Analysis of stability and kinematics of the dangerous rock mass in Zhangjiagou, Baoxing, Sichuan Province
-
摘要:
张家沟危岩体在2022年“6•1”芦山地震后被发现,稳定性差,严重威胁下方居民生命财产安全。基于稳定性计算及离散元数值分析方法对危岩体进行评价,选取稳定性最差的地震工况进行运动学分析,在上述研究基础上结合解析解与数值解成果设计相应防护措施。主要结论有:(1)张家沟危岩体结构破碎,顺坡向控制性结构面发育,破坏模式为滑移式;(2)稳定性计算与数值模拟结果皆表明张家沟危岩体在天然、暴雨、地震工况下均会失稳,其中地震工况下运动距离最长;(3)地震工况下危岩体的破坏模式为震裂—滑移式,运动过程中块石以滑移为主,跳高较小,同时坡面形态显著影响着落石运动特征;(4)落石间相互碰撞挤压会改变其运动特征及冲击动能大小,在一定程度上可增加致灾范围。成果可为类似灾害防治提供参考。
Abstract:After the “6 • 1” Lushan earthquake, unstable rock mass was discovered in Zhangjiagou, posing a severe threat to the safety of the residents and their property below. The dangerous rock mass was evaluated using stability calculation and the discrete element numerical analysis method, and the seismic condition with the highest threat level was selected for kinematic analysis. Based on this research, a combination of analytical solution and numerical solution was used to design corresponding protective measures. The main conclusions are as follows : (1) The structure of the unstable rock mass in Zhangjiagou is broken, and a controlling structural plane is developed along the slope. (2) The stability calculations and numerical simulations show that the Zhangjiagou unstable rock mass will become unstable under natural, rainstorm and seismic conditions, with the longest movement distance occurring during an earthquake. (3) The failure mode of the dangerous rock mass under seismic conditions is a shatter-slip type, where the rock mainly slips during movement, and the jump height is small. Additionally, the slope shape significantly affects the characteristics of rockfall movement. (4) The collision and extrusion between rockfalls can change their motion characteristics and impact kinetic energy, potentially increasing the scope of the disaster. The research results can provide a reference for similar disaster prevention and control efforts.
-
0. 引言
地质灾害风险评价主要包含地质灾害易发性评价、危险性评价和易损性评价等内容,综合评价、预测地质灾害发生的可能性大小,是一门自然属性和社会属性并重的交叉学科[1]。
地质灾害风险的概念最早由国外学者 Varnes提出,国外诸多学者对地质灾害风险评价进行了研究[2-7]。近年来,国内很多学者对基于ArcGIS的地质灾害风险评价进行了研究[8-14],建立了地灾风险评估体系和评价模式[15-20]。
随着全球气温上升,降雨量呈逐年增大趋势,近年来河南省嵩县白河镇、闫庄镇、纸房镇、何村乡、饭坡镇等乡镇先后发生10余起地质灾害,见图1(c),其中小型滑坡6起,小型崩塌4起。多期地质灾害造成2人死亡,12间房屋受损,直接经济损失达70余万元,见图1(c)。政府对嵩县地质灾害防治高度重视,在 2021年度中央自然灾害防治体系建设补助资金的资助下,2021—2022年河南省第一地质矿产调查院有限公司开展了《河南省嵩县1∶5万地质灾害风险调查(普查)评价》工作,项目研究成果对嵩县城市规划、防灾减灾及地质灾害风险管控方面具有积极的意义。
1. 研究区概况及数据来源
1.1 自然地理及地质条件
嵩县位于洛阳市西南部伏牛山区,境内有河谷、丘陵、低山、中山等多种地貌形态。海拔高度自田湖镇千秋外河滩的245 m递增至白河乡白云山玉皇顶的2211.6 m,高差达1966.6 m。区内从新到老出露地层主要为第四系、中新统洛阳组、下白垩统九店组、下古生界二郎坪群、上元古界栾川群、中~上元古界宽坪群、中元古界熊耳群鸡蛋坪组、中元古界熊耳群马家河组—鸡蛋坪组并层、太古界太华群、花岗岩等。区内主要断裂:北西西向断裂主要为黑沟—陶湾断裂带F6、马超营断裂带F4和瓦穴子断裂F7,东西向断裂主要为车村南—下汤大断裂F5,北东向断裂主要为蝉堂—汝阳断裂带F3、旧县—下蛮峪断裂带F2和温家村—朝阳断裂带F1(图2)。
1.2 经济条件概况
嵩县下辖16个乡镇,总人口54.3万,嵩县为山区大县,全县总面积约3008.9 km,嵩县森林覆盖率65.18%,荣获“国家生态示范县”和“全国造林绿化百佳县”。嵩县已探明各类矿产46种,其中黄金储量372 t,年产黄金近20 t,列全省第二,全国第五;钼矿石储量6.8×108 t,年产钼精粉2285 t;铁、萤石、铅、锌、银等有良好的找矿前景。嵩县大力实施“生态立县、工业强县、旅游带动、民生为本”四大战略,经济社会发展取得了一定成效。
1.3 数据来源
本文数据主要来源于《河南省嵩县1∶5万地质灾害风险调查(普查)评价》项目,项目数据通过资料收集、野外现场调查、遥感解译(哨兵-1系列C波段雷达卫星数据、高分-2号高空间分辨率卫星数据)、室内资料整理与综合研究等多种工作手段获取。在嵩县全境共查明地质灾害隐患点96处,全县16个乡镇均存在有地质灾害隐患,主要为滑坡和崩塌,地质灾害隐患点分布详见图3。
2. 地质灾害易发性评价
2.1 信息量模型
信息量模型是从信息预测发展而来的一种评价预测方法[8],是基于ArcGIS环境下,由信息量值来作为该单元影响地质灾害危险性的综合指标,其值越大越容易发生地质灾害,该单元的地质灾害易发性就越高,计算公式如下[9-10]:
$$ {I}_{i}=\sum _{i}^{n}I\left({X}_{i},K\right)=\sum _{i}^{n}\mathrm{l}\mathrm{n}\frac{{N}_{i}/N}{{S}_{i}/S} \quad(i=1,2,3,\cdots) $$ (1) 式中:
$ {I}_{i} $ ——地质灾害易发性指数;$ {N}_{i} $ ——分布在因素$ {X}_{i} $ 内特定类别的灾害面积/km2;N——研究区有地质灾害总面积/km2;
$ {S}_{i} $ ——某评价单元灾害面积/km2;S——研究区总面积/km2;
n——评价体系中参评因子总数/km2。
2.2 评价因子的选取与分级
通过对研究区地质灾害与孕灾环境因素的分析,选择高程、地貌、工程岩组、植被覆盖度、距构造距离、距水系距离、坡度、坡向等 8个因子进行地质灾害易发性评价。高程、坡度、坡向因子由 25 m × 25 m DEM 数据提取;地貌、工程岩组因子由 1∶5 万区域地质图获取;距水系距离、距构造距离因子利用ArcGIS缓冲区分析计算提取;植被覆盖度利用两景Landsat8影像,采用归一化植被指数(NDVI)对其进行计算提取。对 8个评价因子进行分级,并根据式(1) 计算信息量值,结果见表1。
表 1 易发性评价因子分级及信息量值Table 1. Classification and information value of susceptibility assessment factors评价因子 指标分级 Ni/N Si/S 信息量值 高程/m [0, 500] 0.3800 0.2146 0.5715 [500, 1000) 0.5800 0.5620 0.0316 [1000, 1500) 0.0400 0.1952 −1.5854 ≥1500 0.0000 0.0282 0.0000 地貌 河谷 0.0558 0.0609 −0.0883 中山 0.2988 0.3985 −0.2879 低山 0.3183 0.3176 0.0037 丘陵 0.3267 0.2230 0.3817 工程岩组 坚硬花岗岩岩组 0.1520 0.3001 −0.6803 坚硬片麻岩岩组 0.0280 0.0563 −0.6992 软弱黏性土岩组 0.1000 0.0881 0.1268 较软弱砾岩岩组 0.0360 0.0164 0.7832 较坚硬砂岩页岩互层岩组 0.0160 0.0113 0.3452 较软弱砂质砾岩岩组 0.1880 0.1178 0.4674 坚硬安山岩类岩组 0.3080 0.3421 −0.1049 较软弱石英云母片岩岩组 0.1520 0.0455 1.2065 较坚硬硅质板岩岩组 0.0120 0.0145 −0.1910 较软弱页岩岩组 0.0040 0.0021 0.6393 较坚硬灰岩岩组 0.0040 0.0057 −0.3503 植被覆盖度 [0, 0.5) 0.1004 0.0553 0.5967 [0.5, 0.65) 0.5100 0.2945 0.5493 [0.65, 0.75) 0.3133 0.3799 −0.1928 [0.75, 1] 0.0763 0.2704 −1.2651 距构造距离/m [0, 500) 0.5000 0.3065 0.4892 [500, 1000) 0.1960 0.1905 0.0286 [1000, 1500) 0.1320 0.1241 0.0616 [1500, 2000) 0.0480 0.0903 −0.6318 ≥2000 0.1240 0.2886 −0.8446 距水系距离/m [0, 500) 0.7800 0.5490 0.3512 [500, 1000) 0.1200 0.2563 −0.7588 [1000, 1500) 0.0600 0.1101 −0.6069 [1500, 2000) 0.0240 0.0415 −0.5476 ≥2000 0.0160 0.0431 −0.9919 坡度/(°) [0, 10) 0.0680 0.1321 −0.6637 [10, 25) 0.3200 0.2117 0.4133 [25, 40) 0.2960 0.2936 0.0082 ≥40 0.3160 0.3627 −0.1378 坡向/(°) FLAT(−1) 0.0000 0.0106 0.0000 N[337.5, 22.5) 0.0680 0.1427 −0.7415 NE[22.5, 67.5) 0.1480 0.1352 0.0903 E[67.5, 112.5) 0.1360 0.1130 0.1856 SE[112.5, 157.5) 0.1720 0.1164 0.3901 S[157.5, 202.5) 0.2160 0.1630 0.2814 SW[202.5, 247.5) 0.1240 0.1236 0.0032 W[247.5, 292.5) 0.0840 0.0922 −0.0928 NW[292.5, 337.5) 0.0520 0.1033 −0.6862 2.3 评价结果分析
由表1 可知,地质灾害发育程度与距构造距离、植被覆盖度呈负相关,距构造距离越近、植被覆盖度越低地区地质灾害易发性越高;在丘陵地区及坡度在10°~25°地区,地质灾害易发性较高;坡向为东向、南东向、南向的边坡地质灾害易发性较高;地质灾害隐患主要分布在高程0~500 m内软弱地层中;河流水系对地质灾害的易发性,表现出一定的距离效应,距河流水系越近,地质灾害易发性越高。
在ArcGIS 环境下,运用栅格计算器对各因子信息量值叠加计算出嵩县区域地质灾害易发性评价指数,在此基础上采用自然断点法将嵩县区域划分为非易发区、低易发区、中易发区、高易发区等4个区,得到地质灾害易发性分区图,见图4(a)。对地质灾害易发性评价结果进行统计见图4 (b)(c) ,结果表明:非易发区面积为638.45 km2,占整个嵩县区域面积的21.22%;低易发区面积为686.51 km2,占整个嵩县区域面积的22.82%;中易发区面积为1029.03 km2,占整个嵩县区域面积的34.21%;高易发区面积为654.14 km2 ,占整个嵩县区域面积的21.75%。
3. 地质灾害危险性评价
地质灾害危险性分极高、高、中、低四个等级,地质灾害危险性评价区划的主要目的及用途就是为当地政府制定详细的土地利用提供决策依据。调查资料显示,嵩县全区地震活动相对较弱,地震烈度和地震动峰值加速度在区域内区别不大,因此本次危险性评价中未考虑地震活动的影响因素,参与危险性评价的主要诱发因素为降雨量。
3.1 评价过程
本区地震活动相对较弱,而且能够代表地震活动程度的地震烈度和地震动峰值加速度在区域内区别不大,因此本次危险性评价中未考虑地震活动的影响因素。本次嵩县区域地质灾害危险性评价主要考虑因素为降雨诱发因素。根据收集到的嵩县区内 17 个气象站点2014—2021年的降雨量数据(表2),计算月累计降雨量,并将其归一化处理(图5)。在ArcGIS 环境下,进行归一化处理,对降雨量线性变换,使得结果映射到0~1之间,计算方法为:
表 2 嵩县1992—2021年降雨量统计表Table 2. Statistical table of Rainfall level in Song county from 1992—2021年份 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 年降雨量/mm 576.90 675.20 529.60 470.70 959.10 418.10 773.10 589.90 760.30 433.10 月平均降雨量/mm 48.08 56.27 44.13 39.23 79.93 34.84 64.43 49.16 231.50 36.09 年份 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 年降雨量/mm 657.60 1067.40 690.90 718.40 636.70 565.10 558.80 764.30 924.00 931.50 月平均降雨量/mm 54.80 88.95 57.58 59.87 53.06 47.09 46.57 63.69 77.00 77.63 年份 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 年降雨量/mm 649.50 518.60 674.10 594.80 562.70 745.30 690.10 690.10 642.50 944.40 月平均降雨量/mm 54.13 43.22 56.18 49.57 46.89 62.11 57.51 53.26 53.54 145.29 $$ y=\frac{x-\mathrm{m}\mathrm{i}\mathrm{n}\left({x}\right)}{\mathrm{max}\left(x\right)-\mathrm{m}\mathrm{i}\mathrm{n}\left(x\right)} $$ (2) 式中:y——归一化值;
x——降雨值;
max(x)——降雨最大值;
min(x)——降雨最小值。
降雨量归一化结果与易发性归一化结果(图6)进行叠加,按自然断点法划分为极高、高、中和低危险 4 个等级,得到嵩县区域危险性评价图(图7)。
3.2 评价结果
在ArcGIS 环境下,将易发性归一化结果和2014—2021年月累计降雨量归一化结果叠加计算出嵩县区域地质灾害危险性评价指数,通过自然断点法划分为极高、高、中和低危险区等4个区,得到地质灾害危险性分区图,见图7(a)。对地质灾害危险性评价结果进行统计,见图7(b)(c),结果表明:低危险区面积为400.43 km2,占嵩县全区面积的13.31%;中危险区面积为1515.14 km2,占嵩县全区面积的50.36%;高危险区面积为910.38 km2,占嵩县全区面积的30.26%;极高危险区面积为182.95 km2,占嵩县全区面积的6.08%。
4. 风险区划
风险评价是一个综合过程,是将地质灾害危险性和易损性评价结果的集成运用。
4.1 易损性评价
本次易损性评价主要选取建筑物易损性、人员易损性和交通设施易损性等3个评价因子,以25 m×25 m栅格评价单元为基础,结合承载体易损性赋值表3,在ArcGIS环境下,计算各评价因子的易损性值,得到建筑物易损性、人员易损性和交通设施易损性等3个因子的分区图,见图8(a)(b)(c)。
表 3 承灾体易损性赋值表Table 3. Vulnerability evaluation table for disaster-bearing bodies承灾体类型 分级 赋值 受地质灾害直接威胁人口数量 10~100 人 0.40 <10 人 0.20 交通设施 高速公路 0.80 国家级公路 0.70 省级公路 0.40 其他道路 0.25 在ArcGIS环境下,通过计算平均易损性值,选取建筑物易损性、人员易损性和交通易损性中的高值确定易损性指数,结合危险性评价结果,通过矩阵运算,按自然间断法划分为低易损区、中易损区、高易损区、极高易损区,完成嵩县区域易损性分级与区划图9(a)。利用 ArcGIS对研究区地质灾害易损性评价结果进行统计,见图9(b)(c),结果表明:低易损区面积为1229.71 km2,占嵩县全区面积的40.88%;中易损区面积为1005.94 km2,占嵩县全区面积的33.44%;高易损区面积为653.81 km2,占嵩县全区面积的21.73%;极高易损区面积为118.67 km2,占嵩县全区面积的3.94%。
4.2 地质灾害风险评价
根据联合国对自然灾害风险的定义,地质灾害风险度可以定量表达为:
$$ R=H \times V $$ (3) 式中:R——地质灾害风险度;
H——地质灾害危险度;
V——地质灾害易损度。
基于 ArcGIS 环境下,依据自然间断法将研究区风险性划分为低风险区、中风险区、高风险区和极高风险区,见图10(a)。对分区面积进行统计,见图10(b)(c),结果表明: 其中低风险区面积为962.39 km2,占嵩县全区面积31.98%;中风险区面积为1111.43 km2,占嵩县全区面积的36.94%;高风险区面积为824.56 km2,占嵩县全区面积的27.40%;极高危险区面积为110.61 km2,占嵩县全区面积的3.68%。
5. 结论
(1)基于ArcGIS平台,采用信息量模型选取高程、地貌、工程岩组、植被覆盖度、距构造距离、距水系距离、坡度、坡向等 8个因子建立河南省嵩县地质灾害易发性评价模型,对研究区易发性进行了分区,高易发区主要位于白河镇中东部,高易发区面积为 637.91 km2 ,占嵩县区域面积的21%。嵩县区域极高危险区面积为178.04 km2,占嵩县区域面积的6%,大部分布于白河镇,少量分布于车村镇和九皋镇。
(2)在ArcGIS 环境下,将研究区风险性划分为低风险区、中风险区、高风险区和极高风险区。低风险区面积为965.34 km2,占嵩县全区面积32%;中风险区面积为1114.65 km2,占嵩县全区面积的37%;高风险区面积为826.23 km2,占嵩县全区面积的27%;极高危险区面积为102.68 km2,占嵩县全区面积的3%,其中极高风险区分布于白河镇中部、旧县镇中南、纸房镇西北部、何村乡东南部、饭坡镇北中部及九皋镇中西部,在每个镇分布的面积都较小,说明嵩县区域内风险性整体较低。
(3)研究成果对嵩县防灾、减灾及地质灾害风险管控方面具有很好的应用价值,嵩县区域内地质灾害防治主要以白河镇、纸房镇、何村乡、饭坡镇、旧县镇、大章镇、九皋镇等7个乡镇为主。
-
表 1 岩体力学基本参数取值(天然)
Table 1 Fundamental mechanical parameters of rock mass (natural)
岩性 密度/(kg·m−3) 节理刚度/MPa 内摩擦角/(°) 黏聚力/MPa 花岗岩 2750 47.5 11.2 基岩 2960 58.2 15.7 L1 2.2 30.5 0.8 L2 2.2 24.9 0.6 L3 2.2 25.3 0.7 表 2 稳定性计算参数选取
Table 2 Selection of calculation parameters for stability analysis
计算
工况重度/
(kN·m−3)后缘陡倾裂隙
深度/m裂隙或滑面充水
高度/m滑面长度/
m裂隙水压力/
(kN·m−1)软弱结构面
倾角/ (°)地震水平
系数结构面综合
黏聚力/MPa结构面综合
内摩擦角/(°)天然 26.95 6.68 1.96 25.32 19.2 45 0 0.65 31 暴雨 27.45 6.68 2.25 25.32 25.3 45 0 0.61 27 地震 26.95 6.68 1.96 25.32 19.2 45 0.16 0.65 31 表 3 稳定性计算结果
Table 3 Stability analysis calculation results
计算工况 破坏模式 稳定性系数 稳定状态 天然 滑移式 1.18 欠稳定 暴雨 滑移式 1.00 欠稳定 地震 滑移式 0.93 欠稳定 -
[1] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 4版. 北京: 地质出版社, 2016: 1 − 5 ZHANG Zhuoyuan, WANG Shitian, WANG Lansheng. Principles of engineering geological analysis[M]. 4th ed. Beijing: Geological Publishing House, 2016: 1 − 5. (in Chinese)
[2] ASHWOOD W,HUNGR O. Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modeling[J]. Canadian Geotechnical Journal,2016,53(10):1700 − 1717. DOI: 10.1139/cgj-2015-0481
[3] FAN X M,SCARINGI G,KORUP O,et al. Earthquake-induced chains of geologic hazards:patterns,mechanisms,and impacts[J]. Reviews of Geophysics,2019,57(2):421 − 503. DOI: 10.1029/2018RG000626
[4] 梅雪峰. 落石冲击荷载作用下的桩板拦石墙-缓冲层组合结构动力响应[D]. 成都: 西南交通大学, 2022. MEI Xuefeng. Dynamic response of pile-sheet retaining wall with cushion layer under rockfall impact[D]. Chengdu: Southwest Jiaotong University, 2022. (in Chinese with English abstract)
[5] 尹迪,董培育,曹建玲,等. 川滇地区地震危险性数值分析[J]. 地球物理学报,2022,65(5):1612 − 1627. [YIN Di,DONG Peiyu,CAO Jianling,et al. Numerical analysis of the seismic hazard in Sichuan-Yunnan region[J]. Chinese Journal of Geophysics,2022,65(5):1612 − 1627. (in Chinese with English abstract) YIN Di, DONG Peiyu, CAO Jianling, et al. Numerical analysis of the seismic hazard in Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 2022, 65(5): 1612-1627. (in Chinese with English abstract)
[6] MAERZ N H. New risk-consequence rockfall hazard rating system for Missouri highways using digital image analysis[J]. Environmental and Engineering Geoscience,2005,11(3):229 − 249. DOI: 10.2113/11.3.229
[7] P BUDETTA, C DE LUCA ,M NAPPI. Quantitative rockfall risk assessment for an important road by means of the rockfall risk management (RO.MA.) method[J]. Bulletin of Engineering Geology and the Environment,2016,75(4):1377–1397.
[8] 杨志法,尚彦军,刘英. 关于岩土工程类比法的研究[J]. 工程地质学报,1997,5(4):299 − 305. [YANG Zhifa,SHANG Yanjun,LIU Ying. Study on the analogism in geotechnical engineering[J]. Journal of Engineering Geology,1997,5(4):299 − 305. (in Chinese with English abstract) YANG Zhifa, SHANG Yanjun, LIU Ying. Study on the analogism in geotechnical engineering[J]. Journal of Engineering Geology, 1997, 5(4): 299-305. (in Chinese with English abstract)
[9] 王玉锁,杨国柱. 隧道洞口段危岩落石风险评估[J]. 现代隧道技术,2010,47(6):33 − 39. [WANG Yusuo,YANG Guozhu. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology,2010,47(6):33 − 39. (in Chinese with English abstract) WANG Yusuo, YANG Guozhu. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology, 2010, 47(6): 33-39. (in Chinese with English abstract)
[10] 王新民,康虔,秦健春,等. 层次分析法-可拓学模型在岩质边坡稳定性安全评价中的应用[J]. 中南大学学报(自然科学版),2013,44(6):2455 − 2462. [WANG Xinmin,KANG Qian,QIN Jianchun,et al. Application of AHP-extenics model to safety evaluation of rock slope stability[J]. Journal of Central South University (Science and Technology),2013,44(6):2455 − 2462. (in Chinese with English abstract) WANG Xinmin, KANG Qian, QIN Jianchun, et al. Application of AHP-extenics model to safety evaluation of rock slope stability[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2455-2462. (in Chinese with English abstract)
[11] 刘贺军,吴玉涛,李晓乐,等. 河北阜平县石滩地村危岩体变形破坏模式及稳定性分析[J]. 中国地质灾害与防治学报,2018,29(4):50 − 57. [LIU Hejun,WU Yutao,LI Xiaole,et al. Deformation failure mode and stability analysis of dangerous rock mass in Shitandi Village,Fuping County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):50 − 57. (in Chinese with English abstract) LIU Hejun, WU Yutao, LI Xiaole, et al. Deformation failure mode and stability analysis of dangerous rock mass in Shitandi Village, Fuping County of Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(4): 50-57. (in Chinese with English abstract)
[12] 邬爱清. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用[J]. 长江科学院院报,2019,36(2):1 − 7. [WU Aiqing. Series methods of analyzing rock mass stability based on key block theory and their applications to Three Gorges project[J]. Journal of Yangtze River Scientific Research Institute,2019,36(2):1 − 7. (in Chinese with English abstract) WU Aiqing. Series methods of analyzing rock mass stability based on key block theory and their applications to Three Gorges project[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2): 1-7. (in Chinese with English abstract)
[13] 陈宙翔,叶咸,张文波,等. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J]. 地震工程学报,2019,41(1):257 − 267. [CHEN Zhouxiang,YE Xian,ZHANG Wenbo,et al. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal,2019,41(1):257 − 267. (in Chinese with English abstract) CHEN Zhouxiang, YE Xian, ZHANG Wenbo, et al. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal, 2019, 41(1): 257-267. (in Chinese with English abstract)
[14] 马显东, 周剑, 张路青, 等. 强震区公路沿线崩塌危岩体特征提取及失稳分析[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2901 − 2914 MA Xiandong, ZHOU Jian, ZHANG Luqing, et al. Feature extraction and instability analysis of dangerous rock mass along highway in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 1): 2901 − 2914. (in Chinese with English abstract)
[15] 刘宝臣,王良玉,曾榕,等. 桂林翻山危岩稳定性评价的离散元分析[J]. 科学技术与工程,2022,22(6):2409 − 2418. [LIU Baochen,WANG Liangyu,ZENG Rong,et al. Discrete element analysis of stability evaluation of Guilin Fanshan dangerous rock[J]. Science Technology and Engineering,2022,22(6):2409 − 2418. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2022.06.034 LIU Baochen, WANG Liangyu, ZENG Rong, et al. Discrete element analysis of stability evaluation of Guilin Fanshan dangerous rock[J]. Science Technology and Engineering, 2022, 22(6): 2409-2418. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2022.06.034
[16] 刘国阳,孟海怡,宁宝宽,等. 基于三维非连续变形分析的巨石崩塌运动研究[J]. 岩土力学,2022,43(1):246 − 256. [LIU Guoyang,MENG Haiyi,NING Baokuan,et al. Study on collapse and movement of a boulder based on 3D discontinuous deformation analysis[J]. Rock and Soil Mechanics,2022,43(1):246 − 256. (in Chinese with English abstract) LIU Guoyang, MENG Haiyi, NING Baokuan, et al. Study on collapse and movement of a boulder based on 3D discontinuous deformation analysis[J]. Rock and Soil Mechanics, 2022, 43(1): 246-256. (in Chinese with English abstract)
[17] 王朋,贾洪彪,马淑芝,等. 梳妆台危岩体稳定性评价及落石运动特征研究[J]. 安全与环境工程,2022,29(4):139 − 146. [WANG Peng,JIA Hongbiao,MA Shuzhi,et al. Stability evaluation of dangerous rock mass in dressing table and study on characteristics of rockfall movement[J]. Safety and Environmental Engineering,2022,29(4):139 − 146. (in Chinese) WANG Peng, JIA Hongbiao, MA Shuzhi, et al. Stability evaluation of dangerous rock mass in dressing table and study on characteristics of rockfall movement[J]. Safety and Environmental Engineering, 2022, 29(4): 139-146. (in Chinese)
[18] 张青宇,唐世明,沈军辉. 四川麻柳沟地震崩塌落石运动特征分析[J]. 人民长江,2015,46(13):39 − 41. [ZHANG Qingyu,TANG Shiming,SHEN Junhui. Analysis of movement characteristics of collapse rockfall in Maliugou earthquake[J]. Yangtze River,2015,46(13):39 − 41. (in Chinese with English abstract) ZHANG Qingyu, TANG Shiming, SHEN Junhui. Analysis of movement characteristics of collapse rockfall in Maliugou earthquake[J]. Yangtze River, 2015, 46(13): 39-41. (in Chinese with English abstract)
[19] 王栋,王剑锋,李天斌,等. 西南山区某铁路隧道口高位落石三维运动特征分析[J]. 地质力学学报,2021,27(1):96 − 104. [WANG Dong,WANG Jianfeng,LI Tianbin,et al. Analysis of three-dimensional movement characteristics of rockfall:A case study at a railway tunnel entrance in the southwestern mountainous area,China[J]. Journal of Geomechanics,2021,27(1):96 − 104. (in Chinese with English abstract) WANG Dong, WANG Jianfeng, LI Tianbin, et al. Analysis of three-dimensional movement characteristics of rockfall: a case study at a railway tunnel entrance in the southwestern mountainous area, China[J]. Journal of Geomechanics, 2021, 27(1): 96-104. (in Chinese with English abstract)
[20] 李源亮,郭阿龙. 高风险落石运动分析及边坡防护综合设计[J]. 长江科学院院报,2022,39(9):65 − 70. [LI Yuanliang,GUO Along. Analysis of highly risky rockfall movement and comprehensive design of slope protection[J]. Journal of Yangtze River Scientific Research Institute,2022,39(9):65 − 70. (in Chinese with English abstract) LI Yuanliang, GUO Along. Analysis of highly risky rockfall movement and comprehensive design of slope protection[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 65-70. (in Chinese with English abstract)
[21] 柳万里,晏鄂川,魏鹏飞,等. 落石运动特征试验及影响因素敏感性分析[J]. 山地学报,2021,39(1):47 − 58. [LIU Wanli,YAN Echuan,WEI Pengfei,et al. Experimental study on rockfall and sensitivity analysis of influencing factors[J]. Mountain Research,2021,39(1):47 − 58. (in Chinese with English abstract) LIU Wanli, YAN Echuan, WEI Pengfei, et al. Experimental study on rockfall and sensitivity analysis of influencing factors[J]. Mountain Research, 2021, 39(1): 47-58. (in Chinese with English abstract)
[22] 黎尤,何坤,胡卸文,等. 震裂山体崩塌形成特征及运动学三维模拟—以汶川县三官庙村崩塌为例[J]. 工程地质学报,2022,30(2):542 − 552. [LI You,HE Kun,HU Xiewen,et al. Formation characteristics and kinematics 3-D simulation of rockfall evolved from shattered mountain:Case study of Sanguanmiao village rockfall in Wenchuan County[J]. Journal of Engineering Geology,2022,30(2):542 − 552. (in Chinese with English abstract) LI You, HE Kun, HU Xiewen, et al. Formation characteristics and kinematics 3-d simulation of rockfall evolved from shattered mountain—case study of Sanguanmiao village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 2022, 30(2): 542-552. (in Chinese with English abstract)
[23] 蔡国军,陈锡锐,尹保国,等. 岩体力学参数对反倾边坡稳定性影响的数值模拟研究[J]. 人民珠江,2020,41(9):25 − 31. [CAI Guojun,CHEN Xirui,YIN Baoguo,et al. Numerical simulation study on influence of rock mass mechanical parameters on stability of anti-dip slope[J]. Pearl River,2020,41(9):25 − 31. (in Chinese with English abstract) CAI Guojun, CHEN Xirui, YIN Baoguo, et al. Numerical simulation study on influence of rock mass mechanical parameters on stability of anti-dip slope[J]. Pearl River, 2020, 41(9): 25-31. (in Chinese with English abstract)
[24] ASTERIOU P,SAROGLOU H,TSIAMBAOS G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:103 − 113. DOI: 10.1016/j.ijrmms.2012.05.029
[25] 蔡国军,陈锡锐,孙文鹏,等. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报,2022,41(2):104 − 112. [CAI Guojun,CHEN Xirui,SUN Wenpeng,et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology,2022,41(2):104 − 112. (in Chinese with English abstract) CAI Guojun, CHEN Xirui, SUN Wenpeng, et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104-112. (in Chinese with English abstract)
[26] 唐建辉. 隧道洞口坡面落石运动特性及冲击明洞作用机理研究[D]. 成都: 西南交通大学, 2022. TANG Jianhui. Study on movement characteristics of rockfall on the slope of tunnel portal and the mechanism of impacting open cut tunnel[D]. Chengdu: Southwest Jiaotong University,2022. (in Chinese with English abstract)
[27] 宋德光, 吴瑞安, 马德芹, 等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185 − 2197. [SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185 − 2197. (in Chinese with English abstract) SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185-2197.(in Chinese with English abstract)
[28] 庞鑫, 袁明, 卢渊, 等. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报,2023,42(6):21 − 30. [PANG Xin, YUAN Ming, LU Yuan, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology,2023,42(6):21 − 30. (in Chinese with English abstract) PANG Xin, YUAN Ming, LU Yuan, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21-30.(in Chinese with English abstract)
-
期刊类型引用(16)
1. 夏璐文,徐佳,肖儒雅,潘伯鸣,孙雪梅. 基于时序InSAR技术的常州市地表形变监测与影响因素分析. 测绘工程. 2025(01): 53-61 . 百度学术
2. 李健,杨卓,李岩. 某山区机场跑道沉降监测和预测分析. 广州建筑. 2025(01): 87-90 . 百度学术
3. 王浩,徐俊辉,陆佳敏,张高,罗淼,赵云松,王卫东,徐孜俊,戴秋霞,陈留平,王同涛. 大规模地质储氢工程现状及应用展望. 中国地质. 2025(01): 180-204 . 百度学术
4. 刘鹏. 新一轮找矿突破战略行动背景下地质调查发展路径. 世界有色金属. 2024(04): 93-95 . 百度学术
5. 刘伯元,王婷婷,陈慧玲. 刍议数字时代地勘行业参与生态文明建设路径. 世界有色金属. 2024(04): 182-184 . 百度学术
6. 王东仓,何景媛. 创新金融模式下生态保护修复路径探析. 世界有色金属. 2024(06): 147-149 . 百度学术
7. 刘鹏. 创新视角下的生态保护修复探讨. 世界有色金属. 2024(08): 174-176 . 百度学术
8. 刘栋永. 地勘行业战略转型背景下科学事业单位项目成本核算探究. 世界有色金属. 2024(08): 181-183 . 百度学术
9. 陈一超,赵文博. 基于地质调查转型发展背景下创新技术应用探讨. 世界有色金属. 2024(08): 188-191 . 百度学术
10. 亓国涛,王荣,高晓琦. 地勘单位参与生态修复行业高质量发展的路径探析. 世界有色金属. 2024(10): 178-181 . 百度学术
11. 陈浩,吴红刚,谌清. 基于“D”型深孔测斜曲线的滑坡滑动面位置确定方法研究. 中国地质灾害与防治学报. 2024(04): 93-105 . 本站查看
12. 王婷婷,刘伯元,孔萌. 浅析矿山生态修复治理存在问题及治理方向. 世界有色金属. 2024(14): 102-104 . 百度学术
13. 张婉娜,高乃昌. 数据可视化背景下生态修复规划实现路径. 世界有色金属. 2024(14): 190-192 . 百度学术
14. 李学良,李宏艳,白国良,李大猛,余洋. 深部条带老采空区覆岩破坏多参量监测研究. 矿业安全与环保. 2024(04): 156-161+167 . 百度学术
15. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 . 百度学术
16. 孙雪梅,潘伯鸣,李伟,夏璐文. 常州市主城区地表形变控制区划分及防控研究. 现代测绘. 2024(S1): 49-52 . 百度学术
其他类型引用(1)