Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model
-
摘要: 区域地质灾害评价是减灾防治的重要非工程手段,构建区域滑坡危险性评价模型,对提高地质灾害评价精度和防治效率具有重要意义。文章以滑坡频发的大渡河中游地区为研究区,初选高程、坡度、坡向、地震动参数、土壤类型、工程地质岩组、年平均降雨量和地形湿度指数(TWI)等13个因子,建立滑坡危险性初级评价指标体系。考虑各因子对滑坡形成贡献程度的不同和目前常权栅格叠加方式对滑坡危险性评价结果精度的影响,引入了地理探测器和变权栅格叠加,构建了地理探测器、信息量法和变权栅格叠加的组合模型(GDIV模型)。基于2021年四川省1∶50 000地质灾害风险调查中313处滑坡地质灾害隐患点,开展基于GDIV模型的大渡河中游地区滑坡危险性评价,并与逻辑回归模型和信息量模型的组合模型(LRI模型)评价结果进行对比分析。结果表明:研究区以中危险及以下危险区为主,占总面积的78.3%,极高和高危险区主要分布在大渡河、革什扎河和东谷河两岸的低海拔地区;与LRI模型相比,基于GDIV模型的评价结果精度更高,其受试者工作特征(ROC)曲线的线下面积(AUC)值为0.917。文章提出的GDIV模型提高了区域滑坡危险性评价精度,可为类似地区地质灾害评价提供方法参考。Abstract: Regional geological hazard assessment is an important non-engineering approach for disaster reduction and prevention. Constructing a regional landslide hazard assessment model is of great significance in improving the accuracy of geological hazard evaluation and the efficiency of prevention. This study focuses on the frequent landslide occurrence in the middle reach area of the Dadu River and selects 13 primary factors, including elevation, slope, aspect, seismic parameters, soil type, engineering geological lithology, annual average rainfall, and topographic wetness index (TWI), to establish a primary evaluation index system for landslide hazard. Considering the varying contributions of each factor to landslide formation and the impact of the commonly used weighted raster superposition methods on assessment accuracy, the geographic detector and variable weight raster overlay techniques are introduced, leading to the development of the GDIV model. Using data from 313 landslide hazard points identified in the 2021 geological hazard risk survey at a scale of 1∶50,000 in Sichuan Province, the landslide hazard assessment in the middle reach area of the Dadu River basin is conducted based on the GDIV model, and the evaluation results are compared with those of the LRI model. The results show that the study area is predominantly characterized by middle and lower risk areas, accounting for 78.3% of the total area. The extremely high and high-risk areas are primarily located in the low-elevation regions along the banks of Dadu River, Geshizha River, and Donggu River. Compared to the LRI model, the evaluation results based on the GDIV model exhibit higher accuracy, with an area under the receiver operating characteristics (ROC) curve of 0.917. The GDIV model proposed in this paper improves the accuracy of regional Landslide hazards assessment, and serves as a valuable reference for similar geological disaster evaluations in other areas.
-
表 1 交互作用探测器因子关系
Table 1. Factor relationships of interaction detectors
因子关系 交互作用 q(X1∩X2)<Min(q(X1), q(X2)) 非线性减弱 Min(q(X1), q(X2))< q(X1∩X2)< Max (q(X1), q(X2)) 单因子非线性减弱 q(X1∩X2)> Max (q(X1), q(X2)) 双因子增强 q(X1∩X2)= q(X1)+q(X2) 独立 q(X1∩X2)> q(X1)+q(X2) 非线性增强 表 2 滑坡初级评价指标q值统计
Table 2. Statistical analysis of primary evaluation index q-values for landslides
类别 指标 q值 p值 地质特征 工程地质岩组(X1) 0.156 0.000 与断层距离(X2) 0.087 0.000 地震 地震动参数(X3) 0.164 0.000 地形地貌 高程(X4) 0.583 0.000 坡度(X5) 0.021 0.023 坡向(X6) 0.038 0.003 地形湿度指数(X7) 0.017 0.297 归一化植被指数(X8) 0.072 0.000 土壤类型(X9) 0.415 0.000 地表水系 与河流距离(X10) 0.158 0.000 径流强度指数(X11) 0.032 0.015 降雨 年平均降雨量(X12) 0.182 0.000 人类活动 与道路距离(X13) 0.115 0.000 表 3 部分滑坡初级评价指标交互作用
Table 3. Interactions of primary evaluation indicators for landslides
Xi∩Xj q(Xi) q(Xj) q(Xi∩Xj) q(Xi)+q(Xj) 交互类型 X4∩X1 0.583 0.156 0.736 0.739 双因子增强 X3∩X4 0.164 0.583 0.676 0.747 双因子增强 X9∩X4 0.415 0.583 0.596 0.998 双因子增强 X10∩X4 0.158 0.583 0.603 0.741 双因子增强 X13∩X4 0.115 0.583 0.597 0.698 双因子增强 X12∩X4 0.182 0.583 0.672 0.765 双因子增强 X9∩X3 0.415 0.164 0.537 0.579 双因子增强 X9∩X1 0.415 0.156 0.555 0.571 双因子增强 X9∩X10 0.415 0.158 0.434 0.573 双因子增强 X9∩X13 0.415 0.115 0.428 0.53 双因子增强 X9∩X12 0.415 0.182 0.527 0.597 双因子增强 X10∩X3 0.158 0.164 0.312 0.322 双因子增强 X10∩X1 0.158 0.156 0.344 0.314 非线性增强 X13∩X3 0.115 0.164 0.276 0.279 双因子增强 X13∩X1 0.115 0.156 0.278 0.271 非线性增强 X3∩X1 0.164 0.156 0.329 0.320 非线性增强 X13∩X10 0.115 0.158 0.226 0.273 双因子增强 X10∩X12 0.158 0.182 0.343 0.340 非线性增强 X13∩X12 0.115 0.182 0.292 0.297 双因子增强 X3∩X12 0.164 0.182 0.269 0.346 双因子增强 X12∩X1 0.182 0.156 0.348 0.338 非线性增强 表 4 危险性评价因子分级与信息量值
Table 4. Grading and information value of hazard evaluation factors
评价因子 分级 信息量值 评价因子 分级 信息量值 高程/m <2 700 2.058 年平均
降雨量/mm<750 −0.557 2 700~3 200 1.308 750~775 0.438 3 200~3 600 −1.37 775~800 −1.014 3 600~4 000 −2.445 800~840 −0.055 4 000~4 400 −3.76 840~880 −0.404 > 4400 — >880 −0.231 土壤类型 淋溶土 1.685 地震动
参数<0.1 0.151 半淋溶土 — 0.1~0.15 0.464 初育土 −3.921 0.15~0.2 −1.059 高山土 0.107 0.2~0.3 — 人为土 1.429 与道路
距离/m<100 1.500 铁铝土 0.890 100~200 1.227 与河流
距离/m<400 −1.204 200~300 1.148 400~800 −0.826 300~400 1.053 800~1 200 −0.025 400~500 0.789 1 200~1 600 0.004 >500 −0.335 1 600~2 000 0.577 >2 000 1.038 工程地质
岩组坚硬岩 0.023 较坚硬岩 0.443 较软岩 1.878 松散土类 −1.086 表 5 滑坡危险性评价因子逻辑回归分析结果
Table 5. Results of logistic regression analysis for landslide hazard evaluation factors
评价因子 B SE Wald df sig Exp(B) 高程 4.992 0.551 82.210 1 0.000 147.24 土壤类型 3.001 0.550 29.785 1 0.000 20.110 工程地质岩组 1.606 0.837 3.387 1 0.000 4.666 年平均降雨量 1.103 0.379 8.468 1 0.000 3.013 与道路距离 0.995 0.396 2.573 1 0.000 2.435 地震动参数 0.802 0.469 1.657 1 0.000 1.830 与河流距离 0.148 0.398 5.259 1 0.001 0.739 常数 −7.132 0.696 104.815 1 0.000 0.001 注:B为模型中各变量的回归系数、SE是标准差、Wald是卡方统计、Sig为显著性水平,df和Exp(B)为逻辑回归的结果参数。 表 6 滑坡危险性评价因子权重值
Table 6. Weight values of landslide hazard assessment factors
因子 q值 权重 高程 0.583 0.329 土壤类型 0.415 0.234 年平均降雨量 0.182 0.103 地震动参数 0.164 0.092 与河流距离 0.158 0.089 工程地质岩组 0.156 0.088 与道路距离 0.115 0.065 -
[1] 赵东亮,兰措卓玛,侯光良,等. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报,2021,27(1):83 − 95. [ZHAO Dongliang,LAN C,HOU Guangliang,et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics,2021,27(1):83 − 95. (in Chinese with English abstract)ZHAO Dongliang, LAN C, HOU Guangliang, et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 2021, 27(1): 83-95. (in Chinese with English abstract) [2] CENGIZ L D,ERCANOGLU M. A novel data-driven approach to pairwise comparisons in AHP using fuzzy relations and matrices for landslide susceptibility assessments[J]. Environmental Earth Sciences,2022,81(7):1 − 23. [3] WANG Di,HAO Mengmeng,CHEN Shuai,et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural Hazards,2021,108(3):3045 − 3059. doi: 10.1007/s11069-021-04812-8 [4] TAN Qulin,BAI Minzhou,ZHOU Pinggen,et al. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS[J]. Measurement,2021,169:108370. doi: 10.1016/j.measurement.2020.108370 [5] BIÇER Ç T,ERCANOGLU M. A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey[J]. Arabian Journal of Geosciences,2020,13(15):732. doi: 10.1007/s12517-020-05697-w [6] SCIARRA M,COCO L,URBANO T. Assessment and validation of GIS-based landslide susceptibility maps:A case study from Feltrino stream basin (Central Italy)[J]. Bulletin of Engineering Geology and the Environment,2017,76(2):437 − 456. doi: 10.1007/s10064-016-0954-7 [7] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)LUO Shoujing, WANG Shanshan, FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 126-133. (in Chinese with English abstract) [8] ZHAO Fumeng,MENG Xingmin,ZHANG Yi,et al. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology[J]. Sensors,2019,19(12):2685. doi: 10.3390/s19122685 [9] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价—以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract)WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning—taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817-828. (in Chinese with English abstract) [10] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract) [11] JIAO Yuanmei,ZHAO Dongmei,DING Yinping,et al. Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility:A case study at a World Heritage site in Southwest China[J]. CATENA,2019,183:104221. doi: 10.1016/j.catena.2019.104221 [12] 罗路广,裴向军,谷虎,等. 基于GIS的 “8·8” 九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8·8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract)LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3)193-202(in Chinese with English abstract) [13] 付树林,梁丽萍,刘延国. 基于CF-Logistic模型的雅砻江新龙段地质灾害易发性评价[J]. 水土保持研究,2021,28(4):404 − 410. [FU Shulin,LIANG Liping,LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of Yalong River based on CF-logistic model[J]. Research of Soil and Water Conservation,2021,28(4):404 − 410. (in Chinese with English abstract)FU Shulin, LIANG Liping, LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of yalong river based on CF-logistic model[J]. Research of Soil and Water Conservation, 2021, 28(4)404-410(in Chinese with English abstract) [14] DUMAN T Y,CAN T,GOKCEOGLU C,et al. Application of logistic regression for landslide susceptibility zoning of Cekmece Area,Istanbul,Turkey[J]. Environmental Geology,2006,51(2):241 − 256. doi: 10.1007/s00254-006-0322-1 [15] 胡涛,樊鑫,王硕,等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报,2020(2):113 − 121. [HU Tao,FAN Xin,WANG Shuo,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information,2020(2):113 − 121. (in Chinese with English abstract)HU Tao, FAN Xin, WANG Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information, 2020(2): 113-121. (in Chinese with English abstract) [16] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract)TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 2016, 43(6)154-161(in Chinese with English abstract) [17] 饶品增,曹冉,蒋卫国. 基于地理加权回归模型的云南省地质灾害易发性评价[J]. 自然灾害学报,2017,26(2):134 − 143. [RAO Pinzeng,CAO Ran,JIANG Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters,2017,26(2):134 − 143. (in Chinese with English abstract)Rao Pinzeng, Cao Ran, Jiang Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters, 2017, 26(2): 134-143. (in Chinese with English abstract) [18] 王丽丽,苏程,冯存均,等. 数据驱动自适应更新的斜坡地质灾害易发性评价系统[J]. 岩石力学与工程学报,2016,35(S1):3076 − 3083. [WANG Lili,SU Cheng,FENG Cunjun,et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3076 − 3083. (in Chinese with English abstract)WANG Lili, SU Cheng, FENG Cunjun, et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3076-3083. (in Chinese with English abstract) [19] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):12 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):12 − 167. (in Chinese with English abstract)Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 12. (in Chinese with English abstract) [20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract)WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract) [21] 丁茜,赵晓东,吴鑫俊,等. 基于RBF核的多分类SVM滑塌易发性评价模型[J]. 中国安全科学学报,2022,32(3):194 − 200. [DING Xi,ZHAO Xiaodong,WU Xinjun,et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal,2022,32(3):194 − 200. (in Chinese with English abstract)DING Xi, ZHAO Xiaodong, WU Xinjun, et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal, 2022, 32(3): 194-200. (in Chinese with English abstract) [22] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015(1):91 − 98. [TANG Chuan,MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica,2015(1):91 − 98. (in Chinese with English abstract)Tang Chuan, Ma Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015(1): 91-98. (in Chinese with English abstract) [23] WANG Fei,XU Peihua,WANG Changming,et al. Application of a GIS-based slope unit method for landslide susceptibility mapping along the Longzi River,southeastern Tibetan Plateau,China[J]. ISPRS International Journal of Geo-Information,2017,6(6):172. doi: 10.3390/ijgi6060172 [24] 陈前,晏鄂川,黄少平,等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报,2020(2):175 − 185. [CHEN Qian,YAN Echuan,HUANG Shaoping,et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information,2020(2):175 − 185. (in Chinese with English abstract)CHEN Qian, YAN Echuan, HUANG Shaoping, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information, 2020(2): 175-185. (in Chinese with English abstract) [25] 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract)CHEN Xuyu, NI Huayong, LI Minghui, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 2021, 36(2): 71-78. (in Chinese with English abstract) [26] 牛强,揭巧,李县. 变权栅格叠加方法研究—以生态敏感性评价为例[J]. 地理信息世界,2017,24(5):27 − 34. [NIU Qiang, JIE Qiao,LI Xian. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World,2017,24(5):27 − 34. (in Chinese with English abstract)QIANG niu, QIAO Jie, XIAN Li. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World, 2017, 24(5): 27-34. (in Chinese with English abstract) [27] 韩用顺,孙湘艳,刘通,等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J]. 山地学报,2021,39(5):672 − 686. [HAN Yongshun,SUN Xiangyan,LIU Tong,et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet,China[J]. Mountain Research,2021,39(5):672 − 686. (in Chinese with English abstract)HAN Yongshun, SUN Xiangyan, LIU Tong, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China[J]. Mountain Research, 2021, 39(5): 672-686. (in Chinese with English abstract) [28] 支泽民, 刘峰贵, 周强, 等. 基于流域单元的地质灾害易发性评价—以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: a case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139-150.(in Chinese with English abstract) [29] YANG Yanguo,YU Jiaqi,FU Yubin,et al. Research on geological hazard risk assessment based on the cloud fuzzy clustering algorithm[J]. Journal of Intelligent & Fuzzy Systems,2019,37(4):4763 − 4770. [30] 孙滨, 祝传兵, 康晓波, 等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)119-127(in Chinese with English abstract) [31] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng,XU Chengdong. Geodetector:Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract)WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1)116-134(in Chinese with English abstract) [32] LUO Wei,LIU C C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides,2018,15(3):465 − 474. doi: 10.1007/s10346-017-0893-9 [33] 韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价—以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Hao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract)HAN Jichong, ZHANG Hao, CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193-199. (in Chinese with English abstract) -