Snow avalanche susceptibility evaluation of the Kezhayi to Gongnaisi section of the Duku expressway based on machine learning
-
摘要: 独库高速公路克扎依至巩乃斯段以高山地貌为主,地形切割剧烈为雪崩发育提供了有利的地形条件,对该区域进行雪崩易发性评价是独库高速公路安全建设及运行的重要前提。通过遥感解译和现场调查等手段获取149个雪崩点的因子数据,通过对因子进行相关性检测,筛选出10个评价因子,构成雪崩评价因子体系。在此基础上,运用K均值聚类法和随机法提取出非雪崩点和原始雪崩点构成样本集,通过机器学习中的多层感知器(MLP)、支持向量机(SVM)算法对研究区域开展雪崩易发性评价。研究结果表明,随机法和K均值聚类法提取出的样本集分别带入算法中训练,R-SVM,R-MLP,K-SVM,K-MLP四种模型的Kappa系数均大于0.6,4组模型对验证数据集的预测结果与实际值存在高度的一致性。经多层感知器(MLP)训练的AUC值由0.762提高至0.983,经支持向量机(SVM)训练的AUC值由0.724提高至0.951。基于本研究预测性能最佳的K-MLP模型分区显示该研究区雪崩发育对拟建线路影响较小,但对于隧道洞口可能会造成威胁,本研究可为独库高速公路建设、运营以及雪崩灾害防治工作提供理论支撑和方法参考。Abstract: The Kezhayi to Gongnaisi section of the Duku expressway is predominantly characterized by alpine landforms, with steep terrain cutting that provides conducive conditions for sonw avalanche development. The study on the evaluation of snow avalanche susceptibility in this area is a crucial prerequisite for the safety construction and operation of the Duku expressway. The 149 snow avalanche points were collected by employing remote sensing interpretation and field investigations. Through correlation analysis of these factors, 10 evaluation factors were selected, forming the avalanche evaluation factor system. Subsequently, the non-avalanche points and original avalanche points were extracted using the K-means clustering method and random method to create a sample set. Machine learning techniques, including Multi-Layer Perceptron (MLP) and support vector machine (SVM) algorithms, were utilized to assess avalanche susceptibility in the study area. The results show that the sample datasets extracted by the random and K-means clustering methods were used for training, the Kappa coefficient of the R-SVM, R-MLP, K-SVM, and K-MLP models were greater than 0.6. These four sets of models exhibited a high degree of consistency between the predicted results and actual values of the validation dataset. The AUC (area under curve) value trained by MLP increased from 0.762 to 0.983, while the AUC value trained by SVM increased from 0.724 to 0.951. Based on the K-MLP model partition with the highest evaluation accuracy, the snow avalanche development in the research area has a relatively minor impact on the proposed route but may pose a threat to tunnel entrances. This study provides theoretical support and methodological references for the construction, operation and mitigation of sonw avalanche disasters for the Duku expressway.
-
Key words:
- sonw avalanche /
- susceptibility evaluation /
- support vector machine /
- multilayer perceptron /
- ArcGIS
-
表 1 评价因子数据源
Table 1. Data sources for evaluates factors
分类 评价因子 数据源 地形条件 高程、坡度、坡向、地表粗糙度、
地表起伏度、高程变异系数地理空间数据云DEM 气候条件 一月平均温度、最大风速、
年平均降雨量研究区及周边各站点
的气象数据积雪条件 年平均降雪量、
最大积雪厚度研究区及周边各站点
的气象数据表 2 雪崩评价因子分级量化结果
Table 2. Quantitative results of snow avalanche evaluation factor grading
评价因子 二级属性 $ {S _{ij}} $ $ {N_{ij}} $ $ {X_{ij}} $ $ {C_{ij}} $ 最大风速
/m/s9~12 32,130 18 1.170 0.760 12~15 169,196 63 0.777 0.000 15~19 109,751 68 1.294 1.000 1月平均气温
/( °C)−14~−11 39,756 15 0.788 0.045 −11~−9 201,195 71 0.737 0.000 −9~−7 70,126 63 1.876 1.000 最大积雪深度
/mm55~61 121,679 51 0.875 0.628 61~68 153,748 95 1.290 1.000 68~78 35,650 3 0.176 0.000 年平均降雨量
/mm43~45 65,586 27 0.859 0.319 45~47 127,682 31 0.507 0.000 47~49 117,809 91 1.613 1.000 年平均降雪量
/mm11~15 22,538 7 0.648 0.000 15~18 219,917 77 0.731 0.062 18~21 68,622 65 1.978 1.000 高程
/m1,873~2,295 43,244 5 0.241 0.000 2,295~2,619 82,136 15 0.381 0.051 2,619~2,927 59,328 30 1.056 0.297 2,927~3,262 51,439 31 1.258 0.370 3,262~3,627 43,467 23 1.105 0.315 3,627~4,459 31,463 45 2.986 1.000 坡度
/(°)0~10 62,301 5 0.167 0.000 10~19 56,267 18 0.668 0.253 19~28 59,776 28 0.978 0.410 28~37 62,891 40 1.328 0.587 37~47 49,479 38 1.603 0.726 47~82 19,463 20 2.145 1.000 坡向 北 67,060 31 0.962 0.373 东北 23,094 7 0.633 0.000 东 22,559 15 1.388 0.855 东南 38,180 21 1.148 0.583 南 48,476 21 0.904 0.307 西南 43,794 17 0.810 0.201 西 31,664 23 1.517 1.000 西北 35,250 14 0.829 0.222 地形起伏度
/m0~194 49,218 1 0.042 0.000 194~332 55,415 11 0.414 0.213 332~457 68,499 31 0.945 0.516 457~588 67,127 48 1.493 0.829 588~754 53,605 46 1.792 1.000 754~1263 17,213 12 1.455 0.808 地面粗糙度 1~1.1 149,984 37 0.514 0.228 1.1~1.2 83,112 48 1.206 0.536 1.2~1.4 51,767 38 1.533 0.681 1.4~1.7 19,965 21 2.196 0.976 1.7~2.4 4,640 5 2.250 1.000 2.4~7.2 709 0 0.000 0.000 地表切割度
/m0~88 74,711 2 0.056 0.000 88~161 70,384 18 0.534 0.210 161~232 62,245 23 0.771 0.315 232~309 55,587 62 2.329 1.000 309~401 39,623 36 1.897 0.810 401~682 8,527 8 1.959 0.837 高程变异系数 0~0.016 41,667 4 0.200 0.000 0.016~0.028 72,137 27 0.781 0.540 0.028~0.040 80,064 48 1.252 0.977 0.040~0.051 63,506 38 1.249 0.974 0.051~0.065 45,784 28 1.277 1.000 0.065~0.107 7,919 4 1.055 0.794 表 3 雪崩评价因子相关性矩阵
Table 3. Correlation matrix of snow avalanche evaluation factors
最大
风速一月平均
气温年平均
降雨量年平均
降雪量最大积雪
深度高程变异
系数地形
粗糙度地表
切割度地形
起伏度坡向 坡度 高程 最大风速 1.00 一月平均气温 0.61 1.00 年平均降雨量 0.07 0.16 1.00 年平均降雪量 0.08 0.23 0.23 1.00 最大积雪深度 0.64 0.14 0.18 −0.17 1.00 高程变异系数 −0.02 0.15 0.04 0.19 −0.13 1.00 地形粗糙度 −0.11 0.06 −0.01 0.14 −0.19 0.25 1.00 地表切割度 −0.13 0.13 0.06 0.24 −0.22 0.11 0.28 1.00 地形起伏度 −0.17 0.12 0.04 0.25 −0.27 0.92 0.47 0.93 1.00 坡向 −0.01 0.02 0.00 0.02 −0.02 0.03 0.01 0.05 0.05 1.00 坡度 −0.11 0.12 0.07 0.22 −0.19 0.28 0.26 0.11 0.60 0.01 1.00 高程 −0.51 0.03 0.01 0.28 −0.54 0.17 0.34 0.21 0.44 0.03 0.12 1.00 表 4 K均值聚类法分析结果
Table 4. Results of K-means clustering algorithm method
聚类结果 栅格数量/个 雪崩个数/个 相对雪崩比 1 13484 46 7.122 2 85561 5 0.122 3 64712 47 1.516 4 33041 7 0.442 5 114280 44 0.804 表 5 基于K-MLP模型雪崩易发性分区结果统计
Table 5. Statistical results of snow avalanche susceptibility partition based on K-MLP model
易发性等级 栅格
数量/个面积
/km雪崩
数/个分区比例 雪崩比 雪崩密度
/(个/km)2低易发区 79284 71.35 9 25.59% 0.06 0.12 中易发区 86287 77.66 24 27.74% 0.16 0.31 高易发区 83594 75.23 51 26.87% 0.34 0.68 极高易发区 61912 55.72 64 19.90% 0.44 1.17 -
[1] 王世金,效存德. 全球冰冻圈灾害高风险区:影响与态势[J]. 科学通报,2019,64(9):890 − 900. [WANG Shijin,XIAO Cunde. Global cryospheric disaster at high risk areas:impacts and trend[J]. Chinese Science Bulletin,2019,64(9):890 − 900. (in Chinese with English abstract) WANG Shijin, XIAO Cunde . Global cryospheric disaster at high risk areas: impacts and trend[J]. Chinese Science Bulletin,2019 ,64 (9 ):890 −900 . (in Chinese with English abstract)[2] SCHWEIZER J,BRUCE JAMIESON J,SCHNEEBELI M. Snow avalanche formation[J]. Reviews of Geophysics,2003,41(4):1016. [3] 杨金明,张旭,毛炜峄,等. 中国天山雪崩灾害调查分析[J]. 自然灾害学报,2022,31(1):188 − 197. [YANG Jinming,ZHANG Xu,MAO Weiyi,et al. Investigation and analysis of snow avalanche disaster in Tianshan Mountains of China[J]. Journal of Natural Disasters,2022,31(1):188 − 197. (in Chinese with English abstract) YANG Jinming, ZHANG Xu, MAO Weiyi, et al . Investigation and analysis of snow avalanche disaster in Tianshan Mountains of China[J]. Journal of Natural Disasters,2022 ,31 (1 ):188 −197 . (in Chinese with English abstract)[4] 史志文,徐俊荣,陈忠升,等. 天山西部寒区山地生态系统近40年来气候变化特征——以中国科学院天山积雪雪崩研究站为例[J]. 山地学报,2009,27(1):41 − 48. [SHI Zhiwen,XU Junrong,CHEN Zhongsheng,et al. Analysis on climatic changes under global climatic change:A case study of Tianshan snow and avalanche research station[J]. Journal of Mountain Science,2009,27(1):41 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2009.01.006 SHI Zhiwen, XU Junrong, CHEN Zhongsheng, et al . Analysis on climatic changes under global climatic change: A case study of Tianshan snow and avalanche research station[J]. Journal of Mountain Science,2009 ,27 (1 ):41 −48 . (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2009.01.006[5] 郝建盛,李兰海. 雪崩灾害防治研究进展及展望[J]. 冰川冻土,2022,44(3):762 − 770. [HAO Jiansheng,LI Lanhai. Research progress and prospect of snow avalanche disaster prevention and control[J]. Journal of Glaciology and Geocryology,2022,44(3):762 − 770. (in Chinese with English abstract) HAO Jiansheng, LI Lanhai . Research progress and prospect of snow avalanche disaster prevention and control[J]. Journal of Glaciology and Geocryology,2022 ,44 (3 ):762 −770 . (in Chinese with English abstract)[6] JACKSON M. Snow and ice-related hazards,risks,and disasters. 2nd edition. edited by wilfried haeberli and colin whiteman[J]. Mountain Research and Development,2022,42(2):1 − 5. [7] FAVIER P,ECKERT N,FAUG T,et al. A framework to account for structural damage,functional efficiency and reparation costs within the optimal design of countermeasures:application to snow avalanche risk mitigation[J]. Cold Regions Science and Technology,2022,199:103559. doi: 10.1016/j.coldregions.2022.103559 [8] 郝建盛,黄法融,冯挺,等. 亚洲高山区雪崩灾害时空分布特点及其诱发因素分析[J]. 山地学报,2021,39(2):304 − 312. [HAO Jiansheng,HUANG Farong,FENG Ting,et al. Analysis of spatio-temporal distribution characteristics of snow avalanche disaster and its triggering factors in the high Mountain Asia[J]. Mountain Research,2021,39(2):304 − 312. (in Chinese with English abstract) HAO Jiansheng, HUANG Farong, FENG Ting, et al . Analysis of spatio-temporal distribution characteristics of snow avalanche disaster and its triggering factors in the high Mountain Asia[J]. Mountain Research,2021 ,39 (2 ):304 −312 . (in Chinese with English abstract)[9] 段仕美,刘时银,朱钰,等. 梅里雪山1991年和2019年雪崩事件重建及影响因素分析[J]. 冰川冻土,2022,44(3):771 − 783. [DUAN Shimei,LIU Shiyin,ZHU Yu,et al. Reconstructing and analyzing avalanche events of 1991 and 2019 in Meili Snow Mountain[J]. Journal of Glaciology and Geocryology,2022,44(3):771 − 783. (in Chinese with English abstract) DUAN Shimei, LIU Shiyin, ZHU Yu, et al . Reconstructing and analyzing avalanche events of 1991 and 2019 in Meili Snow Mountain[J]. Journal of Glaciology and Geocryology,2022 ,44 (3 ):771 −783 . (in Chinese with English abstract)[10] TROSHKINA E,GLAZOVSKAYA T,KONDAKOVA N,et al. Zoning of snowiness and avalanching in the mountains of western Transcaucasia[J]. Annals of Glaciology,2001,32:311 − 313. doi: 10.3189/172756401781819012 [11] 武万里,缑晓辉,刘垚. 基于GIS的路面积雪灾害风险分析与区划研究[J]. 防灾科技学院学报,2021,23(1):87 − 93. [WU Wanli,GOU Xiaohui,LIU Yao. Snow cover risk analysis and zoning of expressway in Ningxia based on GIS[J]. Journal of Institute of Disaster Prevention,2021,23(1):87 − 93. (in Chinese with English abstract) WU Wanli, GOU Xiaohui, LIU Yao . Snow cover risk analysis and zoning of expressway in Ningxia based on GIS[J]. Journal of Institute of Disaster Prevention,2021 ,23 (1 ):87 −93 . (in Chinese with English abstract)[12] 李靖,邓桃,潘前,等. 基于GIS和层次分析法的雪崩灾害危险性评估及线路工程减灾对策研究——以帕隆藏布流域为例[J]. 四川建筑,2019,39(2):59 − 61. [LI Jing,DENG Tao,PAN Qian,et al. Risk assessment of avalanche disaster based on GIS and analytic hierarchy process and research on disaster reduction countermeasures of line engineering:A case study of palong Zangbo Basin[J]. Sichuan Architecture,2019,39(2):59 − 61. (in Chinese) LI Jing, DENG Tao, PAN Qian, et al . Risk assessment of avalanche disaster based on GIS and analytic hierarchy process and research on disaster reduction countermeasures of line engineering: A case study of palong Zangbo Basin[J]. Sichuan Architecture,2019 ,39 (2 ):59 −61 . (in Chinese)[13] RAHMATI O,GHORBANZADEH O,TEIMURIAN T,et al. Spatial modeling of snow avalanche using machine learning models and geo-environmental factors:comparison of effectiveness in two mountain regions[J]. Remote Sensing,2019,11(24):2995. doi: 10.3390/rs11242995 [14] 文洪,巫锡勇,赵思远,等. 基于机器学习法的青藏高原沙鲁里山系中段雪崩易发性评价研究[J]. 冰川冻土,2022,44(6):1694 − 1706. [WEN Hong,WU Xiyong,ZHAO Siyuan,et al. Snow avalanche susceptibility evaluation in the central Shaluli Mountains of Tibetan Plateau based on machine learning method[J]. Journal of Glaciology and Geocryology,2022,44(6):1694 − 1706. (in Chinese with English abstract) WEN Hong, WU Xiyong, ZHAO Siyuan, et al . Snow avalanche susceptibility evaluation in the central Shaluli Mountains of Tibetan Plateau based on machine learning method[J]. Journal of Glaciology and Geocryology,2022 ,44 (6 ):1694 −1706 . (in Chinese with English abstract)[15] 边瑞. 基于集成机器学习模型的沙鲁里山系中段雪崩易发性评价研究[D]. 成都:西南交通大学,2021. [BIAN Rui. Avalanche susceptibility evaluation in the middle part of Shaluli Mountain system based on integrated machine learning model[D]. Chengdu:Southwest Jiaotong University,2021. (in Chinese with English abstract)BIAN Rui. Avalanche susceptibility evaluation in the middle part of Shaluli Mountain system based on integrated machine learning model[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese with English abstract) [16] AKAY H. Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques[J]. CATENA,2021,206:105524. doi: 10.1016/j.catena.2021.105524 [17] BALLESTEROS-CÁNOVAS J A,TRAPPMANN D,MADRIGAL-GONZÁLEZ J,et al. Climate warming enhances snow avalanche risk in the Western Himalayas[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(13):3410 − 3415. [18] FROMM R,SCHÖNBERGER C. Estimating the danger of snow avalanches with a machine learning approach using a comprehensive snow cover model[J]. Machine Learning With Applications,2022,10:100405. doi: 10.1016/j.mlwa.2022.100405 [19] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract) LIU Fuzhen, WANG Ling, XIAO Dongsheng . Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021 ,32 (6 ):98 −106 . (in Chinese with English abstract)[20] LEE S. Current and future status of GIS-based landslide susceptibility mapping:a literature review[J]. Journal of Remote Sensing,2019,35:179 − 193. [21] 李倩楠. 基于不同算法的DEM地面曲率提取的比较分析[J]. 首都师范大学学报(自然科学版),2016,37(5):82 − 85. [LI Qiannan. Based on the difference of the digital elevation model(DEM) algorithm analysis and comparison of the ground curvature extraction[J]. Journal of Capital Normal University (Natural Science Edition),2016,37(5):82 − 85. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9398.2016.05.015 LI Qiannan . Based on the difference of the digital elevation model(DEM) algorithm analysis and comparison of the ground curvature extraction[J]. Journal of Capital Normal University (Natural Science Edition),2016 ,37 (5 ):82 −85 . (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9398.2016.05.015[22] 李艳,朱军,胡亚,等. 不同插值方法模拟四川省逐月降水量的对比分析[J]. 水土保持研究,2017,24(1):151 − 154. [LI Yan,ZHU Jun,HU Ya,et al. Comparison analysis on different spatial interpolation methods to simulate monthly precipitation in Sichuan Province[J]. Research of Soil and Water Conservation,2017,24(1):151 − 154. (in Chinese with English abstract) LI Yan, ZHU Jun, HU Ya, et al . Comparison analysis on different spatial interpolation methods to simulate monthly precipitation in Sichuan Province[J]. Research of Soil and Water Conservation,2017 ,24 (1 ):151 −154 . (in Chinese with English abstract)[23] 王新宇,黄鹏程. 基于GIS的气象要素插值方法比较研究[J]. 测绘与空间地理信息,2020,43(5):167 − 170. [WANG Xinyu,HUANG Pengcheng. Comparative study on interpolation methods of meteorological elements based on GIS[J]. Geomatics & Spatial Information Technology,2020,43(5):167 − 170. (in Chinese) doi: 10.3969/j.issn.1672-5867.2020.05.047 WANG Xinyu, HUANG Pengcheng . Comparative study on interpolation methods of meteorological elements based on GIS[J]. Geomatics & Spatial Information Technology,2020 ,43 (5 ):167 −170 . (in Chinese) doi: 10.3969/j.issn.1672-5867.2020.05.047[24] JARVIS C H,STUART N. A comparison among strategies for interpolating maximum and minimum daily air temperatures. part II:the interaction between number of guiding variables and the type of interpolation method[J]. Journal of Applied Meteorology,2001,40(6):1075 − 1084. doi: 10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2 [25] 李文彦,王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报,2020,29(4):213 − 220. [LI Wenyan,WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters,2020,29(4):213 − 220. (in Chinese with English abstract) LI Wenyan, WANG Xile . Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters,2020 ,29 (4 ):213 −220 . (in Chinese with English abstract)[26] 杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract) DU Guoliang, YANG Zhihua, YUAN Ying, et al . Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021 ,48 (5 ):102 −111 . (in Chinese with English abstract)[27] 王森,刘琛,邢帅杰. K-means聚类算法研究综述[J]. 华东交通大学学报,2022,39(5):119 − 126. [WANG Sen,LIU Chen,XING Shuaijie. A survey of K-means clustering algorithm[J]. Journal of East China Jiaotong University,2022,39(5):119 − 126. (in Chinese) WANG Sen, LIU Chen, XING Shuaijie . A survey of K-means clustering algorithm[J]. Journal of East China Jiaotong University,2022 ,39 (5 ):119 −126 . (in Chinese)[28] 牛瑞卿,彭令,叶润青,等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing,PENG Ling,YE Runqing,et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract) NIU Ruiqing, PENG Ling, YE Runqing, et al . Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012 ,42 (2 ):430 −439 . (in Chinese with English abstract)[29] 张驰,郭媛,黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用,2021,57(11):57 − 69. [ZHANG Chi,GUO Yuan,LI Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications,2021,57(11):57 − 69. (in Chinese with English abstract) ZHANG Chi, GUO Yuan, LI Ming . Review of development and application of artificial neural network models[J]. Computer Engineering and Applications,2021 ,57 (11 ):57 −69 . (in Chinese with English abstract)[30] 周萍,邓辉,张文江,等. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学,2022,42(9):1665 − 1675. [ZHOU Ping,DENG Hui,ZHANG Wenjiang,et al. Study on landslide susceptibility evaluation based on information model and machine learning method:A case study of Lixian County,Sichuan Province[J]. Scientia Geographica Sinica,2022,42(9):1665 − 1675. (in Chinese) ZHOU Ping, DENG Hui, ZHANG Wenjiang, et al . Study on landslide susceptibility evaluation based on information model and machine learning method: A case study of Lixian County, Sichuan Province[J]. Scientia Geographica Sinica,2022 ,42 (9 ):1665 −1675 . (in Chinese)[31] 熊小辉,汪长林,白永健,等. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报,2022,33(4):114 − 124. [XIONG Xiaohui,WANG Changlin,BAI Yongjian,et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at County level:A case study for Puge County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):114 − 124. (in Chinese with English abstract) XIONG Xiaohui, WANG Changlin, BAI Yongjian, et al . Comparison of landslide susceptibility assessment based on multiple hybrid models at County level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022 ,33 (4 ):114 −124 . (in Chinese with English abstract)[32] MAGGIONI M,GRUBER U. The influence of topographic parameters on avalanche release dimension and frequency[J]. Cold Regions Science and Technology,2003,37(3):407 − 419. doi: 10.1016/S0165-232X(03)00080-6 [33] 王世金,任贾文. 国内外雪崩灾害研究综述[J]. 地理科学进展,2012,31(11):1529 − 1536. [WANG Shijin,REN Jiawen. A review of the progresses of avalanche hazards research[J]. Progress in Geography,2012,31(11):1529 − 1536. (in Chinese with English abstract) WANG Shijin, REN Jiawen . A review of the progresses of avalanche hazards research[J]. Progress in Geography,2012 ,31 (11 ):1529 −1536 . (in Chinese with English abstract)[34] 张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract) ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al . Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering,2022 ,41 (1 ):157 −171 . (in Chinese with English abstract)[35] 孙长明,马润勇,尚合欣,等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming,MA Runyong,SHANG Hexin,et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906074 SUN Changming, MA Runyong, SHANG Hexin, et al . Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020 ,47 (3 ):173 −181 . (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906074 -