Vulnerability assessment of landslide hazards based on hazard intensity at slope level: A case study in Xiangxiang county of Hunan
-
摘要: 以斜坡为单元,基于潜在灾害强度的区域性易损性评价是地质灾害防治亟待解决的重要问题之一。以湖南省湘乡市为研究区,在采用加权信息量方法进行易发性区划的基础上,逐个提取斜坡单元最高易发值点的高程、坡高、坡度、坡向、月平均降雨量为特征参数,分别代入BP神经网络、PSO-BP神经网络、随机森林及支持向量机模型。通过训练与精度测试对比,构建基于PSO优化BP神经网络算法的滑坡体积预测模型,建立以灾害体积为灾害强度指标,以建筑密度、人口密度、财产密度等为脆弱性指标的易损性综合评价模型。针对研究区开展基于潜在灾害强度的区域性易损性评价,完成高易损区(面积占比1.5%)、中易损区(面积占比28.5%)和低易损区(面积占比70%)的区划,实现了区域性易损性评价过程中致灾体灾害强度与承灾体脆弱性的有机结合,增强了评价的客观性和科学性。
-
关键词:
- 滑坡易损性评价 /
- 滑坡体积 /
- PSO-BP神经网络 /
- 斜坡单元
Abstract: Taking a slope as a unit, the regional vulnerability assessment based on potential disaster intensity is one of the important problems to be solved urgently. In this paper, the city of Xiangxiang in Hunan is selected as the research area. On the basis of susceptibility regionalization with the weighted information value method, the elevation, slope height, slope, slope direction and monthly average rainfall of the highest prone points of slope units are extract one by one as the characteristic parameters, which are put into the BP neural network, PSO-BP neural network, random forest and support vector machine model, respectively. A landslide volume prediction model based on BP neural network algorithm optimized by PSO is constructed through training and precision test comparison. A comprehensive vulnerability evaluation model is established with disaster volume as disaster intensity index and building density, population density and property density as vulnerability indexes. Regional vulnerability evaluation based on potential disaster intensity is carried out for the study area. The divisions of high-vulnerable areas (1.5% of the total area), medium-vulnerable areas (28.5% of the total area) and low-vulnerable areas (70% of the total area) are completed, which realize the organic combination of the disaster intensity of the disaster-causing body and the vulnerability of the disaster-bearing body in the process of regional vulnerability evaluation, and enhance the objectivity and scientific nature of the evaluation. -
表 1 斜坡单元易损性综合评价
Table 1. Comprehensive evaluation of the vulnerability of slope units
易损性等级 脆弱性等级 低脆弱性 中脆弱性 高脆弱性 灾害强度等级 弱灾害强度 低 中 中 中灾害强度 低 中 高 强灾害强度 中 高 高 表 2 研究区基础数据
Table 2. Basic data of the study area
名称 类型 精度 遥感影像 栅格 0.5 m DEM 栅格 1∶10 000 工程地质图、土地利用类型图 矢量 1∶50 000 断层图、路网图 矢量 1∶50 000 行政区划图 矢量 1∶10 000 降雨数据 数据表 − 历史灾害点 数据表 − GDP 数据表 湘乡市 人口、建筑面积、道路、财产 数据表 斜坡单元 斜坡单元面积 数据表 斜坡单元 表 3 易发性评价指标分区结果
Table 3. Partition results of the susceptibility evaluation indicators
评价指标 二级指标区间 高程/m 32~<101;101~<171;171~<267;267~<409;≥409 坡度/(°) 0~<6;6~<17;17~<28;28~<40;≥40 坡向 平面;北;东北;东;东南;南;西南;西;西北 工程地质岩组 硅质岩、硅质板岩;浅变质砂岩夹板岩;板岩;砂岩、砂砾岩;碳酸盐岩与碎屑岩互层;碳酸盐岩;岩浆岩;土体;红色碎屑岩;砂岩、页岩;硅质岩、硅质页岩 距断层距离/m <100;100~<200;200~<300;300~<400;≥400 距道路距离/m <100;100~<200;200~<300;300~<400;≥400 土地利用情况 耕地;林地;草地;水域;城乡、工矿居民用地;未利用土地类型 月平均降雨量/mm <100;100~<150;150~<200;≥200 表 4 湘乡市地质灾害易发性分区结果
Table 4. Results of geological hazard susceptibility zoning in the city of Xiangxiang
易发性分区 面积比例/% 灾害点数量/个 灾害点比例/% 灾积比 高易发 8.2 216 71.3 1.43 中易发 39.3 75 24.8 0.10 低易发 52.5 12 3.9 0.012 表 5 指标因子相关性分析
Table 5. Correlation of the controlling factors
指标因子 高程 坡高 坡度 坡向 工程地质岩组 距断层距离 距道路距离 土地利用情况 月平均降雨量 滑坡体积 高程 1 0.057 −0.055 −0.036 −0.169 −0.358 0.328 0.103 0.013 0.239 坡高 1 0.042 −0.028 −0.31 −0.26 −0.199 0.168 0.034 0.333 坡度 1 −0.027 −0.428 −0.104 0.245 0.051 −0.133 −0.205 坡向 1 0.003 0.007 −0.066 −0.493 −0.123 0.196 工程地质岩组 1 0.07 0.208 −0.024 0.043 0.003 距断层距离 1 −0.211 −0.102 0.207 −0.026 距道路距离 1 0.284 0.022 0.06 土地利用情况 1 −0.047 −0.102 月平均降雨量 1 −0.313 滑坡体积 1 表 6 各模型预测结果精度对比
Table 6. Comparison of prediction accuracy of each model
测试集结果 预测正确样本量/个 预测错误样本量/个 预测精度/% BP神经网络 21 15 58.33 PSO-BP神经网络 29 7 80.56 随机森林 18 18 50.00 支持向量机 25 11 69.44 表 7 斜坡单元灾害强度等级分区结果
Table 7. Results of disaster intensity classification of slope units
预测体积分区/m³ 灾害强度等级 <15 000 弱灾害强度 15 000~45 000 中灾害强度 >45 000 强灾害强度 表 8 脆弱性评价指标组合权重结果
Table 8. Combined weight results of vulnerability assessment indicators
评价因子 权重值 人口密度 0.3072 建筑密度 0.2160 道路密度 0.2141 GDP密度 0.1607 财产密度 0.1026 表 9 斜坡单元脆弱性等级分区结果
Table 9. Results of vulnerability classification of slope units
脆弱性值分区 脆弱性等级 <0.0845 低脆弱性 0.0845 ~ 0.1750 中脆弱性 >0.1750 高脆弱性 表 10 斜坡单元易损性统计结果
Table 10. Statistical results of slope unit vulnerability
易损性分区 斜坡单元数量/个 斜坡单元数量占比/% 高易损区 124 2.6 中易损区 2 023 42.7 低易损区 2 587 54.7 -
[1] UZIELLI M,NADIM F,LACASSE S,et al. A conceptual framework for quantitative estimation of physical vulnerability to landslides[J]. Engineering Geology,2008,102(3/4):251 − 256. [2] 许强,张一凡,陈伟. 西南山区城镇地质灾害易损性评价方法—以四川省丹巴县城为例[J]. 地质通报,2010,29(5):729 − 738. [XU Qiang,ZHANG Yifan,CHEN Wei. Vulnerability assessment of geo-hazards in southwest mountainous area:Danba County,Sichuan,China as an example[J]. Geological Bulletin of China,2010,29(5):729 − 738. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2010.05.013XU Qiang, ZHANG Yifan, CHEN Wei. Vulnerability assessment of geo-hazards in southwest mountainous area: Danba County, Sichuan, China as an example[J]. Geological Bulletin of China, 2010, 29(5): 729-738. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2010.05.013 [3] REYES-HARDY M P,AGUILERA BARRAZA F,SEPÚLVEDA BIRKE J P,et al. GIS-based volcanic hazards,vulnerability and risks assessment of the Guallatiri Volcano,Arica y Parinacota Region,Chile[J]. Journal of South American Earth Sciences,2021,109:103262. doi: 10.1016/j.jsames.2021.103262 [4] GUZZETTI F,ARDIZZONE F,CARDINALI M,et al. Landslide volumes and landslide mobilization rates in Umbria,central Italy[J]. Earth and Planetary Science Letters,2009,279(3/4):222 − 229. [5] GLADE T, ANDERSON M, CROZIER M J. Landslide hazard and risk [M]. New York: John Wiley & Sons, Inc. 2005: 41-74. [6] 彭令,牛瑞卿,赵艳南,等. 区域滑坡灾害风险评估—以长江三峡库区秭归县为例[J]. 吉林大学学报(地球科学版),2013,43(3):891 − 901. [PENG Ling,NIU Ruiqing,ZHAO Yannan,et al. Risk assessment of a regional landslide:A case of Zigui County territory in Three Gorges Reservoir[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):891 − 901. (in Chinese with English abstract)PENG Ling, NIU Ruiqing, ZHAO Yannan, et al. Risk assessment of a regional landslide: A case of Zigui County territory in Three Gorges Reservoir[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 891-901. (in Chinese with English abstract) [7] KAYNIA A M,PAPATHOMA-KÖHLE M,NEUHÄUSER B,et al. Probabilistic assessment of vulnerability to landslide:application to the village of Lichtenstein,Baden-Württemberg,Germany[J]. Engineering Geology,2008,101(1/2):33 − 48. [8] 薛强,张茂省,高波,等. 陕西省绥德县城区地质灾害风险评估[J]. 工程地质学报,2018,26(3):711 − 719. [XUE Qiang,ZHANG Maosheng,GAO Bo,et al. Risk assessment of geological hazards in Suide city,Shaanxi Province[J]. Journal of Engineering Geology,2018,26(3):711 − 719. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017-205XUE Qiang, ZHANG Maosheng, GAO Bo, et al. Risk assessment of geological hazards in Suide city, Shaanxi Province[J]. Journal of Engineering Geology, 2018, 26(3): 711-719. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017-205 [9] 张以晨,秦胜伍,翟健健,等. 基于信息量的长白山地区泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):150 − 158. [ZHANG Yichen,QIN Shengwu,ZHAI Jianjian,et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area[J]. Hydrogeology & Engineering Geology,2018,45(2):150 − 158. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.02.23ZHANG Yichen, QIN Shengwu, ZHAI Jianjian, et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 150-158. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.02.23 [10] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24 [11] 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2859 − 2870CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 1): 2859 − 2870. (in Chinese with English abstract) [12] 李骅锦,许强,何雨森,等. 甘肃黑方台滑坡滑距参数的BP神经网络模型[J]. 水文地质工程地质,2016,43(4):141 − 146. [LI Huajin,XU Qiang,HE Yusen,et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J]. Hydrogeology & Engineering Geology,2016,43(4):141 − 146. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.04.23LI Huajin, XU Qiang, HE Yusen, et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 141-146. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.04.23 [13] 王念秦,朱文博,郭有金. 基于PSO-SVM模型的滑坡易发性评价[J]. 长江科学院院报,2021,38(4):56 − 62. [WANG Nianqin,ZHU Wenbo,GUO Youjin. Assessment of landslide susceptibility based on PSO-SVM model[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):56 − 62. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200074WANG Nianqin, ZHU Wenbo, GUO Youjin. Assessment of landslide susceptibility based on PSO-SVM model[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 56-62. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200074 [14] 吴迪. 基于PSO-SVM的凤县公路边坡地质灾害空间预测[J]. 中国地质灾害与防治学报,2018,29(6):112 − 120. [WU Di. Spatial prediction of highway slope geo-hazards in Feng County based on PSO-SVM[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):112 − 120. (in Chinese with English abstract)WU Di. Spatial prediction of highway slope geo-hazards in Feng County based on PSO-SVM[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 112-120. (in Chinese with English abstract) [15] 何书,鲜木斯艳·阿布迪克依木,胡萌,等. 基于自组织特征映射网络-随机森林模型的滑坡易发性评价—以江西大余县为例[J]. 中国地质灾害与防治学报,2022,33(1):132 − 140. [HE Shu,ABUDIKEYIMU XMSY,HU Meng,et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):132 − 140. (in Chinese with English abstract)HE Shu, ABUDIKEYIMU XMSY, HU Meng, et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model: A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 132-140. (in Chinese with English abstract) [16] 夏辉,殷坤龙,梁鑫,等. 基于SVM-ANN模型的滑坡易发性评价—以三峡库区巫山县为例[J]. 中国地质灾害与防治学报,2018,29(5):13 − 19. [XIA Hui,YIN Kunlong,LIANG Xin,et al. Landslide susceptibility assessment based on SVM-ANN Models:a case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):13 − 19. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.05.03XIA Hui, YIN Kunlong, LIANG Xin, et al. Landslide susceptibility assessment based on SVM-ANN Models: a case stualy for Wushan County in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 13-19. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2018.05.03 [17] LI Zhihong,NADIM F,HUANG Hongwei,et al. Quantitative vulnerability estimation for scenario-based landslide hazards[J]. Landslides,2010,7(2):125 − 134. doi: 10.1007/s10346-009-0190-3 [18] 李春燕,孟晖,张若琳,等. 中国县域单元地质灾害风险评估[J]. 水文地质工程地质,2017,44(2):160 − 166. [LI Chunyan,MENG Hui,ZHANG Ruolin,et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology & Engineering Geology,2017,44(2):160 − 166. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.02.24LI Chunyan, MENG Hui, ZHANG Ruolin, et al. Risk assessment of geo-hazard of China in County unit[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 160-166. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.02.24 [19] 李春燕,孟晖,张若琳,等. 基于承灾体易损性的县域单元地质灾害风险评估[J]. 地质通报,2021,40(9):1547 − 1559. [LI Chunyan,MENG Hui,ZHANG Ruolin,et al. Geological hazard risk assessment based on vulnerability of disaster-bearing body at County unite scale[J]. Geological Bulletin of China,2021,40(9):1547 − 1559. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2021.09.014LI Chunyan, MENG Hui, ZHANG Ruolin, et al. Geological hazard risk assessment based on vulnerability of disaster-bearing body at County unite scale[J]. Geological Bulletin of China, 2021, 40(9): 1547-1559. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2021.09.014 [20] 陈东景,李培英,刘乐军,等. 我国沿海城市海底地质灾害易损性评价[J]. 中国安全科学学报,2010,20(11):11 − 17. [CHEN Dongjing,LI Peiying,LIU Lejun,et al. Evaluation on submarine geological hazard vulnerability of coastal cities in China[J]. China Safety Science Journal,2010,20(11):11 − 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-3033.2010.11.002CHEN Dongjing, LI Peiying, LIU Lejun, et al. Evaluation on submarine geological hazard vulnerability of coastal cities in China[J]. China Safety Science Journal, 2010, 20(11): 11-17. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-3033.2010.11.002 [21] 罗路广,裴向军,谷虎,等. 基于GIS的“8·8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8·8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract) doi: 10.13577/j.jnd.2020.0321LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193-202. (in Chinese with English abstract) doi: 10.13577/j.jnd.2020.0321 [22] 邹凤钗,冷洋洋,陶小郎,等. 基于斜坡单元的滑坡风险识别—以贵州万山浅层土质斜坡为例[J]. 中国地质灾害与防治学报,2022,33(3):114 − 122. [ZOU Fengchai,LENG Yangyang,TAO Xiaolang,et al. Landslide hazard identification based on slope unit:a case study of shallow soil slope in Wanshan,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):114 − 122. (in Chinese with English abstract)ZOU Fengchai, LENG Yangyang, TAO Xiaolang, et al. Landslide hazard identification based on slope unit: a case study of shallow soil slope in Wanshan, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 114-122. (in Chinese with English abstract) [23] 杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese with English abstract) [24] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2015.0318ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2015.0318 [25] 张群,许强,吴礼舟,等. 南江滑坡群体积的BP神经网络模型与预测[J]. 水文地质工程地质,2015,42(1):134 − 139. [ZHANG Qun,XU Qiang,WU Lizhou,et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology,2015,42(1):134 − 139. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2015.01.23ZHANG Qun, XU Qiang, WU Lizhou, et al. BP neural network model for forecasting volume of landslide group in Nanjiang[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 134-139. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2015.01.23 [26] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract) [27] 闫举生,谭建民. 基于不同因子分级法的滑坡易发性评价—以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng,TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods:A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.01.06YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods—a case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 52-60. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.01.06 [28] 唐波,刘希林,尚志海. 城市灾害易损性及其评价指标[J]. 灾害学,2012,27(4):6 − 11. [TANG Bo,LIU Xilin,SHANG Zhihai. Vulnerability of urban disasters and its evaluation index[J]. Journal of Catastrophology,2012,27(4):6 − 11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2012.04.002TANG Bo, LIU Xilin, SHANG Zhihai. Vulnerability of urban disasters and its evaluation index[J]. Journal of Catastrophology, 2012, 27(4): 6-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2012.04.002 [29] 刘希林,莫多闻. 泥石流易损度评价[J]. 地理研究,2002,21(5):569 − 577. [LIU Xilin,MO Duowen. Site-specific debris flow vulnerability assessment[J]. Geographical Research,2002,21(5):569 − 577. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0585.2002.05.005LIU Xilin, MO Duowen. Site-specific debris flow vulnerability assessment[J]. Geographical Research, 2002, 21(5): 569-577. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0585.2002.05.005 -