叶辉,谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究,2021,28(5):394 − 399. [LI Ping,YE Hui,TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation,2021,28(5):394 − 399. (in Chinese with English abstract)

    LI Ping, YE Hui, TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation, 2021, 28(5): 394-399. (in Chinese with English abstract)

    [18] 刘建强,许强,郑光,等. 贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用[J]. 水文地质工程地质,2023,50(2):132 − 140. [LIU Jianqiang,XU Qiang,ZHENG Guang,et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology,2023,50(2):132 − 140. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103009

    LIU Jianqiang, XU Qiang, ZHENG Guang, et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 132-140. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202103009

    [19] 黄煜,谢婉丽,刘琦琦,等. 基于GIS与MaxEnt模型的滑坡易发性评价—以铜川市中部城区为例[J]. 西北地质,2023,56(1):266 − 275. [HUANG Yu,XIE Wanli,LIU Qiqi,et al. Landslide susceptibility assessment based on GIS and MaxEnt model:Example from central districts in Tongchuan city[J]. Northwestern Geology,2023,56(1):266 − 275. (in Chinese with English abstract) DOI: 10.12401/j.nwg.2022001

    HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide susceptibility assessment based on GIS and MaxEnt model: example from central districts in Tongchuan city[J]. Northwestern Geology, 2023, 56(1): 266-275. (in Chinese with English abstract) DOI: 10.12401/j.nwg.2022001

    [20] 唐军峰,唐雪梅,周基,等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版),2022,52(2):503 − 516. [TANG Junfeng,TANG Xuemei,ZHOU Ji,et al. Deformation and instability mechanism of landslide accumulation:A case study of Donglingxin landslide accumulation in Jianhe County,Guizhou Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):503 − 516. (in Chinese with English abstract)

    TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: a case study of donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 503-516. (in Chinese with English abstract)

    [21] 赵无忌,殷志强,马吉福,等. 黄河上游贵德盆地席芨滩巨型滑坡发育特征及地貌演化[J]. 地质论评,2016,62(3):709 − 721. [ZHAO Wuji,YIN Zhiqiang,MA Jifu,et al. Multi-stage development characteristics and geomorphic evolution process of the Xijitan super large landslide in the Guide basin,upper reaches of Yellow River[J]. Geological Review,2016,62(3):709 − 721. (in Chinese with English abstract)

    Zhao Wuji, Yin Zhiqiang, Ma Jifu, et al. Multi-stage development characteristics and geomorphic evolution process of the xijitan super large landslide in the guide basin, upper reaches of Yellow River[J]. Geological Review, 2016, 62(3): 709-721. (in Chinese with English abstract)

图(5)  /  表(8)
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  673
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-11-13
  • 录用日期:  2023-04-16
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回