Exploration of hidden structure and prediction of gas anomaly area based on gas control projects
-
摘要: 隐伏构造勘查与瓦斯异常区域预测研究是瓦斯灾害防治工程的基础。根据我国煤矿生产法律规章,开采具有瓦斯灾害危险的煤层前,必须实施瓦斯抽放工程。通常,地质异常区域即是瓦斯灾害危险区,构造应力场和采动应力场的叠加会扰动煤体并加压瓦斯。为精准定位地质异常区,评价其瓦斯致灾潜能,提出了一种基于瓦斯抽采工程进行瓦斯异常区域勘测的研究方法。该方法利用抽采钻孔参数和施工记录,采集钻孔数据并计算煤层顶底板控制点坐标,进而利用二维投影图件及三维应力场模型对隐伏地质构造(如小的断层、褶曲、局部煤厚异常变化等)进行勘查和预测;通过分析小型地质构造周围的附加应力场,并对瓦斯致灾潜能进行动态预测。应用该方法,可以对地质异常区进行精细调查,揭示采煤工作面瓦斯地质演化的一般规律。其研究结果为高瓦斯或突出煤层瓦斯灾害防治措施优化设计及有效实施提供科学依据。Abstract: The investigation of hidden structures and the prediction of gas abnormal area form the foundation of gas disaster prevention engineering. In accordance with the laws and regulations governing coal mining in our country, a gas pumping project must be implemented prior to mining coal seams with a gas hazard. Typically, geologic anomaly area represent gas hazard zones, where the combination of tectonic stress field and mining-induced stress field can disturb coal bodies and pressurize gas. To accurately locate geologic anomaly areas and evaluate their gas disaster potential, a gas geologic anomaly survey method has been proposed based on gas extraction projects. This method uses drilling parameters and records to calculate the coordinates of the control points of the coal seam roof and bottom, and then utilizes two-dimensional projection diagrams and three-dimensional stress field models to survey and forecast small, hidden geological structures (such as small faults, folds, and locally abnormal coal thicknesses). By analyzing the additional stress field surrounding small geological structures, gas disaster potential can be dynamically predicted. The application of this method enables the detailed investigation of geological anomalies and reveals the general pattern of gas geological evolution at coal mining worksites. The research results provide a scientific basis for the optimal design and effective implementation of disaster prevention and control measures for coal seams with high gas content or at risk of gas outbursts.
-
表 1 不同构造类型趋势面分析表
Table 1. Analysis table of trending surfaces for different tectonic types
构造类型 构造模型 煤层顶板(或底板)等值线示图 趋势面残差示图 断层 走向断层 倾向断层 褶曲 表 2 不同构造类型叠加应力场数值模拟
Table 2. Numerical simulation of superimposed stress fields of different tectonic types
构造类型 0°夹角断层 45°夹角断层 90°夹角断层 构造模型 开采前 20 m迎头 6 m迎头 -
[1] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126 − 131. [LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126 − 131. (in Chinese) [2] PETER HATHERLY. Overview on the application of geophysics in coal mining[J]. International Journal of Coal Geology,2013,114:74 − 84. doi: 10.1016/j.coal.2013.02.006 [3] 贾天让,王蔚,张子敏,等. 现代构造应力场下断层走向对瓦斯突出的影响[J]. 采矿与安全工程学报,2013,30(6):930 − 934. [JIA Tianrang,WEI Wei,ZHANG Zhimin,et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering,2013,30(6):930 − 934. (in Chinese with English abstract) [4] LI Shucai,LI Shuchen,ZHANG Qingsong,etal. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):232 − 242. doi: 10.3724/SP.J.1235.2010.00232 [5] 魏国营,王保军,闫江伟,等. 平顶山八矿突出煤层瓦斯地质控制特征[J]. 煤炭学报,2015,40(3):555 − 561. [WEI Guoying,WANG Baojun,YAN Jiangwei,et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society,2015,40(3):555 − 561. (in Chinese with English abstract) [6] 崔洪庆,姚念岗. 不渗透断层与瓦斯灾害防治[J]. 煤炭学报,2010,35(9):1486 − 1489. [Cui Hongqing,Yao Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society,2010,35(9):1486 − 1489. (in Chinese) [7] ZHU Baolong. Quantitative evaluation of coal-mining geological condition[J]. Procedia Engineering,2011,26:630 − 639. doi: 10.1016/j.proeng.2011.11.2216 [8] 杨陆武,彭立世,曹运兴. 应用瓦斯地质单元法预测煤与瓦斯突出[J]. 中国地质灾害与防治学报,1997,8(3):21 − 26. [YANG Luwu,PENG Lishi,CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control,1997,8(3):21 − 26. (in Chinese with English abstract) [9] 冉恒谦,张金昌,谢文卫,等. 地质钻探技术与应用研究[J]. 地质学报,2011,85(11):1806 − 1822. [RAN Hengqian,ZHANG Jinchang,XIE Wenwei,et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica,2011,85(11):1806 − 1822. (in Chinese) [10] YAO Ningping,ZHANG Jie,JIN Xing,et al. Status and development of directional drilling technology in coal mine[J]. Procedia Engineering,2014,73:289 − 298. doi: 10.1016/j.proeng.2014.06.201 [11] LI Shucai, LIU Bin, XU Xianji, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2017, 63. [12] 汪佩,吕闰生,张金陵. 基于地质构造分区的瓦斯地质单元区划方法[J]. 煤炭技术,2021,40(2):89 − 92. [WANG Pei,LYU Runsheng,ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology,2021,40(2):89 − 92. (in Chinese with English abstract) [13] CAI Yidong,LIU Dameng,YAO Yanbin et al. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin,North China[J]. International Journal of Coal Geology,2011,88(2/3):101 − 112. [14] PAUL S, CHATTERJEE R. Determination of Sub-surface Stress Direction from Coal Permeability and Underground Cleat Orientation Mapping for Coal Bed Methane Exploration, Jharia Coalfield, India[C]//International Conference on Unconventional Sources of Fossil Fuels and Carbon Management (ICUSFFCM 2011). 2011. , 87(2): 87 − 96. [15] KANG H,ZHANG X,SI L,et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3 − 4):333 − 345. doi: 10.1016/j.enggeo.2010.09.015 [16] YANG Wei,LIN Baiquan,ZHAI Cheng. A new technology for coal and gas control based on the in situ stress distribution and the roadway layout[J]. International Journal of Mining Science and Technology,2012,22(2):145 − 149. doi: 10.1016/j.ijmst.2011.08.002 [17] 伍小刚,李天斌,张中,等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质,2021,48(1):163 − 170. [WU Xiaogang,LI Tianbin,ZHANG Zhong,et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology,2021,48(1):163 − 170. (in Chinese with English abstract) [18] SUN Xueyang, XIA Yucheng. Research on development character of middle and small size fault structure in DongPang Mine field on fractal theory[C]//2010 International Conference on Computing, Control and Industrial Engineering. June 5 − 6, 2010, Wuhan, China. IEEE, 2010: 170 − 174. [19] NIU Yan, ZHAO Jun, LI Zhiyuan, et al. Optimization of geological and mineral exploration by integrating remote sensing technology and borehole database[J]. Wireless Communications and Mobile Computing, 2022 [20] DENG Zhaopeng, CAO Maoyong, GENG Yushui, et al. Generating a cylindrical panorama from a forward-looking borehole video for borehole condition analysis[J]. Applied Sciences, 2019, 9(16). [21] Mark,DYKE V,. Geologic data collection and assessment techniques in coal mining for ground control[J]. International Journal of Mining Science and Technology,2020,30(1):131 − 139. doi: 10.1016/j.ijmst.2019.12.003 [22] LEI Z,PAN J,ZHANG X. Fuzzy comprehensive evaluation of mining geological condition in the No. 9 coal seam,Linhuan coal mine,Huaibei Coalfield,China[J]. Procedia Environmental Sciences,2012,12:9 − 16. doi: 10.1016/j.proenv.2012.01.240 [23] 武强,陈红,刘守强. 基于环套原理的ANN型矿井小构造预测方法与应用—以淄博岭子煤矿为例[J]. 煤炭学报,2010,35(3):449 − 453. [WU Qiang,CHEN Hong,LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory:A case study of Lingzi Coal Mine in Zibo[J]. Journal of China Coal Society,2010,35(3):449 − 453. (in Chinese with English abstract) [24] 孙米银. 基于钻孔成像的煤层地质趋势面分析技术[J]. 煤矿安全,2021,52(8):113 − 117. [Sun Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines,2021,52(8):113 − 117. (in Chinese) [25] 贾晓亮,崔洪庆,张子敏. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探,2010,38(4):47 − 51. [JIA Xiaoliang,CUI Hongqing,ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration,2010,38(4):47 − 51. (in Chinese) [26] 刘少伟,焦建康. 九里山井田断层构造区应力分析及区域划分[J]. 中国安全生产科学技术,2014,10(2):44 − 50. [LIU Shaowei,JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology,2014,10(2):44 − 50. (in Chinese with English abstract) [27] 李胜,罗明坤,范超军,等. 采煤工作面煤与瓦斯突出危险性智能判识技术[J]. 中国安全科学学报,2016,26(10):76 − 81. [LI Sheng,LUO Mingkun,FAN Chaojun,et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal,2016,26(10):76 − 81. (in Chinese with English abstract) [28] 关金锋. 采煤工作面小构造探测及动态分析方法研究[D]. 焦作: 河南理工大学GUAN Jinfeng. Study on detection and dynamic analysis method of small structure in coal mining face[D]. Jiaozuo: Henan Polytechnic University. (in Chinese with English abstract) [29] HATHERLY P,LEUNG R,SCHEDING S,et al. Drill monitoring results reveal geological conditions in blasthole drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:144 − 154. doi: 10.1016/j.ijrmms.2015.05.006 [30] YANG Wei,LIN Baiquan,XU Jiangtao. Gas outburst affected by original rock stress direction[J]. Natural Hazards,2014,72(2):1063 − 1074. doi: 10.1007/s11069-014-1049-z [31] 刘杰,王恩元,赵恩来,等. 深部工作面采动应力场分布变化规律实测研究[J]. 采矿与安全工程学报,2014,31(1):60 − 65. [LIU Jie,WANG Enyuan,ZHAO Enlai,et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering,2014,31(1):60 − 65. (in Chinese with English abstract) [32] 勾攀峰,韦四江,张盛. 不同水平应力对巷道稳定性的模拟研究[J]. 采矿与安全工程学报,2010,27(2):143 − 148. [GOU Panfeng,WEI Sijiang,ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering,2010,27(2):143 − 148. (in Chinese with English abstract) [33] BABAEI KHORZOUGHI M,HALL R. Processing of measurement while drilling data for rock mass characterization[J]. International Journal of Mining Science and Technology,2016,26(6):989 − 994. doi: 10.1016/j.ijmst.2016.09.005 [34] 张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese) [35] 蒋金泉,武泉林,曲华. 硬厚覆岩正断层附近采动应力演化特征[J]. 采矿与安全工程学报,2014,31(6):881 − 887. [JIANG Jinquan,WU Quanlin,QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering,2014,31(6):881 − 887. (in Chinese with English abstract) [36] 胡广东,崔洪庆,关金锋. 煤层小褶曲应力分布数值模拟[J]. 安全与环境学报,2016,16(1):54 − 57. [HU Guangdong,CUI Hongqing,GUAN Jinfeng. Numerical simulation on the stress distribution of the small folds in the coal seam[J]. Journal of Safety and Environment,2016,16(1):54 − 57. (in Chinese with English abstract) [37] 高亚斌,林柏泉,杨威,等. 不渗透小断层群瓦斯异常赋存特点及防治研究[J]. 中国矿业大学学报,2013,42(6):989 − 995. [GAO Yabin,LIN Boquan,YANG Wei,et al. Research on the abnormal occurrence characteristics of gas in impermeable small fault group and its control technology[J]. Journal of China University of Mining & Technology,2013,42(6):989 − 995. (in Chinese with English abstract) [38] 郭晨,夏玉成,孙学阳,等. 高瓦斯矿井采煤工作面瓦斯地质分级评价方法与实践[J]. 煤炭学报,2019,44(8):2409 − 2418. [GUO Chen,XIA Yucheng,SUN Xueyang,et al. Method and practice of gas geological grading evaluation on coal mining face of high gas mine[J]. Journal of China Coal Society,2019,44(8):2409 − 2418. (in Chinese) [39] HUNGERFORD F,REN T,AZIZ N. Evolution and application of in-seam drilling for gas drainag[J]. International Journal of Mining Science and Technology,2013,23(4):543 − 553. doi: 10.1016/j.ijmst.2013.07.013 [40] ZHANG Nong,ZHANG Nianchao,HAN Changliang,et al. Borehole stress monitoring analysis on advanced abutment pressure induced by Longwall Mining[J]. Arabian Journal of Geosciences,2014,7(2):457 − 463. doi: 10.1007/s12517-013-0831-7 [41] 张庆华,蒲阳. 高产高效矿井煤与瓦斯突出动态预测技术研究[J]. 煤炭科学技术,2018,46(10):65 − 72. [ZHANG Qinghua,PU Yang. Research on dynamic prediction technology of coal and gas outburst in high-yield and high-efficiency mine[J]. Coal Science and Technology,2018,46(10):65 − 72. (in Chinese with English abstract) -