Application of Sentinel-1A and ALOS-2 images in monitoring deformation characteristics of Zhixincun landslide
-
摘要: 2017年7月,吉林市遭受罕见暴雨天气影响,致使治新村发生了滑坡地质灾害,实地考察发现该滑坡现处于蠕变阶段,对附近居民区造成严重威胁。为实现对该滑坡的有效监测,为灾害预防提供参考,本文选取2017年27景sentinel-1A数据,基于小基线雷达干涉测量技术(SBAS-InSAR)对治新村滑坡进行了形变监测,并分析了其时序演化态势;选用2016、2017年2景更具穿透性的ALOS-2数据,采用差分雷达干涉测量技术(D-InSAR)监测了该滑坡形变体的特征。SBAS-InSAR监测结果表明,治新村滑坡汇水区斜坡末端在监测期间发生了沉降,并且在7月5日到7月29日期间滑坡末端地表沉降达12.47 mm,监测期间平均沉降速率为2.88 mm/a。位于山谷的受威胁居民区发生了抬升,至12月8日平均累计抬升达19.59 mm,监测期间平均抬升速率19.99 mm/a;D-InSAR结果显示,治新村滑坡汇水区斜坡存在5处主要变形体,面积最大变形体面积17973 m2,位于西侧斜坡;最不稳定变形体位于斜坡东侧,监测期间平均累积形变量最大达49.9 mm,滑坡灾害威胁主要来自植被覆盖较差的西侧斜坡,雨季是治新村滑坡灾害防治的重点时期。
-
关键词:
- 滑坡 /
- 治新村 /
- SBAS-InSAR /
- D-InSAR /
- ALOS-2 /
- sentinel-1A
Abstract: In July 2017, Jilin City was affected by unusually heavy rain, which caused a landslide geological disaster in Zhixin Village. Field investigation found that the landslide was now in the creep stage, posing a serious threat to nearby residential areas. In order to realize effective monitoring of the landslide and provide reference for disaster prevention, this paper selected 27 sentinel-1A data in 2017 to monitor the deformation of Zhixincun landslide based on small baseline radar interferometry technology (SBAS-InSAR), and analyzed its temporal evolution situation. Using the more penetrating ALOS-2 data from 2016 and 2017, the characteristics of the landslide variant were monitored by differential radar interferometry (D-InSAR). The SBAS-InSAR monitoring results showed that the slope end of the landslide catchment area in Zhixincun had subsidence during the monitoring period, and the surface subsidence at the landslide end reached 12.47 mm from July 5 to July 29, with an average subsidence rate of 2.88 mm/a during the monitoring period. Uplift occurred in the threatened residential areas located in the valley, with an average cumulative uplift of 19.59 mm as of December 8 and an average rate of 19.99 mm/a during the monitoring period. The D-InSAR results showed that there were five major deformities on the slope of the landslide catchment area in Zhixincun, and the largest deformities were 17973 m2, located on the west slope. The most unstable deformation was located on the east side of the slope, and the average cumulative shape variable reached 49.9 mm during the monitoring period. The threat of landslide disaster mainly came from the west slope with poor vegetation coverage. The rainy season is the key period for the prevention and control of landslide disaster in Zhixincun.-
Key words:
- landslide /
- Zhixin village /
- SBAS-InSAR /
- D-InSAR /
- ALOS-2 /
- sentinel-1A
-
表 1 Sentinel-1A数据集
Table 1. Sentinel-1A data set
序号 成像时间 时间基线/day 空间基线/m 01 20170106 60 43.8 02 20170118 48 19.9 03 20170130 36 75.9 04 20170211 24 170.1 05 20170223 12 109.8 06 20170307 0 0 07 20170319 12 −15.5 08 20170331 24 32.9 09 20170412 36 57.4 10 20170424 48 128.3 11 20170506 60 92.7 12 20170518 72 47.9 13 20170530 84 −70.3 14 20170611 96 104.5 15 20170623 108 95.2 16 20170705 120 25.1 17 20170729 144 43.2 18 20170810 156 71.3 19 20170822 168 27.8 20 20170903 180 62.6 21 20170915 192 107.1 22 20170927 204 62.3 23 20171009 216 70.1 24 20171021 228 122.2 25 20171102 240 145.3 26 20171126 264 56.1 27 20171208 276 61.5 表 2 ALOS-2影像信息
Table 2. Alos-2 Image Information
序号 成像时间 时间基线/day 空间基线/m 01 20160726 392 −225.5 02 20170822 表 3 斜坡变形体
Table 3. Deformation of Slope
编号 面积/m² 最大沉降量/mm 最小沉降量/mm 平均沉降量/mm 01 5318 58.6 29.4 43.2 02 17973 50.6 24.2 36.4 03 4636 68.7 29.8 43.5 04 3043 71.8 31.3 49.9 05 11281 47.6 20.1 38.3 -
[1] 殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [Yin Yueping,Wang Wenpei. Study on calculation model of dynamic erosion plowing of high-level remote landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese) [2] 黄海峰,林海玉,吕奕铭,等. 基于小型无人机遥感的单体地质灾害应急调查方法与实践[J]. 工程地质学报,2017,25(2):447 − 454. [HUANG Haifeng,LIN Haiyu,LYU Yiming,et al. Micro unmanned aerial vehicle based remote sensing method and application for emergency survey of individual geohazard[J]. Journal of Engineering Geology,2017,25(2):447 − 454. (in Chinese with English abstract) [3] 朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract) [4] 张勤,黄观文,杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报,2017,46(10):1300 − 1307. [ZHANG Qin,HUANG Guanwen,YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1300 − 1307. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2017.20170453 [5] 刘文,王猛,朱赛楠,等. 基于光学遥感技术的高山极高山区高位地质灾害链式特征分析—以金沙江上游典型堵江滑坡为例[J]. 中国地质灾害与防治学报,2021,32(5):29 − 39. [LIU Wen,WANG Meng,ZHU Sainan,et al. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology:A case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):29 − 39. (in Chinese with English abstract) [6] XIE Mingli,ZHAO Weihua,JU Nengpan,et al. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide,Wenchuan,China[J]. Engineering Geology,2020,277:105781. doi: 10.1016/j.enggeo.2020.105781 [7] 朱智富,甘淑,袁希平,等. 云南漾濞5·21地震诱发地表形变的D-InSAR快速探测分析[J]. 城市勘测,2022(2):5 − 10. [ZHU Zhifu,GAN Shu,YUAN Xiping,et al. D-InSAR Rapid detection and analysis of surface deformation induced by Yangbi 5·21 earthquake in Yunnan[J]. Urban Geotechnical Investigation & Surveying,2022(2):5 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8262.2022.02.002 [8] 梁伟锋,王庆良. InSAR技术在火山监测研究中的应用[J]. 大地测量与地球动力学,2003,23(4):120 − 124. [LIANG Weifeng,WANG Qingliang. Application of insar to monitoring and studying volcano[J]. Crustal Deformation and Earthquake,2003,23(4):120 − 124. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2003.04.023 [9] 程滔,单新建,董文彤,等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质,2008,35(1):98 − 101. [CHENG Tao,SHAN Xinjian,DONG Wentong,et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology,2008,35(1):98 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.01.022 [10] 赵超英,张勤,丁晓利,等. 基于InSAR的西安地面沉降与地裂缝发育特征研究[J]. 工程地质学报,2009,17(3):389 − 393. [ZHAO Chaoying,ZHANG Qin,DING Xiaoli,et al. Insar based evaluation of land subsidence and ground fissure evolution at Xian[J]. Journal of Engineering Geology,2009,17(3):389 − 393. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.03.018 [11] FRUNEAU B,ACHACHE J,DELACOURT C. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry[J]. Tectonophysics,1996,265(3/4):181 − 190. [12] MADSEN S N,ZEBKER H A,MARTIN J. Topographic mapping using radar interferometry:processing techniques[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(1):246 − 256. doi: 10.1109/36.210464 [13] 邓云凯,禹卫东,张衡,等. 未来星载SAR技术发展趋势[J]. 雷达学报,2020,9(1):1 − 33. [DENG Yunkai,YU Weidong,ZHANG Heng,et al. Forthcoming spaceborne SAR development[J]. Journal of Radars,2020,9(1):1 − 33. (in Chinese with English abstract) [14] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//IEEE Transactions on Geoscience and Remote Sensing. January 2001, IEEE, 2002: 8 − 20. [15] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792 [16] 姚佳明,姚鑫,陈剑,等. 基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J]. 水文地质工程地质,2020,47(3):135 − 146. [YAO Jiaming,YAO Xin,CHEN Jian,et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(3):135 − 146. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201903072 [17] 赵富萌,张毅,孟兴民,等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng,ZHANG Yi,MENG Xingmin,et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract) [18] ZHANG Y,MENG X M,DIJKSTRA T A,et al. Forecasting the magnitude of potential landslides based on InSAR techniques[J]. Remote Sensing of Environment,2020,241:111738. doi: 10.1016/j.rse.2020.111738 [19] 季灵运,王庆良,崔笃信,等. 利用SBAS-DInSAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学,2011,31(4):149 − 153. [JI Lingyun,WANG Qingliang,CUI Duxin,et al. Time series of deformation in Tengchong volcanic area extracted by sbas-dinsar[J]. Journal of Geodesy and Geodynamics,2011,31(4):149 − 153. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2011.04.034 [20] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract) -