ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于InSAR监测和PSO-SVR模型的高填方区沉降预测

李华蓉 戴双璘

李华蓉,戴双璘. 基于InSAR监测和PSO-SVR模型的高填方区沉降预测[J]. 中国地质灾害与防治学报,2023,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210005
引用本文: 李华蓉,戴双璘. 基于InSAR监测和PSO-SVR模型的高填方区沉降预测[J]. 中国地质灾害与防治学报,2023,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210005
LI Huarong,DAI Shuanglin. Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210005
Citation: LI Huarong,DAI Shuanglin. Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(0): 1-10 doi: 10.16031/j.cnki.issn.1003-8035.202210005

基于InSAR监测和PSO-SVR模型的高填方区沉降预测

doi: 10.16031/j.cnki.issn.1003-8035.202210005
基金项目: 重庆市研究生联合培养基地项目(JDLHPYJD2020005);重庆交通大学研究生科研创新项目资助(2022S0089)
详细信息
    作者简介:

    李华蓉(1980-),女,湖北宜昌人,博士,副教授,主要从事地图学与地理信息系统方向研究。E-mail:lihuarong.cat@yeah.net

    通讯作者:

    戴双璘(1999-),女,重庆璧山人,硕士研究生,主要从事合成孔径雷达方向研究。E-mail:622200100007@mails.cqjtu.edu.cn

  • 中图分类号: P237

Subsidence prediction of high-fill areas based on InSAR monitoring data and the PSO-SVR model

  • 摘要: 基于SBAS-InSAR技术和机器学习知识对高填方区域进行地表沉降监测及预测,对工程项目的施工、检修、运营等工作都具有重要的指导意义。本文以重庆东港集装箱码头为研究对象,选取2018-2019年覆盖研究区的31景Sentinel-1A数据,利用SBAS-InSAR技术获取该区域的地表沉降数据,并进行内外精度评定;通过信息量模型分析地表沉降易发地地势特点,选择预测点位;通过灰色关联分析计算动态影响因素与沉降量之间的灰色关联度,使用主成分分析法从影响因素中提取出主成分,构建训练集和测试集,通过PSO-SVR预测模型对测试集数据进行预测。为验证该模型在高填方区域沉降预测的可靠性和优异性,将ARIMA模型作为对比模型,分别将PSO-SVR模型的预测结果和ARIMA模型的预测结果与测试集进行对比。结果表明:PSO-SVR模型的预测精度优于ARIMA模型,在高填方区域地表沉降预测中具有较好的实用性。
  • 图  1  地表沉降预测流程图

    Figure  1.  Flowchart of surface subsidence prediction

    图  2  研究区域

    Figure  2.  Aerial view ot the study area

    图  3  研究区形变量图

    Figure  3.  Deformation map of the study area

    图  4  Google Earth历史影像图

    (图a为2018年4月影像图;图b为2021年9月影像图)

    Figure  4.  Google Earth historical imagery

    (Fig.4a. Apr 2018; Fig.4b. Sep 2021)

    图  5  形变点位置图

    Figure  5.  Location map of deformation points

    图  6  各模型预测结果

    (图a为形变点1的预测结果;图b为形变点2的预测结果)

    Figure  6.  The prediction results of each model for each deformation points

    (Fig.6a. Deformation point 1; Fig.6b. Deformation point 2)

    表  1  监测点地表形变结果

    Table  1.   Surface deformation results of monitoring sites

    点名基于SBAS-InSAR技术获取的LOS向形变数据(mm)基于SBAS-InSAR技术获取的垂直形变数据(mm)水准测量获取的形变量(mm)
    1−12.75−15.26−15.20
    2−13.62−16.29−13.60
    3−13.62−16.29−9.20
    ……………………
    46−22.75−27.22−39.80
    47−21.42−25.63−36.00
    48−20.45−24.46−17.40
    下载: 导出CSV

    表  2  静态影响因素信息量计算结果

    Table  2.   Information quantity calculation results of static influencing factors

    静态影响因子影响因子分级信息量
    高程/m151−1870.82
    187−2310.07
    231−2630.64
    263−292−1.28
    292−333−5.62
    坡度/(°)0-5−0.32
    5-100.00
    10−150.08
    15−200.37
    >200.20
    坡向/(°)平坡−1.78
    北坡0.36
    东北坡−0.02
    东坡−0.80
    东南坡−0.47
    南坡−0.16
    西南坡0.42
    西坡−0.21
    西北坡0.23
    平面曲率0−16.90.05
    16.9−33.6−0.22
    33.6−50.5−0.14
    50.5−67.4−0.19
    67.4−81.50.31
    剖面曲率0 - 2.90.01
    2.9−5.8−0.01
    5.8−9−0.11
    9−13.60.24
    13.6−26.8−0.23
    道路缓冲区/m0−30−0.78
    30−60−0.19
    60−900.13
    >900.28
    水系缓冲区/m0−500−0.08
    500−10000.68
    1000−1500−0.74
    1500−20000.48
    >2000−2.68
    地形起伏度/m0−7−0.48
    7−130.00
    13−190.13
    19−290.25
    29−480.26
    人类活动缓冲区/m1000.56
    200−1.07
    300−1.13
    400−0.64
    >400−1.89
    下载: 导出CSV

    表  3  灰色关联度

    Table  3.   Summary table of Grey Relational Degree

    影响因素气温水位地下水NDVI降雨量
    灰色关联度0.758 40.758 30.692 90.666 70.622 3
    下载: 导出CSV

    表  4  PSO-SVR模型的预测结果

    Table  4.   Prediction results of the PSO-SVR model

    点号日期真实值/mm预测值/mm
    形变点12019/10/14−14.71−14.61
    2019/11/7−17.43−17.34
    2019/12/1−20.71−20.70
    2019/12/25−21.42−21.32
    形变点22019/10/14−13.08−13.18
    2019/11/7−16.63−16.53
    2019/12/1−18.04−18.03
    2019/12/25−20.29−20.19
    下载: 导出CSV

    表  5  ARIMA模型的预测结果

    Table  5.   Prediction results of the ARIMA model

    点号日期真实值/mm预测值/mm
    形变点12019/10/14−14.71−15.26
    2019/11/7−17.44−17.98
    2019/12/1−20.70−21.32
    2019/12/25−21.42−22.14
    形变点22019/10/14−13.08−13.75
    2019/11/7−16.63−17.12
    2019/12/1−18.04−18.63
    2019/12/25−20.29−20.91
    下载: 导出CSV

    表  6  精度评定表

    Table  6.   Accuracy evaluation table

    模型点号MAEMSER2
    PSO-SVR形变点10.075 30.007 50.999 0
    形变点20.075 00.007 50.998 9
    ARIMA形变点10.606 90.373 10.948 3
    形变点20.593 30.356 80.947 9
    下载: 导出CSV
  • [1] 刘强. 时序InSAR技术在中型城市地表形变时空特征应用及预测分析[D]. 抚州: 东华理工大学

    LIU Qiang. Application and prediction analysis of time series InSAR technology in temporal and spatial characteristics of surface deformation in medium-sized cities[D]. Fuzhou: East China Institute of Technology. (in Chinese with English abstract)
    [2] 李金超. 基于InSAR和Sentinel-1A的淮南矿区形变灾害监测研究[D]. 合肥: 合肥工业大学

    LI Jinchao. Research on deformation disaster monitoring in Huainan mining area based on InSAR and sentinel-1A[D]. Hefei: Hefei University of Technology. (in Chinese with English abstract)
    [3] FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8 − 20. doi: 10.1109/36.898661
    [4] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792
    [5] 于书媛,杨源源,张鹏飞,等. 运用时序InSAR技术监测合肥市地面沉降及断裂活动[J]. 大地测量与地球动力学,2021,41(4):398 − 402. [YU Shuyuan,YANG Yuanyuan,ZHANG Pengfei,et al. Monitoring land subsidence and fault activity in Hefei city based on MT-InSAR[J]. Journal of Geodesy and Geodynamics,2021,41(4):398 − 402. (in Chinese) doi: 10.14075/j.jgg.2021.04.014
    [6] 代聪,李为乐,陆会燕,等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版),2021,46(7):994 − 1002. [DAI Cong,LI Weile,LU Huiyan,et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University,2021,46(7):994 − 1002. (in Chinese)
    [7] 赵现仁. 基于时序干涉SAR的北极地区冰川运动监测分析[D]. 北京: 北京建筑大学

    ZHAO Xianren. Monitoring and analysis of glacier movement in Arctic based on time series interferometric SAR[D]. Beijing: Beijing University of Civil Engineering and Architecture. (in Chinese with English abstract)
    [8] 周定义,左小清. 基于SBAS-InSAR和PSO-BP神经网络算法的矿区地表沉降监测及预测[J]. 云南大学学报(自然科学版),2021,43(5):895 − 905. [ZHOU Dingyi,ZUO Xiaoqing. Surface subsidence monitoring and prediction in mining area based on SBAS-InSAR and PSO-BP neural network algorithm[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(5):895 − 905. (in Chinese)
    [9] 师芸,李杰,吕杰,等. 结合SBAS-InSAR与支持向量回归的开采沉陷监测与预测[J]. 遥感信息,2021,36(2):6 − 12. [SHI Yun,LI Jie,LV Jie,et al. Monitoring and prediction of mining subsidence based on SBAS-InSAR and improved support vector regression[J]. Remote Sensing Information,2021,36(2):6 − 12. (in Chinese) doi: 10.3969/j.issn.1000-3177.2021.02.002
    [10] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273 − 297.
    [11] 喜文飞,杨正荣,赵子龙,等. 基于SBAS-InSAR技术的小区域沉降监测研究[J]. 云南师范大学学报(自然科学版),2022,42(4):41 − 44. [XI Wenfei,YANG Zhengrong,ZHAO Zilong,et al. Study on settlement monitoring in small area based on the SBAS-InSAR technology[J]. Journal of Yunan Normal University (Natural Sciences Edition),2022,42(4):41 − 44. (in Chinese)
    [12] 杨康,薛喜成,李识博. 信息量融入GA优化SVM模型下的地质灾害易发性评价[J]. 安全与环境工程,2022,29(3):109 − 118. [YANG Kang,XUE Xicheng,LI Shibo. Geological hazard susceptibility assessment by incorporating information value into GA optimized SVM model[J]. Safety and Environmental Engineering,2022,29(3):109 − 118. (in Chinese) doi: 10.13578/j.cnki.issn.1671-1556.20210976
    [13] 谭学瑞,邓聚龙. 灰色关联分析:多因素统计分析新方法[J]. 统计研究,1995,12(3):46 − 48. [TAN Xuerui,DENG Julong. 灰色关联分析:多因素统计分析新方法[J]. Statistical Research,1995,12(3):46 − 48. (in Chinese with English abstract)
    [14] 何旭,何毅,张立峰,等. 联合InSAR与PCA的北京平原地面沉降时空分析[J]. 光谱学与光谱分析,2022,42(7):2315 − 2324. [HE Xu,HE Yi,ZHANG Lifeng,et al. Spatio-temporal analysis of land subsidence in beij ing plain based on InSAR and PCA[J]. Spectroscopy and Spectral Analysis,2022,42(7):2315 − 2324. (in Chinese)
    [15] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks. November 27 - December 1, 1995, Perth, WA, Australia. IEEE, 2002: 1942-1948.
    [16] 韩冰,袁颖. 基于主成分分析的GA-SVM地表沉降预测模型[J]. 中国科技论文,2018,13(9):1045 − 1049. [HAN Bing,YUAN Ying. Application of GA-SVM model based on principal component nalysis to prediction of surface settlement of shield construction[J]. China Sciencepaper,2018,13(9):1045 − 1049. (in Chinese)
    [17] 冯小蔓. 基于InSAR技术的地表形变与雪深监测研究[D]. 太原: 太原理工大学

    FENG X (M/W). Research on monitoring of surface deformation and snow depth based on InSAR technology[D]. Taiyuan: Taiyuan University of Technology. (in Chinese with English abstract)
    [18] 潘建平,邓福江,徐正宣,等. 基于轨道精炼控制点精选的极艰险区域时序InSAR地表形变监测[J]. 中国地质灾害与防治学报,2021,32(5):98 − 104. [PAN Jianping,DENG Fujiang,XU Zhengxuan,et al. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):98 − 104. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-12
    [19] FAN H,WANG L,WEN B,et al. A new model for three-dimensional deformation extraction with single-track InSAR based on mining subsidence characteristics[J]. International Journal of Applied Earth Observation and Geoinformation,2021,94:102223. doi: 10.1016/j.jag.2020.102223
    [20] 中国国土资源航空物探遥感中心. DD2014-11地面沉降干涉雷达数据处理技术规程[S]. 北京: 中国地质调查局, 2014

    China Aero Geophysical Survey and Remote Sensing Center for Land and Resources. DD2014-11 Technical Specification for Data Processing of Land Subsidence Interference Radar[S]. Beijing: China Geological Survey, 2014. (in Chinese with English abstract)
    [21] 杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)
    [22] 刘刚,徐成华,施威,等. 南京河西地区地面沉降成因分析[J]. 地质论评,2023,69(2):639 − 647. [LIU Gang,XU Chenghua,SHI Wei,et al. Cause analysis of land subsidence in Hexi area,Nanjing[J]. Geological Review,2023,69(2):639 − 647. (in Chinese) doi: 10.16509/j.georeview.2022.08.081
    [23] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology and Engineering Geology,2022,49(4):198 − 206. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.202106022
    [24] 秦胜伍,张延庆,张领帅,等. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版),2021,51(5):1316 − 1323. [QIN Shengwu,ZHANG Yanqing,ZHANG Lingshuai,et al. Prediction of ground settlement around deep foundation pit based on stacking model fusion[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1316 − 1323. (in Chinese)
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  2140
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 录用日期:  2023-04-17
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回