ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瓦斯防治工程的隐伏构造勘查与瓦斯异常区域预测

何鑫 崔洪庆 关金锋 王泽华

何鑫,崔洪庆,关金锋,等. 基于瓦斯防治工程的隐伏构造勘查与瓦斯异常区域预测[J]. 中国地质灾害与防治学报,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209007
引用本文: 何鑫,崔洪庆,关金锋,等. 基于瓦斯防治工程的隐伏构造勘查与瓦斯异常区域预测[J]. 中国地质灾害与防治学报,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209007
HE Xin,CUI Hongqing,GUAN Jinfeng,et al. Exploration of hidden structure and prediction of gas anomaly area based on gas control projects[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209007
Citation: HE Xin,CUI Hongqing,GUAN Jinfeng,et al. Exploration of hidden structure and prediction of gas anomaly area based on gas control projects[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-14 doi: 10.16031/j.cnki.issn.1003-8035.202209007

基于瓦斯防治工程的隐伏构造勘查与瓦斯异常区域预测

doi: 10.16031/j.cnki.issn.1003-8035.202209007
基金项目: 国家自然科学基金项目:高突煤层长壁回采工作面四维瓦斯地质研究(41372160);院高层次人才科研究项目(院科合字G2018014号)
详细信息
    作者简介:

    何鑫:何 鑫(1991-),男,河南省安阳市人,在读博士研究生,主要从事瓦斯地质及瓦斯灾害防治等研究。E-mail:patriot_xin@163.com

    通讯作者:

    崔洪庆(1958-),男,辽宁省营口市人,工学博士,教授,博士生导师,主要从事瓦斯地质领域的教学和研究工作。E-mail:hqcui@hpu.edu.cn

  • 中图分类号: TD166

Exploration of hidden structure and prediction of gas anomaly area based on gas control projects

  • 摘要: 隐伏构造勘查与瓦斯异常区域预测研究是瓦斯灾害防治工程的基础。根据我国煤矿生产法律规章,开采具有瓦斯灾害危险的煤层前,必须实施瓦斯抽放工程。通常,地质异常区域即是瓦斯灾害危险区,构造应力场和采动应力场的叠加会扰动煤体并加压瓦斯。为精准定位地质异常区,评价其瓦斯致灾潜能,提出了一种基于瓦斯抽采工程进行瓦斯异常区域勘测的研究方法。该方法利用抽采钻孔参数和施工记录,采集钻孔数据并计算煤层顶底板控制点坐标,进而利用二维投影图件及三维应力场模型对隐伏地质构造(如小的断层、褶曲、局部煤厚异常变化等)进行勘查和预测;通过分析小型地质构造周围的附加应力场,并对瓦斯致灾潜能进行动态预测。应用该方法,可以对地质异常区进行精细调查,揭示采煤工作面瓦斯地质演化的一般规律。其研究结果为高瓦斯或突出煤层瓦斯灾害防治措施优化设计及有效实施提供科学依据。
  • 图  1  隐伏构造勘查和瓦斯异常区域预测技术工作流程

    Figure  1.  Workflow of hidden structure exploration and gas anomaly area prediction technology

    图  2  相对坐标系示图

    Figure  2.  Schematic diagram of relative coordinate system

    图  3  钻孔信息示图

    Figure  3.  Schematic diagram of borehole

    图  4  钻孔偏斜示图

    Figure  4.  Schematic diagram of borehole deflection

    图  6  煤层顶板(或底板)三维曲面示图

    Figure  6.  Three-dimensional surface illustration diagram of coal seam roof (or floor)

    图  5  断层、褶曲等高线示图

    Figure  5.  Contour illustration diagram of faults and folds

    图  7  趋势面示图

    Figure  7.  Schematic diagram of trend surface

    图  8  断层、褶曲曲面磨光偏差图

    Figure  8.  Surface grinding deviation diagram of faults and folds

    图  9  断层曲面磨光示图

    Figure  9.  Surface grinding illustration diagram of faults

    图  10  断层曲面磨光示图

    Figure  10.  Surface grinding illustration diagram of faults

    图  11  背斜、向斜曲面磨光示图

    Figure  11.  Surface grinding illustration diagram of anticlines and synclines

    图  12  14171采煤工作面布置示图

    Figure  12.  Layout diagram at 14171 coal mining working face

    图  13  瓦斯抽采钻孔平面图、剖面图

    Figure  13.  Layout plan view and cross-section view of gas extraction drilling holes

    图  14  煤层底板等值线图

    Figure  14.  Contour map of coal seam floor

    图  15  煤层底板三维曲面图

    Figure  15.  Three-dimensional surface diagram of coal seam floor

    图  16  煤厚等值线填充图

    Figure  16.  Contour filling map of coal thickness

    图  17  煤层底板等高线三次趋势图

    Figure  17.  Three times trend map of coal seam floor contour lines

    图  18  煤层底板等高线三次残差图

    Figure  18.  Three times residual map of coal seam floor contour lines

    图  19  采煤工作面地质模型

    Figure  19.  Geological model of coal mining working face

    图  20  采动影响下工作面前方断层周围应力场的数值模拟

    Figure  20.  Numerical simulation of stress field around fault ahead of working face under mining influence

    图  21  靠近小断层的采煤工作面瓦斯浓度监测图

    Figure  21.  Gas concentration monitoring diagram for coal mining working face near small fault

    表  1  不同构造类型趋势面分析表

    Table  1.   Analysis table of trending surfaces for different tectonic types

    构造类型构造模型煤层顶板(或底板)等值线示图趋势面残差示图
    断层走向断层
    倾向断层
    褶曲
    下载: 导出CSV

    表  2  不同构造类型叠加应力场数值模拟

    Table  2.   Numerical simulation of superimposed stress fields of different tectonic types

    构造类型0°夹角断层45°夹角断层90°夹角断层
    构造模型
    开采前
    20 m迎头
    6 m迎头
    下载: 导出CSV
  • [1] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126 − 131. [LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126 − 131. (in Chinese)
    [2] PETER HATHERLY. Overview on the application of geophysics in coal mining[J]. International Journal of Coal Geology,2013,114:74 − 84. doi: 10.1016/j.coal.2013.02.006
    [3] 贾天让,王蔚,张子敏,等. 现代构造应力场下断层走向对瓦斯突出的影响[J]. 采矿与安全工程学报,2013,30(6):930 − 934. [JIA Tianrang,WEI Wei,ZHANG Zhimin,et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering,2013,30(6):930 − 934. (in Chinese with English abstract)
    [4] LI Shucai,LI Shuchen,ZHANG Qingsong,etal. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):232 − 242. doi: 10.3724/SP.J.1235.2010.00232
    [5] 魏国营,王保军,闫江伟,等. 平顶山八矿突出煤层瓦斯地质控制特征[J]. 煤炭学报,2015,40(3):555 − 561. [WEI Guoying,WANG Baojun,YAN Jiangwei,et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society,2015,40(3):555 − 561. (in Chinese with English abstract)
    [6] 崔洪庆,姚念岗. 不渗透断层与瓦斯灾害防治[J]. 煤炭学报,2010,35(9):1486 − 1489. [Cui Hongqing,Yao Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society,2010,35(9):1486 − 1489. (in Chinese)
    [7] ZHU Baolong. Quantitative evaluation of coal-mining geological condition[J]. Procedia Engineering,2011,26:630 − 639. doi: 10.1016/j.proeng.2011.11.2216
    [8] 杨陆武,彭立世,曹运兴. 应用瓦斯地质单元法预测煤与瓦斯突出[J]. 中国地质灾害与防治学报,1997,8(3):21 − 26. [YANG Luwu,PENG Lishi,CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control,1997,8(3):21 − 26. (in Chinese with English abstract)
    [9] 冉恒谦,张金昌,谢文卫,等. 地质钻探技术与应用研究[J]. 地质学报,2011,85(11):1806 − 1822. [RAN Hengqian,ZHANG Jinchang,XIE Wenwei,et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica,2011,85(11):1806 − 1822. (in Chinese)
    [10] YAO Ningping,ZHANG Jie,JIN Xing,et al. Status and development of directional drilling technology in coal mine[J]. Procedia Engineering,2014,73:289 − 298. doi: 10.1016/j.proeng.2014.06.201
    [11] LI Shucai, LIU Bin, XU Xianji, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2017, 63.
    [12] 汪佩,吕闰生,张金陵. 基于地质构造分区的瓦斯地质单元区划方法[J]. 煤炭技术,2021,40(2):89 − 92. [WANG Pei,LYU Runsheng,ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology,2021,40(2):89 − 92. (in Chinese with English abstract)
    [13] CAI Yidong,LIU Dameng,YAO Yanbin et al. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin,North China[J]. International Journal of Coal Geology,2011,88(2/3):101 − 112.
    [14] PAUL S, CHATTERJEE R. Determination of Sub-surface Stress Direction from Coal Permeability and Underground Cleat Orientation Mapping for Coal Bed Methane Exploration, Jharia Coalfield, India[C]//International Conference on Unconventional Sources of Fossil Fuels and Carbon Management (ICUSFFCM 2011). 2011. , 87(2): 87 − 96.
    [15] KANG H,ZHANG X,SI L,et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3 − 4):333 − 345. doi: 10.1016/j.enggeo.2010.09.015
    [16] YANG Wei,LIN Baiquan,ZHAI Cheng. A new technology for coal and gas control based on the in situ stress distribution and the roadway layout[J]. International Journal of Mining Science and Technology,2012,22(2):145 − 149. doi: 10.1016/j.ijmst.2011.08.002
    [17] 伍小刚,李天斌,张中,等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质,2021,48(1):163 − 170. [WU Xiaogang,LI Tianbin,ZHANG Zhong,et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology,2021,48(1):163 − 170. (in Chinese with English abstract)
    [18] SUN Xueyang, XIA Yucheng. Research on development character of middle and small size fault structure in DongPang Mine field on fractal theory[C]//2010 International Conference on Computing, Control and Industrial Engineering. June 5 − 6, 2010, Wuhan, China. IEEE, 2010: 170 − 174.
    [19] NIU Yan, ZHAO Jun, LI Zhiyuan, et al. Optimization of geological and mineral exploration by integrating remote sensing technology and borehole database[J]. Wireless Communications and Mobile Computing, 2022
    [20] DENG Zhaopeng, CAO Maoyong, GENG Yushui, et al. Generating a cylindrical panorama from a forward-looking borehole video for borehole condition analysis[J]. Applied Sciences, 2019, 9(16).
    [21] Mark,DYKE V,. Geologic data collection and assessment techniques in coal mining for ground control[J]. International Journal of Mining Science and Technology,2020,30(1):131 − 139. doi: 10.1016/j.ijmst.2019.12.003
    [22] LEI Z,PAN J,ZHANG X. Fuzzy comprehensive evaluation of mining geological condition in the No. 9 coal seam,Linhuan coal mine,Huaibei Coalfield,China[J]. Procedia Environmental Sciences,2012,12:9 − 16. doi: 10.1016/j.proenv.2012.01.240
    [23] 武强,陈红,刘守强. 基于环套原理的ANN型矿井小构造预测方法与应用—以淄博岭子煤矿为例[J]. 煤炭学报,2010,35(3):449 − 453. [WU Qiang,CHEN Hong,LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory:A case study of Lingzi Coal Mine in Zibo[J]. Journal of China Coal Society,2010,35(3):449 − 453. (in Chinese with English abstract)
    [24] 孙米银. 基于钻孔成像的煤层地质趋势面分析技术[J]. 煤矿安全,2021,52(8):113 − 117. [Sun Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines,2021,52(8):113 − 117. (in Chinese)
    [25] 贾晓亮,崔洪庆,张子敏. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探,2010,38(4):47 − 51. [JIA Xiaoliang,CUI Hongqing,ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration,2010,38(4):47 − 51. (in Chinese)
    [26] 刘少伟,焦建康. 九里山井田断层构造区应力分析及区域划分[J]. 中国安全生产科学技术,2014,10(2):44 − 50. [LIU Shaowei,JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology,2014,10(2):44 − 50. (in Chinese with English abstract)
    [27] 李胜,罗明坤,范超军,等. 采煤工作面煤与瓦斯突出危险性智能判识技术[J]. 中国安全科学学报,2016,26(10):76 − 81. [LI Sheng,LUO Mingkun,FAN Chaojun,et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal,2016,26(10):76 − 81. (in Chinese with English abstract)
    [28] 关金锋. 采煤工作面小构造探测及动态分析方法研究[D]. 焦作: 河南理工大学

    GUAN Jinfeng. Study on detection and dynamic analysis method of small structure in coal mining face[D]. Jiaozuo: Henan Polytechnic University. (in Chinese with English abstract)
    [29] HATHERLY P,LEUNG R,SCHEDING S,et al. Drill monitoring results reveal geological conditions in blasthole drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:144 − 154. doi: 10.1016/j.ijrmms.2015.05.006
    [30] YANG Wei,LIN Baiquan,XU Jiangtao. Gas outburst affected by original rock stress direction[J]. Natural Hazards,2014,72(2):1063 − 1074. doi: 10.1007/s11069-014-1049-z
    [31] 刘杰,王恩元,赵恩来,等. 深部工作面采动应力场分布变化规律实测研究[J]. 采矿与安全工程学报,2014,31(1):60 − 65. [LIU Jie,WANG Enyuan,ZHAO Enlai,et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering,2014,31(1):60 − 65. (in Chinese with English abstract)
    [32] 勾攀峰,韦四江,张盛. 不同水平应力对巷道稳定性的模拟研究[J]. 采矿与安全工程学报,2010,27(2):143 − 148. [GOU Panfeng,WEI Sijiang,ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering,2010,27(2):143 − 148. (in Chinese with English abstract)
    [33] BABAEI KHORZOUGHI M,HALL R. Processing of measurement while drilling data for rock mass characterization[J]. International Journal of Mining Science and Technology,2016,26(6):989 − 994. doi: 10.1016/j.ijmst.2016.09.005
    [34] 张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese)
    [35] 蒋金泉,武泉林,曲华. 硬厚覆岩正断层附近采动应力演化特征[J]. 采矿与安全工程学报,2014,31(6):881 − 887. [JIANG Jinquan,WU Quanlin,QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering,2014,31(6):881 − 887. (in Chinese with English abstract)
    [36] 胡广东,崔洪庆,关金锋. 煤层小褶曲应力分布数值模拟[J]. 安全与环境学报,2016,16(1):54 − 57. [HU Guangdong,CUI Hongqing,GUAN Jinfeng. Numerical simulation on the stress distribution of the small folds in the coal seam[J]. Journal of Safety and Environment,2016,16(1):54 − 57. (in Chinese with English abstract)
    [37] 高亚斌,林柏泉,杨威,等. 不渗透小断层群瓦斯异常赋存特点及防治研究[J]. 中国矿业大学学报,2013,42(6):989 − 995. [GAO Yabin,LIN Boquan,YANG Wei,et al. Research on the abnormal occurrence characteristics of gas in impermeable small fault group and its control technology[J]. Journal of China University of Mining & Technology,2013,42(6):989 − 995. (in Chinese with English abstract)
    [38] 郭晨,夏玉成,孙学阳,等. 高瓦斯矿井采煤工作面瓦斯地质分级评价方法与实践[J]. 煤炭学报,2019,44(8):2409 − 2418. [GUO Chen,XIA Yucheng,SUN Xueyang,et al. Method and practice of gas geological grading evaluation on coal mining face of high gas mine[J]. Journal of China Coal Society,2019,44(8):2409 − 2418. (in Chinese)
    [39] HUNGERFORD F,REN T,AZIZ N. Evolution and application of in-seam drilling for gas drainag[J]. International Journal of Mining Science and Technology,2013,23(4):543 − 553. doi: 10.1016/j.ijmst.2013.07.013
    [40] ZHANG Nong,ZHANG Nianchao,HAN Changliang,et al. Borehole stress monitoring analysis on advanced abutment pressure induced by Longwall Mining[J]. Arabian Journal of Geosciences,2014,7(2):457 − 463. doi: 10.1007/s12517-013-0831-7
    [41] 张庆华,蒲阳. 高产高效矿井煤与瓦斯突出动态预测技术研究[J]. 煤炭科学技术,2018,46(10):65 − 72. [ZHANG Qinghua,PU Yang. Research on dynamic prediction technology of coal and gas outburst in high-yield and high-efficiency mine[J]. Coal Science and Technology,2018,46(10):65 − 72. (in Chinese with English abstract)
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  128
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 录用日期:  2023-04-17
  • 修回日期:  2022-11-11
  • 网络出版日期:  2023-04-23

目录

    /

    返回文章
    返回