ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sentinel-1A及ALOS-2影像在治新村滑坡形变特征监测中的应用

于海明 张熠斌 张旭晴 徐思瑜 徐誉维

于海明,张熠斌,张旭晴,等. Sentinel-1A及ALOS-2影像在治新村滑坡形变特征监测中的应用[J]. 中国地质灾害与防治学报,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202209021
引用本文: 于海明,张熠斌,张旭晴,等. Sentinel-1A及ALOS-2影像在治新村滑坡形变特征监测中的应用[J]. 中国地质灾害与防治学报,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202209021
YU Haiming,ZHANG Yibin,ZHANG Xuqing,et al. Application of Sentinel-1A and ALOS-2 images in monitoring deformation characteristics of Zhixincun landslide[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202209021
Citation: YU Haiming,ZHANG Yibin,ZHANG Xuqing,et al. Application of Sentinel-1A and ALOS-2 images in monitoring deformation characteristics of Zhixincun landslide[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-9 doi: 10.16031/j.cnki.issn.1003-8035.202209021

Sentinel-1A及ALOS-2影像在治新村滑坡形变特征监测中的应用

doi: 10.16031/j.cnki.issn.1003-8035.202209021
基金项目: 国家自然科学基金项目(42171407;42077242)
详细信息
    作者简介:

    于海明(1972-),男,吉林吉林人,硕士研究生,研究员,主要从事地质灾害防治、地质环境调查评价等方面的研究。E-mail:1378698439@qq.com

    通讯作者:

    张熠斌(1983-),男,甘肃天水人,硕士研究生,高级工程师,主要从事水工环遥感、地质环境信息化等方面的研究。E-mail:914345427@qq.com

Application of Sentinel-1A and ALOS-2 images in monitoring deformation characteristics of Zhixincun landslide

  • 摘要: 2017年7月,吉林市遭受罕见暴雨天气影响,致使治新村发生了滑坡地质灾害,实地考察发现该滑坡现处于蠕变阶段,对附近居民区造成严重威胁。为实现对该滑坡的有效监测,为灾害预防提供参考,本文选取2017年27景sentinel-1A数据,基于小基线雷达干涉测量技术(SBAS-InSAR)对治新村滑坡进行了形变监测,并分析了其时序演化态势;选用2016、2017年2景更具穿透性的ALOS-2数据,采用差分雷达干涉测量技术(D-InSAR)监测了该滑坡形变体的特征。SBAS-InSAR监测结果表明,治新村滑坡汇水区斜坡末端在监测期间发生了沉降,并且在7月5日到7月29日期间滑坡末端地表沉降达12.47 mm,监测期间平均沉降速率为2.88 mm/a。位于山谷的受威胁居民区发生了抬升,至12月8日平均累计抬升达19.59 mm,监测期间平均抬升速率19.99 mm/a;D-InSAR结果显示,治新村滑坡汇水区斜坡存在5处主要变形体,面积最大变形体面积17973 m2,位于西侧斜坡;最不稳定变形体位于斜坡东侧,监测期间平均累积形变量最大达49.9 mm,滑坡灾害威胁主要来自植被覆盖较差的西侧斜坡,雨季是治新村滑坡灾害防治的重点时期。
  • 图  1  研究区位置图

    Figure  1.  Location Map of Study Area

    图  2  SAR数据处理流程图

    Figure  2.  Workflow of InSAR Data Processing

    图  3  时空基线图(左)与像对连接图(右)

    Figure  3.  SBAS-InSAR Processing Process (left) and D-InSAR Processing Process (right)

    图  4  D-InSAR形变测量精度(左)、高程测量精度(右)

    Figure  4.  D-InSAR Displacement Precision (left) and Height Precision (right)

    图  5  SBAS-InSAR监测结果

    Figure  5.  SBAS-InSAR Monitoring Results

    图  6  SBAS-InSAR监测点时序特征

    Figure  6.  Temporal Characteristics of SBAS-InSAR Monitoring Points

    图  7  D-InSAR监测结果

    Figure  7.  D-InSAR Monitoring Results

    图  8  治新村滑坡剖面特征

    Figure  8.  Profile characteristics of Zhixincun Landslide

    表  1  Sentinel-1A数据集

    Table  1.   Sentinel-1A data set

    序号成像时间时间基线/day空间基线/m
    01201701066043.8
    02201701184819.9
    03201701303675.9
    042017021124170.1
    052017022312109.8
    062017030700
    072017031912−15.5
    08201703312432.9
    09201704123657.4
    102017042448128.3
    11201705066092.7
    12201705187247.9
    132017053084−70.3
    142017061196104.5
    152017062310895.2
    162017070512025.1
    172017072914443.2
    182017081015671.3
    192017082216827.8
    202017090318062.6
    2120170915192107.1
    222017092720462.3
    232017100921670.1
    2420171021228122.2
    2520171102240145.3
    262017112626456.1
    272017120827661.5
    下载: 导出CSV

    表  2  ALOS-2影像信息

    Table  2.   Alos-2 Image Information

    序号成像时间时间基线/day空间基线/m
    0120160726392−225.5
    0220170822
    下载: 导出CSV

    表  3  斜坡变形体

    Table  3.   Deformation of Slope

    编号面积/m²最大沉降量/mm最小沉降量/mm平均沉降量/mm
    01531858.629.443.2
    021797350.624.236.4
    03463668.729.843.5
    04304371.831.349.9
    051128147.620.138.3
    下载: 导出CSV
  • [1] 殷跃平,王文沛. 高位远程滑坡动力侵蚀犁切计算模型研究[J]. 岩石力学与工程学报,2020,39(8):1513 − 1521. [Yin Yueping,Wang Wenpei. Study on calculation model of dynamic erosion plowing of high-level remote landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1513 − 1521. (in Chinese)
    [2] 黄海峰,林海玉,吕奕铭,等. 基于小型无人机遥感的单体地质灾害应急调查方法与实践[J]. 工程地质学报,2017,25(2):447 − 454. [HUANG Haifeng,LIN Haiyu,LYU Yiming,et al. Micro unmanned aerial vehicle based remote sensing method and application for emergency survey of individual geohazard[J]. Journal of Engineering Geology,2017,25(2):447 − 454. (in Chinese with English abstract)
    [3] 朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract)
    [4] 张勤,黄观文,杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报,2017,46(10):1300 − 1307. [ZHANG Qin,HUANG Guanwen,YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1300 − 1307. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2017.20170453
    [5] 刘文,王猛,朱赛楠,等. 基于光学遥感技术的高山极高山区高位地质灾害链式特征分析—以金沙江上游典型堵江滑坡为例[J]. 中国地质灾害与防治学报,2021,32(5):29 − 39. [LIU Wen,WANG Meng,ZHU Sainan,et al. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology:A case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):29 − 39. (in Chinese with English abstract)
    [6] XIE Mingli,ZHAO Weihua,JU Nengpan,et al. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide,Wenchuan,China[J]. Engineering Geology,2020,277:105781. doi: 10.1016/j.enggeo.2020.105781
    [7] 朱智富,甘淑,袁希平,等. 云南漾濞5·21地震诱发地表形变的D-InSAR快速探测分析[J]. 城市勘测,2022(2):5 − 10. [ZHU Zhifu,GAN Shu,YUAN Xiping,et al. D-InSAR Rapid detection and analysis of surface deformation induced by Yangbi 5·21 earthquake in Yunnan[J]. Urban Geotechnical Investigation & Surveying,2022(2):5 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8262.2022.02.002
    [8] 梁伟锋,王庆良. InSAR技术在火山监测研究中的应用[J]. 大地测量与地球动力学,2003,23(4):120 − 124. [LIANG Weifeng,WANG Qingliang. Application of insar to monitoring and studying volcano[J]. Crustal Deformation and Earthquake,2003,23(4):120 − 124. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2003.04.023
    [9] 程滔,单新建,董文彤,等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质,2008,35(1):98 − 101. [CHENG Tao,SHAN Xinjian,DONG Wentong,et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology,2008,35(1):98 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.01.022
    [10] 赵超英,张勤,丁晓利,等. 基于InSAR的西安地面沉降与地裂缝发育特征研究[J]. 工程地质学报,2009,17(3):389 − 393. [ZHAO Chaoying,ZHANG Qin,DING Xiaoli,et al. Insar based evaluation of land subsidence and ground fissure evolution at Xian[J]. Journal of Engineering Geology,2009,17(3):389 − 393. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.03.018
    [11] FRUNEAU B,ACHACHE J,DELACOURT C. Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry[J]. Tectonophysics,1996,265(3/4):181 − 190.
    [12] MADSEN S N,ZEBKER H A,MARTIN J. Topographic mapping using radar interferometry:processing techniques[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(1):246 − 256. doi: 10.1109/36.210464
    [13] 邓云凯,禹卫东,张衡,等. 未来星载SAR技术发展趋势[J]. 雷达学报,2020,9(1):1 − 33. [DENG Yunkai,YU Weidong,ZHANG Heng,et al. Forthcoming spaceborne SAR development[J]. Journal of Radars,2020,9(1):1 − 33. (in Chinese with English abstract)
    [14] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//IEEE Transactions on Geoscience and Remote Sensing. January 2001, IEEE, 2002: 8 − 20.
    [15] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792
    [16] 姚佳明,姚鑫,陈剑,等. 基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J]. 水文地质工程地质,2020,47(3):135 − 146. [YAO Jiaming,YAO Xin,CHEN Jian,et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(3):135 − 146. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201903072
    [17] 赵富萌,张毅,孟兴民,等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng,ZHANG Yi,MENG Xingmin,et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract)
    [18] ZHANG Y,MENG X M,DIJKSTRA T A,et al. Forecasting the magnitude of potential landslides based on InSAR techniques[J]. Remote Sensing of Environment,2020,241:111738. doi: 10.1016/j.rse.2020.111738
    [19] 季灵运,王庆良,崔笃信,等. 利用SBAS-DInSAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学,2011,31(4):149 − 153. [JI Lingyun,WANG Qingliang,CUI Duxin,et al. Time series of deformation in Tengchong volcanic area extracted by sbas-dinsar[J]. Journal of Geodesy and Geodynamics,2011,31(4):149 − 153. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-5942.2011.04.034
    [20] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract)
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1181
  • HTML全文浏览量:  1243
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-11-15
  • 网络出版日期:  2023-03-06

目录

    /

    返回文章
    返回