Stability assessment of the Road Cut Slopes in the Xigeda mudstone considering long-term creep deterioration and suggestion for countermeasures: A case study of cut slopes along the Xichang–Panzhihua expressway
-
摘要: 昔格达黏土岩存在长期蠕变劣化强度折减及饱水软化不利工程特性,为典型易滑地层。该地层路堑边坡在运营期会持续劣化、稳定性降低,极易产生滑坡,对公路运营安全产生重大威胁。通过对西攀高速公路K2378+900右侧滑坡进行地质分析、数值模拟计算及其相互验证,得到了边坡在开挖建成及临滑两阶段的抗剪强度参数值,并据此计算出昔格达黏土岩长期蠕变劣化c、φ值的折减系数分别为0.87、0.84。对5类、17种昔格达黏土岩边坡进行最危险滑裂面搜索及稳定性的计算分析得出:在抗剪参数按0.87~0.84长期蠕变劣化折减时,边坡的稳定系数平均降低0.184。基于此,对边坡稳定安全系数取值、坡比、支挡加固方式等昔格达黏土岩公路边坡长期稳定的关键因素提出了针对性管控建议,指出采用“缓放坡+宽平台+弱加固”的建设及处治思路更有利于昔格达黏土岩边坡长期稳定。研究结果为昔格达岩层区公路建设及边坡防护处治提供了重要指导和借鉴意义。Abstract: The Xigeda clay-rock strata exhibit typical characteristics of long-term creep deterioration and saturation softening, which is typical slide-prone stratum. Landslides are easily formed in Xigeda strata cut slope due to the continuous deterioration and stability reduction during the operation period, which poses great threats to operational safety. The reduction coefficients for the c and φ values due to long-term creep deterioration of Xigeda clay-rock are determined as 0.87 and 0.84 respectively. These values are derived from shear strength Parameters of slope excavation and sliding obtained through geological analysis, discrete element numerical simulation, and mutual verification involving the K2378 + 900 right-side landslide on the Xichang-Panzhihua Expressway. By conducting critical slip surface searches and stability calculations for 17 distinct Xigeda clay-rock slopes representing 5 different types, the average decrease of stability coefficient is found to be 0.184 when shear Parameters are reduced in accordance with creep deterioration within the range of 0.87~0.84. Consequently, targeted recommendations are proposed for key factors influencing the long-term stability of Xigeda clay-rock slopes, encomPassing safety coefficients, slope ratios, and reinforcement measures. It is demonstrated that employing a construction approach characterized by a gentler slope, wider platforms, and less intensive reinforcement is proved to be more conducive to the slope long-term stability. The research results provide important guidance and reference for highway construction and slope protection treatment within the Xigeda stratum area.
-
表 1 滑带参数反算结果表
Table 1. Inversion calculation results of slope zone parameters
地层 岩性 抗剪参数 备注 主滑段 抗滑段 牵引段 Qpal+pl 黏土 c=12 kPa、φ=10º — c=0 kPa
φ=40º按《公路滑坡防治设计规范》稳定性计算采用“三段式” 含卵石黏土 c=10 kPa、φ=13º — N2x 泥岩(强风化) c=18.4 kPa、φ=15.1 º c=0 kPa、φ=25º 表 2 数值模拟参数取值
Table 2. Parameter value of numerical simulation
参数 弹性模量/MPa 泊松比 重度/(KN·m−3) 黏聚力/kPa 内摩擦角/(°) 数值模拟采用层序号 饱和 Qpal+pl黏 土 150 0.3 20.2 12.0 10.0 1 Qpal+pl含卵石黏土 220 0.29 20.7 10.0 13.0 2 N2x泥岩(强风化) 460 0.27 22.5 15.3 12.6 3 N2x泥岩(中风化) 510 0.26 17.4 14.3 4 表 3 边坡开挖完成时数值模拟参数取值
Table 3. Parameter value of numerical simulation after slope excavation
参 数 弹性模量
/MPa泊松比 重度/(kN·m−3) 黏聚力/ kPa 内摩擦角/(°) 饱和 Qpal+pl黏土 160 0.3 20.2 15.38 12.82 Qpal+pl含卵石黏土 230 0.28 20.7 12.50 16.25 N2x泥岩(强风化) 480 0.26 22.5 17.60 15.00 N2x泥岩(中风化) 520 0.25 27.70 18.20 表 4 路堑边坡分类表
Table 4. Classification table for cut slopes
坡型 坡高 坡 比 坡体结构 Ⅰ型 10 m 岩质 1∶0.5 10 m高昔格达泥岩黏土岩边坡 Ⅱ-1型 20 m 岩质 1∶0.5 两级10 m高昔格达泥岩黏土岩边坡+2 m宽平台 Ⅱ-2型 20 m 岩质:1∶0.75 Ⅱ-3型 20 m 岩质 1∶0.75 两级10 m高昔格达泥岩黏土岩边坡+3 m宽平台 Ⅱ-4型 20 m 岩质 1∶1 两级10 m高昔格达泥岩黏土岩边坡+2 m宽平台 Ⅲ-1型 30 m 岩质 1∶0.75 三级10 m高昔格达泥岩黏土岩边坡+2 m宽平台 Ⅲ-2型 30 m 岩质 1∶1 Ⅲ-3型 30 m 岩质 1∶:1 三级10 m高昔格达泥岩黏土岩边坡+3 m宽平台 Ⅳ-1型 20 m 岩质 1∶0.75
土质 1∶1两级10 m高边坡+2 m宽平台,顶部6 m厚(含砾、卵石)黏土 Ⅳ-2型 20 m 岩质 1∶0.75
土质 1∶1两级10 m高边坡+3 m宽平台,顶部6 m厚(含砾、卵石)黏土 Ⅳ-3型 20 m 岩、土质 1∶1 两级10 m高边坡,+2 m宽平台,顶部6 m厚(含砾、卵石)黏土 Ⅳ-4型 20 m 岩质 1∶1
土质 1∶1.25Ⅴ-1型 30 m 岩质 1∶0.75
土质 1∶1三级10 m高边坡+2 m宽平台,顶部6 m厚(含砾、卵石)黏土 Ⅴ-2型 30 m 岩、土质 1∶1 Ⅴ-3型 30 m 岩质 1∶1
土质 1∶1.25Ⅴ-4型 30 m 岩质 1∶1
土质 1∶1.25三级10 m高边坡+3 m宽平台,顶部6 m厚(含砾、卵石)黏土 Ⅴ-5型 30 m 岩、土质 1∶1.25 三级10 m高边坡+2 m宽平台,顶部6 m厚(含砾、卵石)黏土 表 5 边坡蠕变劣化稳定性变化结果
Table 5. Result of slope stability variation considering creep degradation
边坡
类型开挖完成后
(未蠕变劣化)参数蠕变前
稳定系数长期蠕变劣化强度
折减后参数蠕变劣化折减后
稳定系数稳定系数
减小值滑裂面
最大厚度Ⅰ型 c=30 kPa,
φ=25°1.272 c=26.1 kPa,φ=21.0°
(黏土岩)1.083 0.189 3~4m Ⅱ-1型 c=30 kPa,
φ=25°0.967 — — — 5~6m Ⅱ-2型 1.111 c=26.1 kPa,φ=21.0°
(黏土岩)0.936 0.175 6~7m Ⅱ-3型 1.151 0.970 0.181 6-7m Ⅱ-4型 1.265 1.066 0.199 5~6m Ⅲ-1型 c=30 kPa,
φ=25°0.969 — — — 9~10m Ⅲ-2型 1.101 c=26.1 kPa,φ=21.0°
(黏土岩)0.924 0.177 10.5m Ⅲ-3型 1.148 0.963 0.185 9~10m Ⅳ-1型 c=30 kPa,φ=25°
(黏土岩)
c=15 kPa,φ=16°
(黏土)1.147 c=26.1 kPa,φ=21.0°
(黏土岩)
c=12 kPa,φ=12.8°
(黏土)0.962 0.185 6~7m Ⅳ-2型 1.186 0.995 0.191 6m Ⅳ-3型 1.235 1.054 0.181 6m Ⅳ-4型 1.295 1.086 0.209 5~6m Ⅴ-1型 c=30 kPa,φ=25°
(黏土岩)
c=15 kPa,φ=16°
(黏土)0.990 — — — 9~10m Ⅴ-2型 1.093 c=26.1 kPa,φ=21.0°(黏土岩)
c=12 kPa,φ=12.8°
(黏土)0.915 0.178 8~9m Ⅴ-3型 1.121 0.938 0.183 10m Ⅴ-4型 1.167 0.976 0.191 9~10m Ⅴ-5型 1.229 1.028 0.201 9~10m 注:表中加粗及带下划线的数字均为稳定系数小于1.0。 -
[1] 杨世豪. 基于物元理论的昔格达地层边坡稳定性评价模型研究[D]. 成都:中国科学院大学(中国科学院水利部成都山地灾害与环境研究所),2020. [YANG Shihao. Study on evaluation model of Xigeda stratum slope stability based on matter-element theory[D]. Chengdu:Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,2020. (in Chinese with English abstract)YANG Shihao. Study on evaluation model of Xigeda stratum slope stability based on matter-element theory[D]. Chengdu: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 2020. (in Chinese with English abstract) [2] 黄绍槟,吉随旺,朱学雷,等. 西攀路昔格达地层滑坡分析[J]. 公路交通科技,2005,22(增刊1):41 − 44. [HUANG Shaobin,JI Suiwang,ZHU Xuelei,et al. Analysis on xigeda landslide in xiPan expressway[J]. Journal of Highway and Transportation Research and Development,2005,22(Sup 1):41 − 44. (in Chinese with English abstract)HUANG Shaobin, JI Suiwang, ZHU Xuelei, et al. Analysis on xigeda landslide in xiPan expressway[J]. Journal of Highway and Transportation Research and Development, 2005, 22(Sup 1): 41 − 44. (in Chinese with English abstract) [3] 吴焕恒. 西昌某边坡昔格达组地层蠕变试验及其边坡蠕变变形分析[D]. 成都:西南交通大学,2010. [WU Huanheng. Creep test of Xigeda formation on a slope in Xichang and its slope creep deformation analysis[D]. Chengdu:Southwest Jiaotong University,2010. (in Chinese with English abstract)WU Huanheng. Creep test of Xigeda formation on a slope in Xichang and its slope creep deformation analysis[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese with English abstract) [4] 陈茂,张家明,龙郧铠. 黏性土剪切蠕变特性研究进展[J]. 工业安全与环保,2021,47(7):15 − 21. [CHEN Mao,ZHANG Jiaming,LONG Yunkai. Research progress on shear creep characteristics of cohesive soil[J]. Industrial Safety and Environmental Protection,2021,47(7):15 − 21. (in Chinese) doi: 10.3969/j.issn.1001-425X.2021.07.004 CHEN Mao, ZHANG Jiaming, LONG Yunkai . Research progress on shear creep characteristics of cohesive soil[J]. Industrial Safety and Environmental Protection,2021 ,47 (7 ):15 −21 . (in Chinese) doi: 10.3969/j.issn.1001-425X.2021.07.004[5] 孙淼军,唐辉明,王潇弘,等. 蠕动型滑坡滑带土蠕变特性研究[J]. 岩土力学,2017,38(2):385 − 391. [SUN Miaojun,TANG Huiming,WANG Xiaohong,et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics,2017,38(2):385 − 391. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.02.011 SUN Miaojun, TANG Huiming, WANG Xiaohong, et al . Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics,2017 ,38 (2 ):385 −391 . (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.02.011[6] 周静静,赵法锁,祝艳波,等. 低速缓动滑坡滑带土剪切蠕变特性[J]. 中国地质灾害与防治学报,2020,31(1):107 − 112. [ZHOU Jingjing,ZHAO Fasuo,ZHU Yanbo,et al. Shear creep characteristics of soil in sliding zone of low-speed slow-moving landslide[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):107 − 112. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.01.17 ZHOU Jingjing, ZHAO Fasuo, ZHU Yanbo, et al . Shear creep characteristics of soil in sliding zone of low-speed slow-moving landslide[J]. The Chinese Journal of Geological Hazard and Control,2020 ,31 (1 ):107 −112 . (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.01.17[7] BHAT D R,BHANDARY N P,YATABE R. Residual-state creep behavior of typical clayey soils[J]. Natural Hazards,2013,69(3):2161 − 2178. doi: 10.1007/s11069-013-0799-3 [8] XIE Xing,QI Shengwen,ZHAO Fasuo,et al. Creep behavior and the microstructural evolution of loess-like soil from Xi'an area,China[J]. Engineering Geology,2018,236:43 − 59. doi: 10.1016/j.enggeo.2017.11.003 [9] DI MAIO C,SCARINGI G,VASSALLO R. Residual strength and creep behaviour on the slip surface of specimens of a landslide in marine origin clay shales:influence of pore fluid composition[J]. Landslides,2015,12(4):657 − 667. doi: 10.1007/s10346-014-0511-z [10] 文丽娜,朱学雷,白志勇,等. 西攀高速公路新九地区昔格达地层岩土特性[J]. 公路,2005,50(7):145 − 148. [WEN Lina,ZHU Xuelei,BAI Zhiyong,et al. Characteristics of rock and soil of xigeda strata in Xinjiu district of xi-Pan expressway[J]. Highway,2005,50(7):145 − 148. (in Chinese with English abstract) doi: 10.3969/j.issn.0451-0712.2005.07.031 WEN Lina, ZHU Xuelei, BAI Zhiyong, et al . Characteristics of rock and soil of xigeda strata in Xinjiu district of xi-Pan expressway[J]. Highway,2005 ,50 (7 ):145 −148 . (in Chinese with English abstract) doi: 10.3969/j.issn.0451-0712.2005.07.031[11] 文丽娜,冯义从,邬玉娟. 攀西地区昔格达地层边坡稳定性评价[J]. 四川建筑,2004,24(3):45 − 46. [WEN Lina,FENG Yicong,WU Yujuan. Stability evaluation of Xigeda stratum slope in Panxi area[J]. Sichuan Architecture,2004,24(3):45 − 46. (in Chinese) doi: 10.3969/j.issn.1007-8983.2004.03.019 WEN Lina, FENG Yicong, WU Yujuan . Stability evaluation of Xigeda stratum slope in Panxi area[J]. Sichuan Architecture,2004 ,24 (3 ):45 −46 . (in Chinese) doi: 10.3969/j.issn.1007-8983.2004.03.019[12] 杨世豪,苏立君,张崇磊,等. 强降雨作用下昔格达边坡渗流特性及稳定性分析[J]. 土木与环境工程学报(中英文),2020,42(4):19 − 27. [YANG Shihao,SU Lijun,ZHANG Chonglei,et al. Analysis of seePage characteristics and stability of Xigeda Formation slope under heavy rainfall[J]. Journal of Civil and Environmental Engineering,2020,42(4):19 − 27. (in Chinese with English abstract) doi: 10.11835/j.issn.2096-6717.2020.024 YANG Shihao, SU Lijun, ZHANG Chonglei, et al . Analysis of seePage characteristics and stability of Xigeda Formation slope under heavy rainfall[J]. Journal of Civil and Environmental Engineering,2020 ,42 (4 ):19 −27 . (in Chinese with English abstract) doi: 10.11835/j.issn.2096-6717.2020.024[13] 丁文富,张广泽,宋章. 成昆铁路昔格达地层工程地质特性及对策研究[J]. 铁道工程学报,2017,34(4):1 − 5. [DING Wenfu,ZHANG Guangze,SONG Zhang. Research on the engineering geological characteristics and engineering countermeasures of xigeda strata of chengdu-kunming railway[J]. Journal of Railway Engineering Society,2017,34(4):1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2017.04.001 DING Wenfu, ZHANG Guangze, SONG Zhang . Research on the engineering geological characteristics and engineering countermeasures of xigeda strata of chengdu-kunming railway[J]. Journal of Railway Engineering Society,2017 ,34 (4 ):1 −5 . (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2017.04.001[14] 尹紫红,周志林,梁明学. 昔格达组地层研究现状与牛坪子滑坡稳定性分析[J]. 路基工程,2005(2):12 − 15. [YIN Zihong,ZHOU Zhilin,LIANG Mingxue. Research status of xigeda formation strata and stability analysis of niupingzi landslide[J]. Subgrade Engineering,2005(2):12 − 15. (in Chinese) doi: 10.3969/j.issn.1003-8825.2005.02.004 YIN Zihong, ZHOU Zhilin, LIANG Mingxue . Research status of xigeda formation strata and stability analysis of niupingzi landslide[J]. Subgrade Engineering,2005 (2 ):12 −15 . (in Chinese) doi: 10.3969/j.issn.1003-8825.2005.02.004[15] 邓夷明,冯世清,等. 昔格达地层力学参数取值研究[C]//第十一届全国工程地质大会论文集. 武汉,2020:50 − 55. [16] 张家明,刘文连,徐则民,等. 西昌昔格达组黏土岩动力特性试验研究[J]. 地震工程与工程振动,2012,32(1):154 − 160. [ZHANG Jiaming,LIU Wenlian,XU Zemin,et al. Experimental research on dynamic characteristics of Xigeda formation claystone in Xichang[J]. Journal of Earthquake Engineering and Engineering Vibration,2012,32(1):154 − 160. (in Chinese with English abstract) doi: 10.13197/j.eeev.2012.01.005 ZHANG Jiaming, LIU Wenlian, XU Zemin, et al . Experimental research on dynamic characteristics of Xigeda formation claystone in Xichang[J]. Journal of Earthquake Engineering and Engineering Vibration,2012 ,32 (1 ):154 −160 . (in Chinese with English abstract) doi: 10.13197/j.eeev.2012.01.005[17] 古鹏翔,骆俊晖,刘先林,等. 考虑滑带土蠕变特性的边坡长期稳定性分析[J]. 安全与环境工程,2020,27(4):94 − 101. [GU Pengxiang,LUO Junhui,LIU Xianlin,et al. Long-term stability analysis of slope considering creep behaviors of sliding zone soils[J]. Safety and Environmental Engineering,2020,27(4):94 − 101. (in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.2020.04.013 GU Pengxiang, LUO Junhui, LIU Xianlin, et al . Long-term stability analysis of slope considering creep behaviors of sliding zone soils[J]. Safety and Environmental Engineering,2020 ,27 (4 ):94 −101 . (in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.2020.04.013[18] 贾逸,魏良帅,黄海峰. 红层滑坡滑带土蠕变力学特性及经验模型研究[J]. 水力发电,2021,47(3):25 − 30. [JIA Yi,WEI Liangshuai,HUANG Haifeng. Study on creep mechanics characteristics and empirical model of soil in the slip zone of red layer landslide[J]. Water Power,2021,47(3):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2021.03.006 JIA Yi, WEI Liangshuai, HUANG Haifeng . Study on creep mechanics characteristics and empirical model of soil in the slip zone of red layer landslide[J]. Water Power,2021 ,47 (3 ):25 −30 . (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2021.03.006[19] 赵建磊,王涛,梁昌玉,等. 基于风化红层泥岩蠕变特性的滑坡时效变形分析——以天水雒堡村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):30 − 39. [ZHAO Jianlei,WANG Tao,LIANG Changyu,et al. Time-dependent deformation analysis of landslide based on creep characteristics of weathered red mudstone:Taking Luobaocun landslide in Tianshui as an example[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):30 − 39. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.202112027 ZHAO Jianlei, WANG Tao, LIANG Changyu, et al . Time-dependent deformation analysis of landslide based on creep characteristics of weathered red mudstone: Taking Luobaocun landslide in Tianshui as an example[J]. The Chinese Journal of Geological Hazard and Control,2023 ,34 (1 ):30 −39 . (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.202112027[20] 张笛,滕伟福,安琪. 黄土坡临江1号滑坡体滑带土残余强度试验研究[J]. 安全与环境工程,2017,24(2):39 − 45. [ZHANG Di,TENG Weifu,AN Qi. Residual strength test of the soil in landslide zone of huangtupo riverside landslide mass No. 1[J]. Safety and Environmental Engineering,2017,24(2):39 − 45. (in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.2017.02.007 ZHANG Di, TENG Weifu, AN Qi . Residual strength test of the soil in landslide zone of huangtupo riverside landslide mass No. 1[J]. Safety and Environmental Engineering,2017 ,24 (2 ):39 −45 . (in Chinese with English abstract) doi: 10.13578/j.cnki.issn.1671-1556.2017.02.007[21] 王体俊,王大群. 某滑坡滑体土蠕变特性及长期强度研究[J]. 路基工程,2021(5):70 − 74. [WANG Tijun,WANG Daqun. Study on creep characteristics and long-term strength of sliding-body soil of a landslide[J]. Subgrade Engineering,2021(5):70 − 74. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202102006 WANG Tijun, WANG Daqun . Study on creep characteristics and long-term strength of sliding-body soil of a landslide[J]. Subgrade Engineering,2021 (5 ):70 −74 . (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202102006[22] 于洪丹,陈卫忠,卢琛,等. 黏土岩时效变形特性试验与理论研究[J]. 岩土力学,2022,43(2):317 − 326. [YU Hongdan,CHEN Weizhong,LU Chen,et al. Experimental and theoretical study of the time-dependent deformation characteristics of clayey rock[J]. Rock and Soil Mechanics,2022,43(2):317 − 326. (in Chinese with English abstract) YU Hongdan, CHEN Weizhong, LU Chen, et al . Experimental and theoretical study of the time-dependent deformation characteristics of clayey rock[J]. Rock and Soil Mechanics,2022 ,43 (2 ):317 −326 . (in Chinese with English abstract)[23] 陈爱云,龚标,杨宇轩,等. 云南宣威群地层路堑边坡滑带土蠕变特性研究[J]. 安全与环境工程,2022,29(1):111 − 118. [CHEN Aiyun,GONG Biao,YANG Yuxuan,et al. Creep properties of sliding zone soil in roadcut slope of Xuanwei formation strata in Yunnan Province[J]. Safety and Environmental Engineering,2022,29(1):111 − 118. (in Chinese with English abstract) CHEN Aiyun, GONG Biao, YANG Yuxuan, et al . Creep properties of sliding zone soil in roadcut slope of Xuanwei formation strata in Yunnan Province[J]. Safety and Environmental Engineering,2022 ,29 (1 ):111 −118 . (in Chinese with English abstract)[24] 关顺,王来贵,孙闯. 滑带土分数阶损伤蠕变本构模型研究[J]. 辽宁工程技术大学学报(自然科学版),2019,38(1):52 − 57. [GUAN Shun,WANG Laigui,SUN Chuang. Study on fractional damage creep constitutive model of slip zone soil[J]. Journal of Liaoning Technical University (Natural Science),2019,38(1):52 − 57. (in Chinese with English abstract) GUAN Shun, WANG Laigui, SUN Chuang . Study on fractional damage creep constitutive model of slip zone soil[J]. Journal of Liaoning Technical University (Natural Science),2019 ,38 (1 ):52 −57 . (in Chinese with English abstract)[25] 周静静,赵法锁,袁湘秦,等. 滑带土蠕变过程及微观结构演化分析[J]. 水文地质工程地质,2020,47(3):115 − 121. [ZHOU Jingjing,ZHAO Fasuo,YUAN Xiangqin,et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology,2020,47(3):115 − 121. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019010011 ZHOU Jingjing, ZHAO Fasuo, YUAN Xiangqin, et al . Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology,2020 ,47 (3 ):115 −121 . (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019010011[26] 孙淼军. 库水作用下滑坡—抗滑桩体系变形时效规律与长期稳定性研究[D]. 武汉:中国地质大学,2015. [SUN Miaojun. Study on deformation aging law and long-term stability of landslide-anti-slide pile system under the action of reservoir water[D]. Wuhan:China University of Geosciences,2015. (in Chinese with English abstract)SUN Miaojun. Study on deformation aging law and long-term stability of landslide-anti-slide pile system under the action of reservoir water[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract) [27] 杨旭. 昔格达组地层中抗滑桩的嵌固深度研究[D]. 成都:西南交通大学,2008. [YANG Xu. Study on embedding depth of anti-slide piles in xigeda formation[D]. Chengdu:Southwest Jiaotong University,2008. (in Chinese with English abstract)YANG Xu. Study on embedding depth of anti-slide piles in xigeda formation[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese with English abstract) [28] 夏敏,任光明,郭亚莎,等. 地震诱发滑坡复活机制的FLAC3D数值模拟分析[J]. 工程地质学报,2010,18(3):305 − 311. [XIA Min,REN Guangming,GUO Yasha,et al. flac3d numerical simulation of recurrence mechanism of landslide under earthquake loading[J]. Journal of Engineering Geology,2010,18(3):305 − 311. (in Chinese with English abstract) XIA Min, REN Guangming, GUO Yasha, et al . flac3d numerical simulation of recurrence mechanism of landslide under earthquake loading[J]. Journal of Engineering Geology,2010 ,18 (3 ):305 −311 . (in Chinese with English abstract)[29] 周罕,曹平,张科. 昔格达组黏土岩和粉砂岩现场直剪试验研究[J]. 中南大学学报(自然科学版),2014,45(10):3544 − 3550. [ZHOU Han,CAO Ping,ZHANG Ke. In-situ direct shear test on Xigeda Formation clay stone and siltstone[J]. Journal of Central South University (Science and Technology),2014,45(10):3544 − 3550. (in Chinese with English abstract) ZHOU Han, CAO Ping, ZHANG Ke . In-situ direct shear test on Xigeda Formation clay stone and siltstone[J]. Journal of Central South University (Science and Technology),2014 ,45 (10 ):3544 −3550 . (in Chinese with English abstract)[30] 杨碧,范柱国,刘文连,等. 攀钢钒钛钢铁新基地昔格达地层岩土工程特性研究[J]. 科学技术与工程,2010,10(4):973 − 976. [YANG Bi,FAN Zhuguo,LIU Wenlian,et al. Engineering property of xigeda strata of Panzhihua new steel V-Ti base[J]. Science Technology and Engineering,2010,10(4):973 − 976. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2010.04.027 YANG Bi, FAN Zhuguo, LIU Wenlian, et al . Engineering property of xigeda strata of Panzhihua new steel V-Ti base[J]. Science Technology and Engineering,2010 ,10 (4 ):973 −976 . (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2010.04.027[31] 王伟. 昔格达土质边坡锚杆锚固机理研究与应用[D]. 成都:西华大学,2015. [WANG Wei. Research and application of anchor rod anchoring mechanism in Xigeda soil slope[D]. Chengdu:Xihua University,2015. (in Chinese with English abstract)WANG Wei. Research and application of anchor rod anchoring mechanism in Xigeda soil slope[D]. Chengdu: Xihua University, 2015. (in Chinese with English abstract) -