ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川藏铁路某深埋长大隧道地应力特征及岩爆、大变形危险性分析

陈仕阔 刘彤 周航 杜世回 李涵睿

陈仕阔,刘彤,周航,等. 川藏铁路某深埋长大隧道地应力特征及岩爆、大变形危险性分析[J]. 中国地质灾害与防治学报,2022,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210004
引用本文: 陈仕阔,刘彤,周航,等. 川藏铁路某深埋长大隧道地应力特征及岩爆、大变形危险性分析[J]. 中国地质灾害与防治学报,2022,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210004
CHEN ShiKuo, LIU Tong, ZHOU Hang, et al. Stress characteristics and hazard analysis of rock-burst and large deformation of a deep-buried tunnel on the Sichuan-Tibet Railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210004
Citation: CHEN ShiKuo, LIU Tong, ZHOU Hang, et al. Stress characteristics and hazard analysis of rock-burst and large deformation of a deep-buried tunnel on the Sichuan-Tibet Railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210004

川藏铁路某深埋长大隧道地应力特征及岩爆、大变形危险性分析

doi: 10.16031/j.cnki.issn.1003-8035.202210004
基金项目: 四川省科技厅科技计划项目(2019YFG0047);西藏自治区科技厅重点研发项目(XZ202001ZY0011G)
详细信息
    作者简介:

    陈仕阔(1982-),男,博士,副教授,主要从事隧道重大地质灾害危险性评价与控制方面的研究。 E-mail:shikuochen@swjtu.edu.cn

    通讯作者:

    周 航(1995-),男,硕士,助理工程师,主要从事隧道重大地质灾害危险性评价与控制方面的研究。 ORCID: 0000-0002-9205-8634. E-mail:zhouhangcreec@163.com

  • 中图分类号: TU45

Stress characteristics and hazard analysis of rock-burst and large deformation of a deep-buried tunnel on the Sichuan-Tibet Railway

Funds: This research is supported by Sichuan Provincial Science and Technology Plan Project (Grant No. 2019YFG0047) , Key Research and Development Project of Science and Technology Department of Tibet (Grant No. XZ202001ZY0011G).
  • 摘要: 青藏高原区域地质构造作用强烈,高地应力问题是川藏铁路隧道建设中面临的重点问题之一。本文基于水压致裂法实测的钻孔地应力数据,结合区域地质资料、室内试验、初始地应力场反演分析等,对某隧道地应力特征及工程效应进行了研究分析。地应力测试结果显示,该工程区应力场类型可划分为逆断型(SH>Sh>Sv)和走滑型(SH>Sv>Sh)两种类型应力场,水平构造应力占据主导地位,最大水平主应力优势方向为NE~NEE向,与区域应力场分布和周边活动断裂反映的力学机制基本一致。工程区初始地应力场反演分析结果表明,隧道轴线最大水平主应力SH为7.36~49.87 MPa,最小水平主应力Sh为4.36~25.97 MPa,垂向主应力Sv为5.24~31.69 MPa,隧道沿线73.00%的区域处于高到极高地应力状态,具有发生岩爆和大变形的潜在高地应力条件,综合岩石弹性变形能指数认为二长花岗岩和花岗闪长岩均具有中等岩爆倾向的储能和释能条件。最后,对该隧道不同埋深处岩爆和大变形危险性进行了分析。
  • 图  1  川藏铁路某隧道进出口位置

    Figure  1.  The entrance and exit position of a tunnel on the Sichuan-Tibet Railway

    图  2  川藏铁路某隧道地质剖面图

    Figure  2.  Geological profile of a tunnel on the Sichuan-Tibet Railway

    图  3  最大、最小水平主应力与隧道埋深的关系

    Figure  3.  The relationship between the maximum and minimum horizontal principal stresses and the tunnel burial depth

    图  4  实测最大水平主应力方向玫瑰花图

    Figure  4.  The rose chart of the direction of the actual measured maximum horizontal principal stress

    图  5  侧压力系数与隧道埋深的关系

    Figure  5.  The relationship between the lateral pressure coefficient and the buried depth of the tunnel

    图  6  隧道轴线三向主应力及埋深分布

    Figure  6.  Three - direction principal stress and buried depth distribution of tunnel axis

    图  7  模拟最大水平主应力方向玫瑰花图

    Figure  7.  The rose chart of the direction of the maximum level of main stress was Simulated

    图  8  04钻孔实测地应力值与模拟值对比

    Figure  8.  04 comparison of measured in-situ stress values in boreholes and simulated values

    表  1  工程区岩石弹性变形能指数值

    Table  1.   Elastic deformation energy index of rock in engineering areas

    岩性天然密度
    ρ/(g/cm3
    试验温
    T/(°C)
    岩石弹性变形能
    指数Wet
    判定结果
    二长花岗岩2.70253.60中等岩爆
    花岗闪长岩2.69254.00中等岩爆
    下载: 导出CSV

    表  2  隧道实测钻孔地应力数据

    Table  2.   Measured borehole ground stress data of tunnel

    编号测试深度/m主应力值/MPaSH方位
    SH Sh Sv
    01104~27204.53~11.3904.34~09.0202.66~06.96N38.1°~42.3°E
    02101~29905.11~09.5505.07~08.8502.58~07.65N40.7°~45.3°E
    03275~40012.51~16.1608.92~12.4907.43~10.80N39.8°~53.2°E
    04370~72008.48~22.4607.86~18.9408.89~17.29N50°~70°E
    05110~41511.05~24.7808.73~16.6102.96~11.14N48°~52°E
    06222~47107.19~12.3105.69~10.3005.80~12.28N59°~72°E
    07135~71609.65~26.2606.85~19.2603.62~19.20N32°~63°E
    08082~11305.24~07.2604.76~06.1802.23~03.06N47.2°E
    09218~42008.06~11.5706.00~08.1805.61~10.78N31.7°~40.3°E
    10421~66611.81~20.4608.07~13.6110.95~17.34N41°~76°E
    11460~53012.45~14.5608.16~09.1411.05~12.73N48°E
    12180~26107.23~12.4405.71~09.3504.87~07.06N50°E
    13127~19906.81~09.0604.23~05.5903.43~05.35N32°~46°E
    14125~56204.81~19.4504.70~15.5103.24~14.62N46°E
    15095~42108.00~23.5907.76~16.8302.46~10.94N47°~51°E
    16071~51502.95~23.4601.37~17.6801.84~13.38N43°~53°E
    下载: 导出CSV

    表  3  隧址区岩体物理力学参数取值

    Table  3.   Values of physical and mechanical parameters of rock mass in the tunnel site area

    岩性时代弹性模E/GPa泊松比v密度ρ/(kg/m3
    燕山期花岗闪长岩γδ53330.222650
    燕山期二长花岗岩ηγ53260.242760
    砂岩夹板岩夹页岩K1dSs+Sh160.282650
    燕山期闪长玢岩δμ53320.212730
    压碎岩F60.312650
    断层角砾Fb30.332600
    糜棱岩Ml40.322630
    下载: 导出CSV

    表  4  隧道岩爆评价指标及评价结果

    Table  4.   Evaluation index and evaluation results of tunnel rock explosion

    里程编号隧道埋深/m岩性评价指标H=2(欧氏距离)评价
    结果
    σc/σmaxσθcσctKvWet轻微中等强烈
    CK006+500~CK007+100560~580花岗闪长岩5.910.3625.330.623.902.210.710.811.90轻微
    CK007+900~CK008+700750~900花岗闪长岩5.050.3625.330.623.602.180.660.671.54轻微
    CK008+700~CK009+150680~980花岗闪长岩4.620.3527.000.623.602.150.630.621.39轻微
    CK009+150~CK009+350980~1020花岗闪长岩3.360.5819.570.714.303.361.960.350.67中等
    CK009+350~CK009+8501000~1200花岗闪长岩3.070.5119.570.714.303.081.630.190.56中等
    CK009+850~CK010+3501100~1250花岗闪长岩2.830.5921.750.713.903.331.990.370.52中等
    CK010+350~CK010+6001120~1210二长花岗岩2.760.5121.750.623.602.961.530.490.59中等
    CK010+600~CK010+9001270~1320二长花岗岩2.750.6221.750.813.903.532.370.720.51强烈
    CK010+900~CK011+3001130~1270二长花岗岩3.080.5821.750.623.603.241.880.560.69中等
    下载: 导出CSV

    表  5  隧道大变形评价指标及评价结果

    Table  5.   Evaluation index and evaluation results of tunnel large deformation

    里程
    编号
    隧道埋
    深/m
    岩性评价指标H=2(欧氏距离)评价
    结果
    σmax/MPaσc/MPaσb/σmaxE/GPaKSW轻微中等强烈
    CK011+500~CK011+700850~940砂岩夹板岩44.6535.000.262.525.55.51.51.3931.0461.2412.796轻微
    CK011+700~CK012+000760~870砂岩夹板岩43.7630.000.232.525.56.55.52.8641.9501.0412.234中等
    CK012+000~CK012+300670~760砂岩夹板岩37.1530.000.273.134.54.52.51.4050.8061.3752.404轻微
    下载: 导出CSV
  • [1] 徐正宣,张利国,蒋良文,等. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术,2021,53(3):29 − 42. [XU Zhengxuan,ZHANG Liguo,JIANG Liangwen,et al. Engineering geological environment and main engineering geological problems of Ya'an—Linzhi section of the Sichuan—Tibet railway[J]. Advanced Engineering Sciences,2021,53(3):29 − 42. (in Chinese with English abstract)
    [2] LU C F,CAI C X. Challenges and countermeasures for construction safety during the Sichuan-Tibet railway project[J]. Engineering,2019,5(5):833 − 838. doi: 10.1016/j.eng.2019.06.007
    [3] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:current status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202104001
    [4] ENKELMANN E,EHLERS T A,ZEITLER P K,et al. Denudation of the namche barwa antiform,eastern Himalaya[J]. Earth and Planetary Science Letters,2011,307(3/4):323 − 333.
    [5] DONG H W,XU Z Q. Kinematics,fabrics and geochronology analysis in the Médog shear zone,Eastern Himalayan Syntaxis[J]. Tectonophysics,2016,667:108 − 123. doi: 10.1016/j.tecto.2015.11.015
    [6] DING L,ZHONG D L,YIN A,et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters,2001,192(3):423 − 438. doi: 10.1016/S0012-821X(01)00463-0
    [7] 冯夏庭,肖亚勋,丰光亮,等. 岩爆孕育过程研究[J]. 岩石力学与工程学报,2019,38(4):649 − 673. [FENG Xiating,XIAO Yaxun,FENG Guangliang,et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):649 − 673. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2019.0103
    [8] 张广泽,邓建辉,王栋,等. 隧道围岩构造软岩大变形发生机理及分级方法[J]. 工程科学与技术,2021,53(1):1 − 12. [ZHANG Guangze,DENG Jianhui,WANG Dong,et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels[J]. Advanced Engineering Sciences,2021,53(1):1 − 12. (in Chinese with English abstract)
    [9] 王朋,宋章,张广泽,等. CZ铁路隧道重难点地质问题及减灾防治对策[J]. 铁道工程学报,2020,37(12):89 − 94. [WANG Peng,SONG Zhang,ZHANG Guangze,et al. Important and difficult geological problems of tunnel and its disaster reduction and prevention measures for CZ railway[J]. Journal of Railway Engineering Society,2020,37(12):89 − 94. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2020.12.017
    [10] KUANG Z H,QIU S L,LI S J,et al. A new rock brittleness index based on the characteristics of complete stress-strain behaviors[J]. Rock Mechanics and Rock Engineering,2021,54(3):1109 − 1128. doi: 10.1007/s00603-020-02311-z
    [11] 陈群策,丰成君,孟文,等. 5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报,2012,55(12):3923 − 3932. [CHEN Qunce,FENG Chengjun,MENG Wen,et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5·12 Wenchuan earthquake[J]. Chinese Journal of Geophysics,2012,55(12):3923 − 3932. (in Chinese with English abstract)
    [12] 王成虎,高桂云,杨树新,等. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报,2019,38(11):2242 − 2253. [WANG Chenghu,GAO Guiyun,YANG Shuxin,et al. Analysis and prediction of stress fields of Sichuan—Tibet railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2242 − 2253. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2019.0624
    [13] 任洋,王栋,李天斌,等. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报,2021,40(1):65 − 76. [REN Yang,WANG Dong,LI Tianbin,et al. In-situ geostress characteristics and engineering effect in Ya'an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):65 − 76. (in Chinese with English abstract)
    [14] 黄艺丹,潘前,姚令侃,等. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略[J]. 工程地质学报,2021,29(2):375 − 382. [HUANG Yidan,PAN Qian,YAO Lingkan,et al. Characteristics of measured stress and route selection strategy under high in situ stress risk control along lalin section of Sichuan-Tibet railway[J]. Journal of Engineering Geology,2021,29(2):375 − 382. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0105
    [15] 陈兴强. 基于地应力侧压系数的青藏高原东南缘区域性岩爆预测研究[J]. 铁道标准设计,2020,64(7):44 − 49. [CHEN Xingqiang. Prediction of regional rock burst in southeastern Qinghai-Tibet Plateau based on In-situ stress lateral pressure coefficient[J]. Railway Standard Design,2020,64(7):44 − 49. (in Chinese with English abstract) doi: 10.13238/j.issn.1004-2954.201907260004
    [16] 苗晓岐. 川藏铁路鲁朗隧道地应力特征及其工程影响研究[J/OL]. 铁道标准设计: 1 − 6 [2021-12-28]

    MIAO Xiaoqi. Study on the Ground Stress Characteristics and Engineering Impact of Lulang Tunnel of Sichuan-Tibet Railway[J/OL]. Railway Standard Setting: 1 − 6 [2021-12-28].
    [17] 张敏,黄健,巨能攀,等. 川藏铁路长大深埋隧道地应力场反演分析[J]. 地下空间与工程学报,2019,15(4):1232 − 1238. [ZHANG Min,HUANG Jian,JU Nengpan,et al. Inverse analysis on In-situ stress field of super-long and deep buried tunnel in Chuan-Zang railway[J]. Chinese Journal of Underground Space and Engineering,2019,15(4):1232 − 1238. (in Chinese with English abstract)
    [18] ZHOU H,CHEN S K,LI H R,et al. Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion:a case study of the Sangzhuling Tunnel[J]. Bulletin of Engineering Geology and the Environment,2021,80(5):3885 − 3902. doi: 10.1007/s10064-021-02175-9
    [19] 徐正宣,孟文,郭长宝,等. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质,2021,35(1):114 − 125. [XU Zhengxuan,MENG Wen,GUO Changbao,et al. In-situ stress measurement and its application of a deep-buried tunnel in Zheduo Mountain,west Sichuan[J]. Geoscience,2021,35(1):114 − 125. (in Chinese with English abstract) doi: 10.19657/j.geoscience.1000-8527.2021.018
    [20] 孙炜锋,郭长宝,张广泽,等. 川西郭达山隧道水平孔地应力测量与工程意义[J]. 现代地质,2021,35(1):126 − 136. [SUN Weifeng,GUO Changbao,ZHANG Guangze,et al. In-situ stress measurement of guodashan tunnel horizontal borehole in west Sichuan and the engineering significance[J]. Geoscience,2021,35(1):126 − 136. (in Chinese with English abstract) doi: 10.19657/j.geoscience.1000-8527.2021.021
    [21] 张玉玺. 色季拉山交通廊道现今地应力场特征研究[J]. 工程地质学报,2021,29(2):394 − 403. [ZHANG Yuxi. Characteristics of current in situ stress field about sejila mountain traffic corridor[J]. Journal of Engineering Geology,2021,29(2):394 − 403. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0126
    [22] 周航,陈仕阔,刘彤,等. 挤压性围岩大变形危险性评价的组合赋权-理想点模型[J]. 中南大学学报(自然科学版),2021,52(10):3647 − 3658. [ZHOU Hang,CHEN Shikuo,LIU Tong,et al. Combination weight and ideal point method model for risk evaluation on squeezing large deformation[J]. Journal of Central South University (Science and Technology),2021,52(10):3647 − 3658. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2021.10.027
    [23] 霍欣. 某铁路怒江至伯舒拉岭段主要工程地质问题及地质选线[J]. 铁道标准设计,2020,64(11):7 − 13. [HUO Xin. Major engineering geological problems and geological route selection of Nujiang-bershulla section of a railway[J]. Railway Standard Design,2020,64(11):7 − 13. (in Chinese with English abstract) doi: 10.13238/j.issn.1004-2954.201911280004
    [24] 陈仕阔,李涵睿,周航,等. 基于岩爆危险性评价的川藏铁路某深埋硬岩隧道线路方案比选研究[J]. 水文地质工程地质,2021,48(5):81 − 90. [CHEN Shikuo,LI Hanrui,ZHOU Hang,et al. Route selection of deep-lying and hard rock tunnel in the SichuanTibet Railway based on rock burst risk assessment[J]. Hydrogeology & Engineering Geology,2021,48(5):81 − 90. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202103099
    [25] 中华人民共和国住房和城乡建设部. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2015

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)
    [26] 周航,陈仕阔,张广泽,等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究[J]. 工程地质学报,2020,28(6):1386 − 1396. [ZHOU Hang,CHEN Shikuo,ZHANG Guangze,et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel[J]. Journal of Engineering Geology,2020,28(6):1386 − 1396. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-340
    [27] 李天斌, 孟陆波, 王兰生. 高地应力隧道稳定性及岩爆、大变形灾害防治[M]. 北京: 科学出版社, 2016

    LI Tianbin, MENG Lubo, WANG Lansheng. Stability of high stress tunnel and prevention of rock burst and large deformation disaster[M]. Beijing: Science Press, 2016. (in Chinese)
    [28] HAIMSON B C,CORNET F H. ISRM Suggested Methods for rock stress estimation—part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(7/8):1011 − 1020.
    [29] 付平,张新辉,刘元坤,等. 滇中香炉山引水隧洞工程区地应力场特征及断裂影响模糊综合评价[J]. 中国地质灾害与防治学报,2020,31(5):123 − 132. [FU Ping,ZHANG Xinhui,LIU Yuankun,et al. Characteristics of in situ stress field and fuzzy comprehensive evaluation of the influence of active faults on the water diversion engineering of Xianglushan Tunnel Area in central Yunnan[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):123 − 132. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.05.17
    [30] 张重远,杜世回,何满潮,等. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报,2022,41(5):954 − 968. [ZHANG Chongyuan,DU Shihui,HE Manchao,et al. Characteristics of in situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):954 − 968. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2021.0502
    [31] BROWN E T,HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(4):211 − 215.
    [32] SAATY T L. Applications of analytical hierarchies[J]. Mathematics and Computers in Simulation,1979,21(1):1 − 20. doi: 10.1016/0378-4754(79)90101-0
    [33] 郭学飞,王志一,焦润成,等. 基于层次分析法的北京市地质环境质量综合评价[J]. 中国地质灾害与防治学报,2021,32(1):70 − 76. [GUO Xuefei,WANG Zhiyi,JIAO Runcheng,et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):70 − 76. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.01.10
    [34] MOORE G D. Improved Hamiltonian for minkowski Yang-Mills theory[J]. Nuclear Physics B,1996,480(3):689 − 726. doi: 10.1016/S0550-3213(96)00497-X
    [35] 丰成君,戚帮申,王晓山,等. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘,2019,26(4):170 − 190. [FENG Chengjun,QI Bangshen,WANG Xiaoshan,et al. Study of fault activity risk in typical strong seismic regions in Northern China by in situ stress measurements and the influence on the Xiongan New Area[J]. Earth Science Frontiers,2019,26(4):170 − 190. (in Chinese with English abstract) doi: 10.13745/j.esf.sf.2019.4.17
    [36] 田四明,赵勇,石少帅,等. 川藏铁路拉林段隧道典型岩爆灾害防控方法及应用[J]. 中国铁道科学,2020,41(6):71 − 80. [TIAN Siming,ZHAO Yong,SHI Shaoshuai,et al. Prevention and control method for typical rock burst disaster in Lhasa-Linzhi section tunnel of Sichuan-Tibet railway and its application[J]. China Railway Science,2020,41(6):71 − 80. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2020.06.08
    [37] 喻渝, 姜波, 李磊. 复杂山区铁路隧道软岩大变形防治[J]. 高速铁路技术, 2018, 9(增刊1): 51 − 55

    YU Yu, JIANG Bo, LI Lei. Prevention and control of large deformations of soft rock in railway tunnels in complex mountainous area[J]. High Speed Railway Technology, 2018, 9(Sup 1): 51 − 55. (in Chinese with English abstract)
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  3827
  • HTML全文浏览量:  3939
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回